UNIVERSIDAD TÉCNICA DE COTOPAXI

UNIDAD ACADÉMICA DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

CARRERA DE INGENIERÍA AGRONÓMICA

TESIS DE GRADO

CARACTERIZACIÓN ESTRUCTURAL, HISTOLÓGICA Y ESPECTRAL DEL CULTIVO DE JÍCAMA (SMALLANTHUS SONCHIFOLIUS) EN EL CANTON LATACUNGA, PROVINCIA DE COTOPAXI. 2013

Tesis de grado presentada como requisito previo a la obtención del Título de Ingeniero Agrónomo

Autor: Diego Fernando Rengifo Rivera

Director: Ing. Francisco Chancusig

Asesor Técnico: PhD. Vicente Córdova

Cotopaxi

2014

AUTORÍA

Yo, DIEGO FERNANDO RENGIFO RIVERA, portador de la cédula N° 050211728-6, libre y voluntariamente declaro que la tesis titulada: "Caracterización Estructural, Histológica y Espectral del cultivo de Jícama (*Smallanthus sonchifolius*) en el Cantón Latacunga, Provincia de Cotopaxi. 2013", es original, autentica y personal. En tal virtud, declaro que el contenido será de mi sola responsabilidad legal y académica.

Diego Fernando Rengifo Rivera

CI. 050211728 - 6

AVAL DEL DIRECTOR DE TESIS

Cumpliendo con lo estipulado en el capítulo V Art. 12, literal f del Reglamento del

Curso Profesional de la Universidad Técnica de Cotopaxi, en calidad de Director del

Tema de Tesis: "Caracterización Estructural, Histológica y Espectral del cultivo

de Jícama (Smallanthus sonchifolius) en el Cantón Latacunga, Provincia de

Cotopaxi. 2013", debo confirmar que el presente trabajo de investigación fue

desarrollado de acuerdo con los planteamientos requeridos.

En virtud de lo antes expuesto, considero que se encuentra habilitado para presentarse

al acto de Defensa de Tesis, la cual se encuentra abierta para posteriores

investigaciones.

Ing. Francisco Chancusig

DIRECTOR DE TESIS

ii

AVAL DE LOS MIEMBROS DEL TRIBUNAL

En calidad de miembros de Tribunal de la Tesis Titulada: "Caracterización Estructural, Histológica y Espectral del cultivo de Jícama (Smallanthus sonchifolius) en el Cantón Latacunga, Provincia de Cotopaxi. 2013", de autoría del egresado Diego Fernando Rengifo Rivera CERTIFICAMOS que se ha realizado las respectivas revisiones, correcciones y aprobaciones al presente documento.

Aprobado por:

Ing. Francisco Chancusig	
DIRECTOR DE TESIS	
Ing. Agr. Jorge Kaslin Acosta	
PRESIDENTE	
Ing. Agr. Luis Benavides	
MIEMBRO DEL TRIBUNAL	
Ing. Agr. David Carrera	
OPOSITOR	

DEDICATORIA

A los mejores guías en el transcurrir de mi vida, como lo han sabido ser Cristo, quien me levanta cada día para entregarme su amor, enseñándome que las cosas que se hacen con esfuerzo pueden ser excelentes, pero las cosas que se hacen con amor son inigualables, que todo cuanto soy y tengo es gracias a él, porque todo viene de él, y aunque no me lo merezca nunca me las ha quitado. Que no tengo que ser uno entre cientos para ser alguien, no tengo que ser uno entre miles para ser grande, que no tengo que ser uno entre millones para ser el mejor. Que solo tengo que ser uno conmigo mismo para ser único ante sus ojos. Porque tú, solo tú, siempre tú y nadie más que tú. Gracias Señor.

A mis padres Sergio y Margarita, que con esfuerzo dedicación y cariño me enseñaron el respeto, la honradez y el sacrificio. Gracias papá por tu rectitud y pasión, porque de ti aprendí a luchar en este mundo por lo realmente justo. Gracias mamá por tus interminables horas de aliento, por demostrarme que todo es posible, que no hay obstáculos, que el sacrificio y el esfuerzo no existen cuando las cosas se realizan con el corazón, sin ningún interés de por medio y confiando en Dios, gracias por enseñarme a amar la vida en todas sus formas y heredarme tu más divino tesoro la igualdad.

A mis hermanos Rocío, Xavier, Teresa, Francys por sus consejos y apoyo.

A mis mejores amigos en especial a Williams por su apoyo en los momentos difíciles de la vida.

Gracias a todos y cuenten conmigo

Diego Fernando Rengifo Rivera

AGRADECIMIENTO

Mi más sincero agradecimiento a los maestros y autoridades en general de la Universidad Técnica de Cotopaxi, que apoyaron la labor de cada uno de los tesistas que conformamos el macroproyecto. A mi Director de Tesis el Ing. Francisco Chancusig por su gran aporte y apertura a todas las instancias de esta investigación. A los compañeros del macro que colaboraron en todo momento por el bien del grupo a Martha, Norma, Mayra, Fabián, Ignacio y demás personas que colaboraron para la culminación exitosa de la tesis.

Diego Fernando Rengifo Rivera

RESUMEN

La presente investigación Caracterización Estructural Histológica y Espectral del cultivo de Jícama (Smallanthus sonchifolius)" se desarrollo en el Barrio Loma Grande, cantón Latacunga, Provincia de Cotopaxi, con el objetivo de generar, sistematizar y estandarizar la información gráfica y espectral en medios digitales de las macro y micro estructuras de la Jícama para aplicaciones académicas y de investigación. El trabajo se efectuó mediante imágenes de alta resolución capturadas con equipos de alta tecnología en donde se identifica cada una de las partes de la planta de Jícama, las mismas que van acompañado con información teórica en forma didáctica en una página interactiva de fácil uso y manipulación por parte del usuario. Aquí se presenta los tres aspectos fundamentales de esta investigación; Caracterización Estructural, utilizando una cámara SIGMA de 46 megapíxeles con 3 sensores RGB y lente zoom de 250 mm se visualizó imágenes estructurales que muestra las características básicas de la planta de Jícama (raíz, tallo, hoja, flor, fruto y semilla), utilizando un estereoscopio se visualizó imágenes macro estructurales (semillas, sépalos, pétalos, etc.) Caracterización Histológica, con la ayuda del Microscopio AmScope utilizando lentes de 800, 200, 80X y el equipo completo de microscopía se visualizó imágenes micro estructurales (vasos conductores, tejidos, epidermis, estomas, conductos, etc.) Caracterización Espectral, con la colaboración del Instituto Espacial Ecuatoriano y el equipo completo (Espectroradiómetro Hiperespectral), se tomó la firma espectral de la planta de Jícama (Smallanthus sonchifolius) y se da una respuesta a la reflectancia que genera cada onda de luz en el "espectro de luz visible", la parte espectral nos indica de acuerdo al espectro de luz, cual es la onda de luz que la planta absorbe y cual de la onda de luz reflecta en distintas longitudes de onda medidos en "nanómetros" dentro del espectro de luz. Los resultados obtenidos quedan como un precedente que impulsen la aplicación en futuras investigaciones, y una mejor comprensión en el proceso de enseñanza y aprendizaje dentro del desarrollo académico.

ABSTRACT

A research study on "Structural, Histological, and Spectral Characterization of 'Jicama' (Smallanthus sonchifolius)", was carried out in Loma Grande Neighborhood, Latacunga Canton, Cotopaxi Province, during the year 2013. The general purpose of this study was to generate, systematize, and standardize the graphic and spectral information on digital media of the macro and micro structures of 'Jicama', for academic and research applications. The study was conducted using high resolution images captured with high-tech equipment. It allowed for identification of each part of the plant, followed with didactic theoretical information. An interactive website that is user-friendly was designed. Three fundamental aspects were taken into account. Firstly, a structural characterization using a 46-megapixel SIGMA camera with 3 RGB sensors and a 250mm zoom lens visualized macro structural images. It showed the basic characteristics of the plant (roots, steam, leaves, flowers, fruit, and seed). Meanwhile, a stereoscope visualized macro structural images (seeds, sepal, petals, etc). Secondly, a histological characterization was created using an AMSCOPE microscope, 80x, 200x, 800x lens, and microscopy equipment to generate microstructural images (conducting vessels, tissues, epidermis, stomata, etc). With the support of the Ecuadorian Space Institute (Instituto Espacial Ecuatoriano), a hyperspectral spectroradiometer took the spectral signature of the 'Jicama' (Smallanthus sonchifolius) plant in order to generate a spectral characterization. It resolved the reflectance generated by each light wave within the visible spectrum. According to the spectrum, it shows which are the light waves that the plant absorbs and the light waves that are reflected. The wavelengths are measured in "nanometers" within the light spectrum. The study concluded that is important to boost future research and better the teaching - learning process and academic development.

ÍNDICE

AUTORÍA	i
AVAL DEL DIRECTOR DE TESIS	ii
AVAL DE LOS MIEMBROS DEL TRIBUNAL	iii
DEDICATORIA	iv
AGRADECIMIENTO	v
RESUMEN	vi
ABSTRACT	vii
INTRODUCCIÓN	1
JUSTIFICACIÓN	4
OBJETIVOS	6
PREGUNTAS CIENTÍFICAS	7
CAPÍTULO I	8
1. FUNDAMENTO TEÓRICO	8
1.1. El cultivo de la jícama (Smallanthus sonchifolius)	8
1.1.1. Origen y Distribución	8
1.1.2. Descripción Taxonómica.	10
1.1.3. Descripción Botánica	10
1.1.3.1. Planta	10
1.1.3.2. Raíz	12
1.1.3.3. Tallo	13
1.1.3.4. Hojas	14
1.1.3.5. Inflorescencia	15
1.1.3.6. Fruto	15
1.1.3.7. Semilla	16
1.2. Caracterización Estructural de Plantas mediante Procesamiento	
Digital de Imágenes	16
1.3. Caracteres Histológicos de la Jícama (Smallanthus sonchifolius)	17
1.4. Características Espectrales de la Vegetación	18

1.4.1. Influencia de los componentes de las cubiertas vegetales	20
1.4.2. Propiedades Reflectantes de las Hojas	23
1.4.2. Influencia de otras partes de la planta	26
CAPÍTULO II	27
DISEÑO DE LA INVESTIGACIÓN	27
2.1. Materiales	27
2.1.1. Institucionales	27
2.1.2. Recursos Humanos	27
2.1.3. Materiales de oficina	27
2.1.4. Material Experimental	28
2.1.5. Recursos Tecnológicos	28
2.2. Caracterización del sitio experimental	28
2.2.1. Ubicación Geográfica	28
2.2.2. División Política	29
2.2.3. Características del lugar	29
2.2.3.1. Condiciones Edafoclimáticas	29
2.3. Diseño Metodológico	29
2.3.1. Investigación Descriptiva	29
2.3.2. Método Analítico	30
2.3.3. Técnica de Observación.	30
2.3.4. Técnica de Fichaje (Libro de Campo)	31
2.4. Análisis Estadístico.	31
2.5. Metodología	33
2.5.1. Reconocimiento del lugar.	33
2.5.2. Diagnóstico del sector escogido.	33
2.5.2.1. Acceso a riego	33
2.5.2.2. Manejo de cultivo	33
2.5.2.3. Altitud	34
2.5.2.4. Temperatura	34
2.5.2.5. Tipo de Suelo	34

2.5.3. Toma de muestras	34
2.5.4 Análisis Macro y Microestructural	35
2.5.5. Análisis Espectral	36
2.5.6. Elaboración del material digital para Docencia-Investigación	38
2.5.7. Página Interactiva	38
2.5.8. Publicación de la Página Interactiva	39
CAPITULO III	40
RESULTADOS Y DISCUSIÓN	40
3.1. Caracterización Estructural	40
3.1.1. Caracterización Estructural del Sistema Radicular de la Jícama	40
3.1.2. Caracterización Estructural del Sistema Caulinar de la Jícama	42
3.1.3. Caracterización Estructural de la Hoja de la Jícama	44
3.1.4. Caracterización Estructural de las Flores de la Jícama	47
3.1.5. Caracterización Estructural de La Raíz Tuberosa de la Jícama	50
3.1.6. Caracterización Estructural del Fruto de la Jícama	51
3.2. Análisis Histológico	53
3.2.1. Caracterización Histológica de la Raíz de la Jícama	53
3.2.2. Caracterización Histológica Caulinar de la Jícama	57
3.2.3. Caracterización Histológica Foliar de la Jícama	62
3.2.4. Caracterización del Grano de Polen de la Jícama	65
3.3. Análisis Espectral	66
3.3.1. Firma Espectral de la Jícama (Smallanthus sonchifolius)	67
3.3.2. Firma Espectral en el Rango de Luz Azul de la Jícama	68
3.3.3. Firma Espectral en el Rango de Luz Verde de la Jícama	70
3.3.4. Firma Espectral Rango de Luz Roja de la Jícama	72
3.3.5. Firma Espectral en el Rango de Luz Infrarroja de la Jícama	73
CONCLUSIONES	76
RECOMENDACIONES	77
GLOSARIO	78
DIDI IOCD A ELA	97

ANEXO 1 FOTOGRAFÍAS DE LA PRÁCTICA	93
ANEXO 2 DATOS ESPECTRALES	99
ANEXO 3 COSTOS	140
ÍNDICE DE CUADROS	
CUADRO N° 1: Coordenadas Geográficas	28
CUADRO N° 2: Ubicación Política	29
CUADRO N° 3: Características Edafoclimáticas	29
ÍNDICE DE FIGURAS	
FIGURA N° 1: Estructura de la Hoja	20
FIGURA N° 2: Firma Espectral de la Hoja	24
ÍNDICE DE IMÁGENES	
IMAGEN N° 1: Sistema Radicular de Jícama (Smallanthus sonchifolius)	40
IMAGEN N° 2. Tallo de Jícama (Smallanthus sonchifolius)	43
IMAGEN N° 3: Estructura de la Hoja de Jícama (Smallanthus sonchifolius)	41
IMAGEN N° 4: Estructura de las Flores de Jícama	50
IMAGEN N° 5: Estructura de la Raíz Tuberosa de la Jícama	51
IMAGEN N° 6: Estructura del Fruto de Jícama	52
IMAGEN N° 7: Corte Transversal de la Raíz de la Jícama	54
IMAGEN N° 8: Corte Longitudinal de la Raíz de la Jícama	56
IMAGEN N° 9: Corte Transversal del Tallo de la Jícama	58
IMAGEN N° 10: Corte Longitudinal del Tallo de la Jícama	61
IMAGEN N° 11: Corte Transversal de la Hoja de la Jícama	62
IMAGEN N° 12: Epidermis del Envés de la Hoja de la Jícama	64
IMAGEN N° 13: Grano de Polen de la Jícama (Smallanthus sonchifolius)	65

ÍNDICE DE GRÁFICOS

Gráfico Nº 1: Firma Espectral de la Jícama De 400 a 1000 nm	67
Gráfico Nº 2: Firma Espectral de la Jícama (Smallanthus sonchifolius).	
De 400 a 480 nm De Espectro De Luz Azul.	68
Gráfico Nº 3: Firma Espectral de la Jícama (Smallanthus sonchifolius).	
De 480 a 600 nm De Espectro De Luz Verde.	70
Gráfico Nº 4: Firma Espectral de la Jícama (Smallanthus sonchifolius).	
De 600 a 800 nm De Espectro De Luz Roja	72
Gráfico Nº 5: Firma Espectral de la Jícama (Smallanthus sonchifolius).	
De 600 a 800 nm De Espectro De Luz Infrarroja	74

INTRODUCCIÓN

Se ha señalado que una de las causas de la baja utilización de los recursos fitogenéticos es la falta de información sobre éstos (Ordás et al. 1994 citado por Lobo, 2006). Por ello, en la formulación del Plan Global de Acción de Recursos Fitogenéticos para Alimentación y Agricultura, se incluyó el incremento de las acciones de caracterización y evaluación (FAO, 1996). En el Plan se señala que la ausencia de este tipo de acciones impide el aprovechamiento del valor de la variabilidad genética, de lo cual se derivan unos costos de conservación elevados con relación a los beneficios obtenidos a partir de las colecciones.

Cabe destacar también el impacto social y económico que tiene el desarrollo del comercio de productos tradicionales exóticos en el marco de los esfuerzos de diversos países, en la lucha contra la pobreza rural extrema, la sustitución de cultivos ilícitos como la coca y la conservación y uso sostenible de la biodiversidad. (Flores, 2010).

Sin embargo desde la promulgación del reglamento de Productos Nuevos, "Novel Food", de la Unión Europea que afecta a los productos que no hayan sido utilizados para el consumo humano a escala significativa dentro de la UE antes del 15 de mayo de 1997, coloca una barrera de acceso al mercado europeo, que comprende 400 millones de habitantes. Los países afectados han realizado una campaña tendiente a lograr que se modifiquen este reglamento por el impacto desfavorable en los pequeños productores de los países en desarrollo, siendo la cadena de Yacón una de ellas. (Flores, 2010).

La conservación y utilización sostenida de los recursos vegetales conlleva, en primer lugar, conocer la variabilidad en todos sus aspectos. Esto significa conocer la dinámica de los sistemas productivos, la diversidad de los cultivares y sus parientes silvestres, los usos y roles, los factores que favorecen o ponen en riesgo la

conservación, etc. La exploración etnobotánica provee el instrumento para abordar estos aspectos (Fairlie, 1999)

Las raíces y tubérculos andinos son cultivos con orígenes muy antiguos que ocupan nichos con bastante variabilidad ecológica y cultural, desempeñando roles distintos en los sistemas de cultivos. Por esta razón es difícil establecer generalidades sobre estos cultivos en Ecuador. En esta variabilidad se encierra una gran riqueza, mostrando también que la dotación de la variabilidad genética y la adaptación que los seres humanos han hecho para aprovecharse de ella, constituye un valioso patrimonio para el país. (Espinoza, P. 1997).

Hace algunos años no se le daba mayor importancia a esta raíz porque se consideraba que su valor nutricional era muy bajo, por lo que se dejaron de lado las investigaciones. Por estas razones, actualmente existe muy poca información sobre el cultivo, las tecnologías y el procesamiento del yacón. (Velezmoro, 2004).

En el Ecuador y la Provincia de Cotopaxi se han identificado trabajos por parte del gobierno y de instituciones como el Iniap quienes a través de sus técnicos buscan fomentar el cultivo de la jícama, para posteriormente realizar trabajos para determinar la composición química y fitoquímica de la planta. Por lo tanto se hace imprescindible los estudios estructurales, histológicos y espectrales que sirvan de base para todos los posteriores trabajos de investigación y desarrollo de este potencial cultivo.

En cuanto a una caracterización histológica y espectral de cultivos, poco o nada se ha investigado en el tema, más aún cuando se habla de este cultivo de tanta importancia, por lo que con este trabajo se da realce al tema causando el interés y las herramientas necesarias para los interesados en el estudio.

Por lo expuesto es de interés primordial de esta tesis el crear un documento que ayude a estudiantes, investigadores y público en general a encontrar los recursos didácticos que les permitan avanzar y desarrollar con sus investigaciones en los estudios acordes a este tema.

JUSTIFICACIÓN

Casi 95% de los recursos genéticos vegetales que hoy concitan el interés de los investigadores científicos en países desarrollados provienen de los países en vías de desarrollo. Más de dos tercios de la diversidad y la riqueza biológica de la Tierra están localizados en solo diecisiete de estos países. En este marco, la Jícama o Yacón es un producto de la diversidad biológica nativa de enormes efectos benéficos para la salud humana, pues sus raíces contienen fructooligosacáridos (fos), un tipo particular de azúcares de baja digestibilidad que aporta pocas calorías al organismo y puede ser consumido por los diabéticos debido a que no eleva el nivel de glucosa en la sangre. (Machuca, 2013).

El Ecuador es parte de uno de los centros de dispersión de plantas cultivadas, y por lo mismo, dispone de una gran biodiversidad vegetal, la misma que está en franco proceso de erosión genética. El valor de los recursos genéticos de raíces y tubérculos andinos, además de su importancia en la cultura e historia del país, reside fundamentalmente en su efecto económico sobre la agricultura. (Tapia C. 1996).

El cultivo de jícama además de ser rústico y tener altos rendimientos (30 ton /ha en promedio), está ampliamente distribuido en el país, pudiendo adaptarse fácilmente a ecologías de costa, valles interandinos y altas montañas, hasta los 3.500 msnm. Las zonas con mayor tradición en su cultivo se hallan en la sierra norte y central del Ecuador, pero también se lo encuentra en algunos sectores de las provincias sureñas Cañar, Azuay y Loja (Vilcabamba, Malacatos, Catamayo y Amaluza), donde se lo consume como fruta fresca, pues posee importantes propiedades nutracéuticas, lo que quiere decir que además de ser alimento, también es medicina (Álvarez, 2012).

El Yacón o Jícama (*Smallanthus sonchifolius*) requiere ser redescubierto para su posible expansión mediante diferentes acciones: Completar las exploraciones y

recolecciones sistemáticas de formas cultivadas y silvestres; coordinar, entre los actuales bancos de germoplasma, la caracterización y evaluación agronómica del material y la determinación del contenido y calidad de azúcares; determinar las condiciones óptimas de conservación de raíces y follaje; evaluar el uso y la calidad del forraje verde y henificado; estudiar las enfermedades y obtener material tolerante o determinar métodos de control; ensayar el cultivo a partir de meristemas; desarrollar tecnologías para el cultivo mecanizado (Hernández, 1992).

OBJETIVOS

1. Objetivo General

- Generar, sistematizar y estandarizar la información gráfica y espectral en medios digitales de las macro y micro estructuras de Jícama (*Smallanthus sonchifolius*), para aplicaciones académicas y de investigación.

2. Objetivos Específicos

- Describir las características estructurales, histológicas y espectrales de la Jícama (*Smallanthus sonchifolius*); a través de imágenes y la observación, en el entorno geográfico local.
- Diseñar un manual digital de alta definición que proporcione a las personas relacionadas con el cultivo de Jícama, un material especializado con el detalle y especificaciones de la información estructural, histológica y espectral de la planta de Jícama (*Smallanthus sonchifolius*).

PREGUNTAS CIENTÍFICAS

- **1.** ¿Es factible observar y distinguir características estructurales, histológicas y espectrales del cultivo de Jícama (*Smallanthus sonchifolius*) en el cantón Latacunga, provincia de Cotopaxi?
- **2.** ¿El material digital proporciona imágenes de alta definición en las cuales se pueden observar y distinguir claramente las macro y microestructuras para procesos de enseñanza e investigación aplicado al cultivo de la Jícama (*Smallanthus sonchifolius*)?

CAPÍTULO I

1. MARCO TEÓRICO

1.1. El cultivo de la Jícama (Smallanthus sonchifolius).

La Jícama o yacón es una planta nativa domesticada en los Andes; crece en forma silvestre en Ecuador, Colombia y el Perú. Cultivada desde 1200 a. C., prospera en los valles cálidos entre Ecuador y el noroeste de Argentina, pero el mayor número de variedades y usos se dan en el Perú. (Machuca, 2013).

Gracias a las propiedades y las características de las semillas, el yacón ha permanecido y permanece en las chacras de cultivo durante cientos de años como una especie de autopropagación, como parte de una serie de cultivos permanentes o de propagación directa, junto con otras especies silvestres como la papa curao, la caigua y el atago. (Machuca, 2013).

1.1.1. Origen y Distribución.

Smallanthus sonchifolius, conocido vulgarmente como "yacón", es una especie originaria de Bolivia y Perú, cultivada para el consumo de sus raíces en la región Andina desde Colombia hasta el noroeste de Argentina. (Grau & Rea, 1997).

Existen evidencias arqueológicas (cerámica, textiles y restos de raíces) sobre el uso del Yacón en las culturas Nazca (500 aC-700 dC), Paracas (1500–500 aC) y

Mochica (500 aC-700 dC) desarrolladas en la costa peruana. También se encuentran evidencias en los vestigios de la cultura Candelaria (1-1000 dC) del noroeste argentino. (Calle, 2012).

La Jícama o yacón se encuentra en estado cultivado y silvestre desde Venezuela y Colombia, hasta el norte de Argentina (Salta, Jujuy). En los últimos años, no se tiene ninguna información de su cultivo en los dos primeros países, pero sí se ha hecho más evidente su distribución y variabilidad en Argentina, Bolivia, Ecuador y Perú. En Argentina se cultiva escasamente en las provincias de Salta y Jujuy. En Bolivia se cultiva en los departamentos de Tarija, Chuquisaca, Cochabamba y La Paz. En Ecuador, se ha colectado germoplasma en las provincias de Carchi, Pichincha, Cotopaxi, Tungurahua, Bolívar, Chimborazo, Cañar, Azuay y Loja. En el Perú confirmamos su cultivo en el área alto andina de 18 departamentos de un total de 24 que tiene el país. (Seminario & Valderrama, 2003).

En Ecuador se cultiva de 2400 a 3000 m en forma esporádica entre maizales y en los huertos del callejón interandino y en orden de importancia en Loja, Azuay, Cañar, el área de San Pablo en Imbabura y en la provincia de Bolívar. (Hernández, 1992).

En la actualidad el yacón ya se siembra en muchos países fuera de los Andes. La ruta migratoria que siguió ha sido plenamente identificada. En la década de los 60 el yacón salió por primera vez desde Ecuador hacia Nueva Zelanda, país en el que se adaptó bien y donde hoy se siembra en pequeña escala para comercializar sus raíces frescas. En 1985 fue llevado desde Nueva Zelanda al Japón. Tal vez éste constituya el paso más importante de la migración del yacón por el mundo pues fue en Japón donde se realizaron los primeros estudios científicos que permitieron determinar su composición química y sus efectos favorables sobre la salud. Japón ha sido entonces el centro de dispersión del yacón hacia otros países como Corea y Brasil. (Seminario & Valderrama 2003).

1.1.2. Descripción Taxonómica.

Reino: Plantae

División: Magnoliophyta

Clase: Magnoliopsida

Orden: Asterales

Familia: Asteraceae

Subfamilia: Asteroideae

Tribu: Millerieae

Género: Smallanthus Especie: sonchifolius

N.C.: S. sonchifolius (Poepp & Endl) H. Robinson

Sinonimia: Polymnia sonchifolius Poepp & Endl

Nombre común: jícama, yacón, jíquima, jiquimilla. (Álvarez, 2012).

En el norte peruano es conocido como "Yacón" o "llacón" y "lajuash". En el centro del Perú se le conoce como "aricoma" o "aricona". En Bolivia se llama "lacjon" y "Yakuma", en Ecuador "jícama" o "jíquima" y en Colombia y Venezuela "jíquima" y "jiquimilla". En inglés se le conoce como Yacon Strawberry y en francés como Poir de terre Cochet. (Velezmoro, 2004).

1.1.3. Descripción Botánica.

1.1.3.1. Planta.

La planta de Jícama es herbácea perenne, mide de 1 a 2,5 m de alto. Si proviene de semilla, consta de un solo tallo principal, a veces ramificado desde la base, otras veces, solo con ramas pequeñas en la parte superior. Si la planta proviene de propágulo o semilla vegetativa, consta de varios tallos. Los tallos son cilíndricos,

pilosos y huecos, de color verde a púrpura. El yacón tiene dos tipos de raíces: fibrosas y reservantes. Las raíces fibrosas son muy delgadas. Las raíces reservantes son engrosadas, fusiformes u ovadas, de color blanco, crema o púrpura, principalmente. (Seminario & Valderrama, 2003).

Es una planta herbácea perenne que puede multiplicarse por semilla o rizomas. Forma un sistema radical muy ramificado del que salen tallos aéreos cilíndricos que alcanzan 1,5 m de alto. Las hojas son de forma variable, pinnatífidas en la base de los tallos, triangulares en la parte apical. Las inflorescencias tienen cinco brácteas verdes, triangulares y agudas; las flores externas están provistas de lígulas largas, de entre 10 y 15 mm de longitud, amarillas o anaranjadas, recortadas en el ápice, mientras que las centrales son tubulares y de unos 8 mm de largo. Las raíces son irregulares o fusiformes y desarrollan masas ramificadas en la base de la planta. Externamente son de color púrpura, la parte interna es carnosa y anaranjada (Barrera, 2004).

Los agricultores utilizan el color de la raíz y del tallo para clasificar la diversidad del yacón. Así en el sur del Perú, particularmente en Cusco y Puno, se han identificado cuatro tipos diferentes de yacón: blanco o yurac (pulpa blanca cremosa y cáscara rojiza o morada), amarillo o kello (pulpa amarilla a anaranjada y cáscara morada), moteado o checche (pulpa blanco cremosa con jaspes de color morado) y rosado o puca (pulpa rojiza y cáscara rosada a rojiza). (Manrique, 2005).

Se pueden diferenciar tres tipos básicos de plantas: el primero corresponde a una planta ramificada desde la base, con los tallos gruesos de color purpura, las hojas verde oscuro y las flores anaranjadas de tamaño mediano. Las raíces tuberosas son de color púrpura y de forma alargada a elíptico alargada y la pulpa es anaranjada clara. En general son más precoces. El segundo tipo presenta una planta ramificada sólo en la parte superior, con las ramas pequeñas, los tallos delgados de color verde amarillento o verde claro, las hojas verde claro y las flores amarillas pequeñas. Las

raíces tuberosas son cremas, más voluminosas que el tipo anterior y su pulpa de color melón. Son medianamente precoces. El tercer tipo es una planta cuya ramificación puede presentarse solo en la base, o en el tallo o a través de todo el tallo, el cual es de color verde con pigmentación púrpura, las hojas más grandes que los casos anteriores y las flores anaranjadas y más grandes. Las raíces son tuberosas blanco cremosas y las pulpas de color claro. Son las más tardías. (CIP, 1995).

1.1.3.2. Raíz.

Las raíces son irregulares o fusiformes y desarrollan masas ramificadas en la base de la planta, externamente son de color café claro y la parte interna es carnosa y anaranjada. (Tapia C. 1996).

El sistema radicular se compone de un sistema muy ramificado de raíces de absorción y de hasta 20 raíces carnosas y tuberosas de almacenaje. Las raíces de almacenaje se forman a partir de un sistema ramificado de ejes subterráneos; mayoritariamente napiformes, alcanzan hasta 25 cm de largo y 10 cm de grosor y pesan entre 0,2 - 2 kg. El color de la corteza de las raíces y del tejido de almacenaje varía, entre blanco, crema, rosado (estriado), lila, y hasta marrón. (Flores, 2010).

La Jícama (*Smallanthus sonchifolius*) tiene dos tipos de raíces: fibrosas y reservantes. Las raíces fibrosas son muy delgadas y su función es la fijación de la planta al suelo y la absorción de agua y nutrientes. Las raíces reservantes son engrosadas, fusiformes u ovadas, de color blanco, crema o púrpura, tienen una apariencia bastante semejante a las raíces reservantes del camote. Los factores como son la variedad, el tipo de suelo, la localidad, entre otros, pueden influenciar en la forma y el tamaño de las raíces. Su peso puede fluctuar entre los 50 y 1000 gramos, pero mayormente lo hacen entre los 300 y 600 gramos. (Seminario & Valderrama, 2003).

Las raíces reservantes tienen una apariencia semejante a las raíces reservantes del camote. Factores como la variedad, el tipo de suelo, la localidad, entre otros pueden influenciar en la forma y el tamaño de las raíces. Su peso puede fluctuar fácilmente entre los 50 y 1000 gramos, pero mayormente lo hacen entre los 300 y 600 gramos. El patrón de crecimiento secundario de la raíz el cual determina su engrosamiento, es muy similar al de las plantas dicotiledóneas. Se produce por un incremento en la actividad del cambium vascular que se ubica entre el xilema y el floema. (Seminario & Valderrama, 2003).

A parte de las raíces reservantes, las cuales no sirven para la propagación, el yacón forma un rizoma carnoso y ramificado llamado "cepa" en cuya superficie se desarrolla un abundante número de yemas. Una cepa madura puede ser dividida entre 10 a 20 partes o propágulos, los cuales se usan tradicionalmente como semilla. Cada propágulo puede contener ente 3 a 5 yemas de las cuales salen los brotes que formarán los tallos principales de la planta. (Manrique, 2005).

1.1.3.3. Tallo.

Posee un tallo cilíndrico fofo con manchas púrpuras y flores terminales en cabezuela pequeña, de color amarillo o anaranjado. Los tallos aéreos son anuales y se secan una vez terminada la floración, mientras que la parte subterránea es perenne. (Machuca, 2013).

S. sonchifolius es una hierba perenne de 1,5-3 m de altura, con tallo cilíndrico a angular, surcado, hueco en la madurez y densamente pubescente en la parte superior. (Flores, 2010).

Son cilíndricos, algo huecos como cañas y con pilosidad. Son verdes o pigmentados de púrpura. Su número varía de 4 a 12 según el cultivar. La planta puede presentar ramas desde la base del tallo o en la parte superior. (Valderrama, 2005).

Con un diámetro de hasta 2,05 centímetros en la parte más desarrollada (base) de vigor sub robusto, todo el tallo es exuberantemente pubescente, se ha observado que después de 4 a 5 meses aproximadamente de crecimiento empieza a ramificarse, hasta con 8 tallos por planta, con una altura de planta hasta de 2,10 centímetros en su etapa de máximo crecimiento, con longitud de ramas secundarias hasta de 70 centímetros, todas de color verde claro a verde oscuro, la presencia de heladas consecutivas afecta al tallo con ligera susceptibilidad. (www.solucionespracticas.org.pe).

El tallo se compone de una parte subterránea perenne con vástagos aéreos anuales que se secan una vez pasada la floración. De cada nudo del tallo brotan dos hojas triangulares a cordadas, opuestas, pilosas. (Tapia M & Fries A, 2007).

1.1.3.4. Hojas.

Las hojas son opuestas, de lámina triangular, de base trunca, hastada o cordada (acorazonada). Hasta la floración en cada tallo se producen entre 13 a 16 pares de hojas. Después de la floración la planta sólo produce hojas pequeñas. (Seminario & Valderrama, 2003).

Las hojas son de forma variable, pinnatipartidas las basales y triangulares las superiores, y están distribuidas en pares a lo largo de tallos muy poco ramificados, con base ancha y algo triangular. (Machuca, 2013).

Las hojas son opuestas, con lámina decurrente hacia el pecíolo; la lámina es anchamente aovada con base hastada, auriculada o connada; las hojas superiores son aovado-lanceoladas; el haz de la hoja es piloso y el envés pubescente. (Flores, 2010).

Las hojas son de forma variable, pinnatífidas en la base de los tallos, triangulares en la parte apical. (León, 2000).

1.1.3.5. Inflorescencia.

Las flores aparecen en ramos terminales y tiene cinco brácteas verdes, triangulares y agudas; las flores externas están provistas de lígulas largas, de 10 a 15 mm de longitud, amarillas o anaranjadas, recortadas en el ápice, mientras que las centrales son tubulares y de unos 8 mm de largo.. (León 2000).

La rama floral es terminal de ramificación dicásica, compuesta de inflorescencias llamadas capítulos o cabezuelas. Cada rama floral puede presentar entre 20 a 40 capítulos. Una planta puede producir 20 a ochenta capítulos. Cada capítulo está formado por flores femeninas y masculinas. Las flores femeninas se ubican en el verticilo externo, cuya parte más vistosa y coloreada de amarillo es la lígula. Las flores masculinas son tubulares y más pequeñas, se ubican en los verticilos internos del receptáculo. (Seminario & Valderrama, 2003).

Las inflorescencias son terminales, con 1-5 ejes, cada uno con tres capítulos y pedúnculos densamente pubescentes. Las brácteas involucrales son uniseriadas y aovadas, de hasta 15 mm de largo y 10 mm de ancho. Los capítulos son amarillos a anaranjados, con cerca de 15 flores liguladas. Las flores liguladas son femeninas, 2-3-dentadas, de hasta 12 mm de largo y 7 mm de ancho. Las flores tubulares son masculinas, con cerca de 7 mm de largo. (Flores, 2010).

1.1.3.6. Fruto.

El fruto es un aquenio, que procede de un ovario ínfero con más de un carpelo. El pericarpio es delgado y seco a la madurez, externamente presenta estrías longitudinales que forman surcos paralelos. (Seminario & Valderrama, 2003).

El fruto es un aquenio, de 3,7 x 2,2 mm en promedio, tienen forma elipsoidal, color café oscuro, con epidermis lisa, endocarpio sólido caracterizado por el libre

desprendimiento del pericarpio con un ligero frotamiento; algunos ecotipos no producen frutos y si los producen no son viables. (Flores, 2010).

1.1.3.7. Semilla.

La semilla se encuentra unida al pericarpio solamente por el funículo (unión del saco embrionario con el ovario). La semilla es exalbuminosa, en ella, el albumen o endospermo ha desaparecido y todas las sustancias de reserva se concentran en los cotiledones. (Seminario & Valderrama, 2003).

La planta forma entre los tallos y las raíces, una masa irregular de tejido de reserva (parenquimático), con muchas yemas que dan lugar a brotes y se le llama "cepa" o "corona". De este órgano, se obtiene la "semilla" tradicional en forma de porciones de cepa que son los propágulos para la siembra; por esto se dice que la propagación del yacón es predominantemente vegetativa. (Valderrama, 2005).

1.2. Caracterización Estructural de Plantas mediante Procesamiento Digital de Imágenes.

En el área de la morfología vegetal, en los últimos años se han desarrollado técnicas para caracterizar el crecimiento de plantas mediante el relevamiento sus medidas y puntos estructuralmente importantes. Sin embargo todos son métodos manuales que resultan muy laboriosos para el operador. Para la implementación de un sistema para el análisis y recolección de datos característicos de plantas mediante procesamiento digital de imágenes. Primeramente se define un protocolo de captura de imágenes, que simplifique el procesamiento computacional posterior. Luego se presenta el bloque central del trabajo: El preproceso y detección de características sobre las plantas. (Haimovich, 2012).

Según Haimovich el siguiente es el protocolo para la captura de imágenes en el ámbito de caracterización:

Iluminación del ambiente: la captura de imágenes será realizada en un ambiente cerrado, utilizando luz fluorescente artificial, la cual es producida por dos tipos de tubos fluorescentes con longitud de onda diferente. Estas lámparas producen un campo de iluminación homogéneo, sin calor excesivo.

Ubicación de la planta: estará ubicada en una maceta de color negro, plantada en tierra con una superficie de arena y una hoja blanca detrás del tallo.

Posicionamiento de la cámara: se coloca a una distancia de 1m desde el objetivo al tallo y la visión de la misma deberá ser perpendicular a dicho plano. Se utiliza un trípode para evitar movimiento en la captura de la imagen.

Captura de la imagen: se toman dos fotos de la planta, una correspondiente al plano 6, el cual se obtiene ubicando la marca de la maceta frente a la cámara y otra correspondiente al plano 3, el cual se obtiene rotando la maceta 90° en sentido antihorario. Al momento de la captura, se selecciona el máximo nivel de acercamiento sin perder detalle de la planta y se desactiva la opción de flash, debido a que provoca una iluminación no deseada. El origen de la planta debe estar visible y no debe estar solapado por alguna de las hojas. (Haimovich, 2012).

1.3. Caracteres Histológicos de la Jícama (Smallanthus sonchifolius).

La hoja en vista paradermal presenta células poligonales con paredes anticlinales levemente sinuosas a muy sinuosas en las epidermis adaxial y abaxial, respectivamente La cutícula es delgada y lisa en ambos casos. Se trata de una hoja anfiestomática, con estomas anomocíticos levemente elevados respecto al nivel de la epidermis, con cámara subestomática, los mismos se hallan más densamente en la

epidermis abaxial. Los tricomas son glandulares y eglandulares. Los glandulares son pluricelulares, con pie biseriado de 5 a 6 pares de células. (Mercado 2006).

La epidermis presenta un estrato de células y tricomas. En el córtex, hay una franja de colénquima angular y varias de parénquima, conteniendo pocos cloroplastos. El cilindro vascular, tiene varios haces vasculares colaterales. Capas de esclerénquima se apoyan al floema. En el xilema, se encuentran elementos traqueales, fibras y células parenquimáticas. La médula es parenquimática. (Duarte, 2008).

1.4. Características Espectrales de la Vegetación

El estudio de las propiedades ópticas de las cubiertas vegetales presentan un cierto nivel de complejidad debido a que las mismas, no sólo varían con las características de los vegetales, sino que dependen también de otros factores como la elevación solar, posición del sensor, condiciones atmosféricas, color del suelo, orientación de las líneas de cultivo, geometría de la cubierta, etc. (Reuter, 2009).

Las propiedades reflectivas de la vegetación dependen de tres tipos de variables (Baret & Andrieu, 1994):

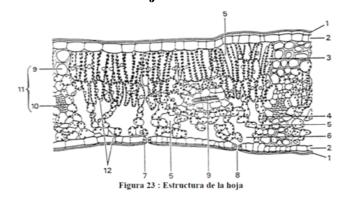
- 1. Estructura de la cubierta vegetal, principalmente caracterizada por su índice foliar, por la orientación de las hojas y por su distribución y tamaño.
- 2. Propiedades ópticas de los elementos reflectantes (tallos, hojas, flores y frutos).
- 3. Geometría de la observación, determinada por la orientación relativa entre el sol y la superficie y por la situación del sensor con respecto a esta última.

Con carácter general, en fitotecnia se habla de plantas de hoja estrecha y de hoja ancha, correspondiendo estas denominaciones a las categorías botánicas de mono y

dicotiledoneas. En un corte transversal de una hoja pueden distinguirse varias capas de tejidos diferentes. La más externa de ambas caras se denomina epidermis y está formada principalmente por células epidérmicas, si bien también se presentan algunas otras entre las que destacan las células oclusivas de los estomas u orificios de intercambio gaseoso, que abundan más en el envés que en el haz. Las paredes de las células epidérmicas suelen estar cubiertas de una cutícula, es decir, de una fina película protectora que juega un papel importante en la reflectancia resultante de la hoja. El mesófilo es la zona media de la hoja, situada entre la epidermis de las caras superior e inferior y contiene las células especializadas en realizar la fotosíntesis. Se distinguen dos tipos de tejidos: el parénquima en empalizada y el parénquima lagunar. El primero está situado inmediatamente debajo de la epidermis del haz (en algunas especies con hojas verticales, también en el envés) y sus células tienen forma de prismas muy bien ordenados. Debajo se sitúa el parénquima lagunar, caracterizado por contener células irregulares que dejan amplios espacios intersticiales que se comunican con los estomas. Los cloroplastos son corpúsculos celulares ricos en clorofilas y fotosintéticamente activos. Se concentran especialmente en el parénquima en empalizada que, por su situación, recibe mayor cantidad de energía radiante. (Baret & Andrieu, 1994).

El estudio de la firma espectral de una masa de hojas permite extraer algunas conclusiones (Ormeño, 1991):

- 1. En el intervalo visible-infrarrojo medio, las hojas presentan tres zonas diferenciadas: una en el visible (0,4-0,7 mm) caracterizada por su baja reflectancia, otra en el infrarrojo próximo (0,7-1,3 mm) y otra en el infrarrojo medio (1,3-2,5 mm).
- 2. En el visible, la reflectancia de las hojas no supera el 15 % y la transmitancia es también pequeña. Esto es debido a que los pigmentos fotosintéticos (clorofilas, xantofila, antocianinas y carotenos) tienen fuertes bandas de absorción en este intervalo espectral. Entre ellos, las clorofilas a y b, que son las más absorbentes con


un 65 % del total, presentan dos bandas de absorción centradas en el azul y en el rojo, por lo que producen un máximo relativo en la signatura espectral en torno a los 0,55 mm, responsable del color verde de las hojas.

- 3. En el infrarrojo próximo las hojas presentan una meseta de alta reflectancia (alrededor del 50 %). De la energía restante, la mayor parte es transmitida, ya que la absorbancia es sólo del 10 %, por lo que puede considerársele prácticamente transparente en esta región del espectro. Además hay que considerar que la energía transmitida podrá ser interceptada por otra hoja, será reflejada con mayor probabilidad y así sucesivamente.
- 4. En el infrarrojo medio, el agua marca su presencia en las hojas produciendo tres fuertes bandas de absorción en la signatura resultante, al igual que ocurre con los suelos: 1,4; 1,9 y 2,5 mm.

1.4.1. Influencia de los componentes de las cubiertas vegetales.

Hojas.- En la estructura fisiológica de una hoja de dicotiledónea se aprecian una serie de capas con estructura y propiedades particulares y que ordenadas desde la parte superior (haz) hasta el inferior (envés) son las siguientes: (Reuter, 2009).

FIGURA N° 1: Estructura de la Hoja

 Cutina. 2.- Epidermis. 3.- Parénquima en empalizada. 4.- Parénquima lagunar. 5.- Espacios intercelulares. 6.- Cámara subestomática. 7.- Células estomáticas con cloroplastos. 8.- Estoma. 9,10 y 11.- Vasos conductores. 12.- Cloroplastos.

Fuente: Reuter 2009

- 1.- Cutícula.- es una fina película que recubre el tallo y las hojas de las plantas, asegura una función de protección y juega un papel más o menos importante en la reflectancia, no contiene cloroplastos.
- 2.- Epidermis superior.- conjunto de células estrechamente unidas que no contienen clorofila, su función es de protección, al igual que el anterior posee así mismo una cierta cantidad de estomas (aberturas naturales con funciones de respiración y excreción) aunque estos son más abundantes en la epidermis inferior.
- 3.- Parénquima en empalizada.- células de forma paralepipédica, muy unidas entre sí y orientadas en el mismo sentido. En esta zona se ubica la mayoría de los cloroplastos, así mismo, la presencia de granos de almidón y de diversos cristales aumentan la absorción.
- 4.- Parénquima lagunar.- células desordenadas, más redondeadas que en el caso anterior, con grandes espacios llenos de aire y de líquido, con menos pigmentos que la capa anterior.
- 5.- Epidermis inferior.- análoga a la superior pero con más cantidad de estomas.
- 6.- Cutícula.- similar a la superior.

Ciertas plantas, con hojas verticales, poseen parénquima en empalizada también en la cara inferior. (Reuter, 2009).

Las propiedades ópticas de cosechas y cubiertas forestales dependen, principalmente, de las propiedades ópticas de las hojas y del suelo subyacente, pero también pueden verse afectadas por las características de otras partes de las plantas, tales como las cortezas de los árboles, las flores, los frutos, etc. Todas las hojas de los vegetales presentan una curva de reflectancia cuya forma es muy parecida. La citada

curva presenta una forma característica en cada una de las tres regiones espectrales del visible, IR próximo e IR medio. (Reuter, 2009).

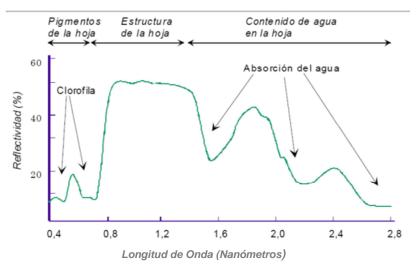
En el intervalo del visible (0,4-0,7 micras) la reflectancia de la hoja es pequeña (menos del 15%) y la transmitancia es también pequeña. La parte principal de la radiación incidente es absorbida por pigmentos tales como la clorofila, la xantofila, los carotenoides y las antocianinas. De ellos, los que más absorben son la clorofilas a y b, que constituyen en torno al 65% de los pigmentos de las hojas de las plantas superiores, y que presentan dos bandas de absorción centradas en la región del azul y del rojo, por ello, en esta región, aparece un máximo en las 0,55 micras, que explica el color verde de las hojas. (Reuter, 2009).

En el intervalo del IR próximo (0,7-1,3 micras) los pigmentos foliares y la celulosa de las paredes celulares se muestran como transparentes, por ello, la absorbancia de la hoja es muy baja (menos del 10%) y la radiación incidente es reflejada o transmitida. La reflectancia alcanza valores muy elevados (del orden del 50%) obteniéndose en el infrarrojo lo que se muestra como una "meseta" en la curva espectral, en esta región, la reflectancia depende de la estructura anatómica de las hojas, aumentando con el número de capas celulares, con el tamaño de las células dependiendo así mismo de la orientación de las paredes celulares y del contenido celular. (Reuter, 2009).

En el intervalo del IR medio (1,3-2,5 micras) las propiedades ópticas de la hoja se encuentran influidas, principalmente, por el contenido de agua, aparecen fuertes bandas de absorción de agua en 1,4; 1,9 y 2,5 micras, produciendo mínimos de reflectancia en estas longitudes de onda. Entre los mínimos citados pueden aparecer mínimos menos patentes, también debidos a la influencia del agua. El nivel de reflectancia de los máximos relativos en esta región también varía en función del contenido en agua. (Reuter, 2009).

1.4.2. Propiedades Reflectantes de las Hojas.

Cuando una radiación incide sobre una superficie, más o menos rugosa, la radiación reflejada tiene, principalmente dos componentes, uno de los cuales es radiación dispersada en gran número de direcciones (difusa) y otra es una componente direccional o especular. La reflectancia difusa varía con la longitud de onda y depende de la estructura interna de la hoja, de su pigmentación y de su contenido en agua, La reflectancia especular se debe a la cutícula de la hoja. (Reuter, 2009).


El primer contacto de la radiación es con la superficie de las hojas, las cuales consisten de la cutícula y capas de epidermis. El valor de luz que es absorbida o transmitida entre las hojas depende de su longitud de onda y de la selectividad de absorción de los pigmentos de la hoja, que pueden ser características de la misma especie o estar causadas por enfermedades o deficiencias nutritivas (Meer & Jong, 2002).

La región del espectro visible en la vegetación se caracteriza por baja reflectancia y transmitancia, dada la fuerte absorción por los pigmentos foliares. Por ejemplo, los pigmentos de clorofila absorben la luz violeta-azul y roja por la fotosíntesis. La luz verde es reflejada para la fotosíntesis, razón por la cual muchas de las plantas aparecen verdes. El espectro de reflectancia de la vegetación verde muestra picos de absorción de alrededor de 420nm (violeta), 490nm (azul) y 660nm (rojo). Estos son causados por una fuerte absorción de la clorofila. (Meer & Jong, 2002).

Si en un gráfico representamos la longitud de onda en el eje X y la reflectividad en el eje Y, observamos que cada cubierta se ve representada por una curva característica en él. Estas improntas singulares a modo de rúbricas, personalizan su comportamiento espectral frente al de otras cubiertas. A dichas curvas se las denomina espectros, signaturas o firmas espectrales. Su trazado permite distinguir

entre varias cubiertas o entre estados diferentes de una misma cubierta. (Pérez & Muñoz, 2006).

FIGURA N° 2: Firma Espectral de la Hoja

Fuente: Reuter 2009

Es importante destacar que las signaturas espectrales denotan un comportamiento tipo, determinado a partir de medidas de laboratorio. Sobre este comportamiento tipo cada cubierta puede registrar una serie de variaciones de las que se podrán extraer informaciones interesantes. (Pérez & Muñoz, 2006).

Si se considera un flujo incidente normal a la superficie foliar, la reflexión especular puede depreciarse, dispersándose la práctica total de la radiación reflejada y esto sucede en todas las longitudes de onda. Sin embargo, cuanto mayor es el ángulo de incidencia (con respecto a la normal), mayor es el componente especular en las longitudes de onda del visible, en tanto que el IR próximo las hojas se comportan como difusores lambertianos (dispersan la radiación reflejada). (Reuter, 2009).

La reflectancia en el IR próximo depende, en gran medida, de la estructura anatómica de la hoja, del número de capas celulares, el tamaño de las células y el

espesor relativo del parénquima lagunar. Como consecuencia de ello, las hojas de dicotiledóneas presentan una mayor reflectancia que las de monocotiledóneas, aunque tengan el mismo espesor, ya que el parénquima lagunar de las primeras está más desarrollado. Por la misma razón, las hojas de las plantas más adaptadas a la sequía presentan una reflectancia muy alta en el IR próximo. (Reuter, 2009).

En lo que respecta al proceso de senescencia, la desaparición de la clorofila y la sustitución por pigmentos marrones, produce un aumento de las reflectancias del amarillo-verde y del rojo. En el IR próximo, la reflectancia solo varía cuando las hojas se secan y cambia su estructura interna. En el IR medio el aumento de reflectancia foliar está relacionado con su secado, a estos efectos, debe considerarse que la disminución del contenido de agua, por el secado, comienza relativamente tarde, cuando la hoja ya está amarilla. (Reuter, 2009).

Las diferentes especies vegetales pueden presentar distinto contenido de agua como consecuencia de sus características específicas, también puede variar en una misma especie debido al estado fisiológico. El contenido en agua ejerce, no solo un efecto directo en el IR medio sino también un efecto indirecto en la reflectancia del visible y del IR próximo debido a su efecto sobre la turgencia celular, por ello una disminución del contenido de agua produce un aumento de la reflectancia en el conjunto de espectro. A pesar de lo dicho, si bien esos efectos se detectan fácilmente en condiciones de laboratorio, en condiciones naturales es necesario tener unas condiciones de sequía extrema para apreciarlos con claridad. (Reuter, 2009).

Las hojas de las plantas también pueden presentar carencias en su estado nutritivo, esto puede manifestarse en una disminución de clorofila o una alteración de su estructura anatómica. (Reuter, 2009).

La deficiencia en nitrógeno aumenta la reflectancia en el visible (por la disminución del contenido en clorofila), en tanto que se produce una disminución de

la reflectancia en los IR próximo y medio (debido a la disminución del número de capas celulares). (Reuter, 2009).

Las enfermedades y plagas pueden afectar, así mismo, a las propiedades espectrales de las hojas de diferentes formas, por ejemplo, cambiando el contenido en pigmentos, induciendo necrosis, produciendo otros pigmentos o bien modificando la transpiración foliar, esto último puede detectarse en el IR próximo. (Reuter, 2009).

1.4.3. Influencia de otras partes de la planta.

La presencia de flores puede alterar, significativamente, la reflectancia de las plantas, durante un cierto tiempo, esto es particularmente importante en ciertos cultivos anuales con floración muy patente (girasol), aunque también lega a tener cierto efecto en la respuesta espectral de praderas y pastizales durante la primavera. (Reuter, 2009).

CAPÍTULO II

DISEÑO DE LA INVESTIGACIÓN

2.1. Materiales

2.1.1. Institucionales.

- Universidad Técnica de Cotopaxi (Domo Laboratorio)
- Unidad Académica de Ciencias Agropecuarias y Recursos Naturales
- Carrera de Ingeniería Agronómica
- Domo Laboratorio

2.1.2. Recursos Humanos.

- Egresado: Diego Rengifo Rivera
- Director de Tesis: Ing. Francisco Chancusig
- Asesor Técnico: Dr. Vicente Córdoba
- Miembros del tribunal: Ing. Jorge Kaslin

Ing. David Carrera

Ing. Luis Benavides

2.1.3. Materiales de oficina.

- Computadora
- Flash memory
- Cds

2.1.4. Material Experimental.

- Plantas completas de Jícama (*Smallanthus sonchifolius*)
- Raíces, Tallos, Hojas, Flores, Frutos de Jícama (*Smallanthus sonchifolius*)

2.1.5. Recursos Tecnológicos.

- Cámara digital Sigma Merril SD1 Filtro IR
- Estereoscopio
- Microscopio
- Kit para microscopia
- GPS
- Internet

2.2. Caracterización del sitio experimental.

Esta investigación se realizó en la Provincia de Cotopaxi, Cantón Latacunga, Parroquia Eloy Alfaro, Barrio Loma Grande

2.2.1. Ubicación Geográfica.

CUADRO Nº 1: Coordenadas Geográficas.

UBICACIÓN	Ecuador
Longitud	78° 35' 52" Oeste
Latitud	0° 54' 23" Sur
Altitud	2812 m.s.n.m.
Cordillera	Los Andes

Fuente: Coordenadas Geográficas y Zona Horaria

2.2.2. División Política.

CUADRO N° 2: Ubicación Política

Barrio	Loma Grande
Parroquia	Eloy Alfaro
Cantón	Latacunga
Provincia	Cotopaxi

Fuente: Coordenadas Geográficas y Zona Horaria

2.2.3. Características del lugar.

2.2.3.1. Condiciones Edafoclimáticas.

CUADRO Nº 3: Características Edafoclimáticas

Precipitación:	549 mm.
Temperatura promedio:	15°C
Clima:	frío y seco
Altitud:	2812 m.s.n.m.

Fuente: Anuarios del INAMHI

2.3. Diseño Metodológico.

2.3.1. Investigación Descriptiva.

En esta investigación se describe la caracterización estructural, histológica y espectral de las macro y micro estructuras de la planta de Jícama (*Smallanthus sonchifolius*), e base a imágenes de alta definición que coinciden con la descripción

de la bibliografía existente, en las cuales se puede visualizar sus características predominantes.

2.3.2. Método Analítico

Esta investigación se basó en la observación de cada una de las partes que componen la planta de Jícama (*Smallanthus sonchifolius*), y en la descripción de los resultados obtenidos los mismos que fueron procesados y expuestos al momento de la defensa, convalidando su validez con la bibliografía consultada.

Este análisis fue un proceso de observación práctica y gráfica, de cada una de las macro y micro estructuras que conforman la planta de Jícama (*Smallanthus sonchifolius*), utilizando equipos de última tecnología.

Además el análisis fue un método de investigación de las estructuras que nos permitió separar algunas de las partes del todo, para someterlas a observación independiente.

Nuestra investigación nos posibilitó mirar y estudiar por separado las partes que componen la planta de jícama (*Smallanthus sonchifolius*), se puso al descubierto las relaciones comunes a todas las partes y, de este modo, captar las particularidades, en imágenes de alta definición en medios digitales.

2.3.3. Técnica de Observación.

Se tomó especial cuidado en la selección de las muestras para tomar imágenes en el laboratorio y de esta manera se determinó cual fué la mejor imagen digital tanto de las macro como de las micro estructuras de la planta de Jícama (*Smallanthus sonchifolius*).

2.3.4. Técnica de Fichaje (Libro de Campo).

Se tomó nota de cada una de las actividades de observación que se realizó en las diferentes muestras, así como se pudo identificar cuáles son las imágenes de mejor calidad de exposición de las plantas de jícama (*Smallanthus sonchifolius*).

2.4. Análisis Estadístico

Para esta investigación se utilizó un modelo estadístico básico descriptivo para la Caracterización Estructural e Histológica de las macro y microestructuras, pues se trata de una selección de imágenes en base a la descripción de las estructuras que forman la planta de Jícama (*Smallanthus sonchifolius*), mediante la captura de imágenes de alta definición las cuales coincidieron con la descripción de la bibliografía existente, y en las cuales se pueden visualizar sus formas predominantes, con lo cual se ratifican las características propias de cada una de las estructuras. La selección de imágenes está acorde a una adecuada visualización clara y nítida de cada una de las macro y micro estructuras, las cuales se asemejan a la bibliografía consultada y no necesariamente son idénticas, solo se distinguen las formas características que indiquen visualmente lo que se describe en la teoría.

Para la Caracterización Espectral de la planta de Jícama (*Smallanthus sonchifolius*), se realizó la aplicación de fórmulas estadísticas con la finalidad de discriminar al máximo cualquier error de los datos de las lecturas tomadas; para proporcionar un resultado exacto de la firma espectral de esta especie vegetal.

Se calculó el **promedio** (media) de los datos de reflectancia con la aplicación de la siguiente fórmula:

PROM = $\sum x / N$

En donde:

PROM= Promedio (media aritmética)

 $\sum \mathbf{x} =$ Sumatoria de lecturas

N = Muestra total de lecturas

Se aplicó la **desviación estándar** aplicando la siguiente fórmula:

DESVEST. M
$$\Rightarrow$$

$$(n-1)^2$$

DESVEST. M = Desviación Estándar

X= Lecturas

 $\overline{\mathbf{x}}$ = Promedio (media aritmética)

n= Muestra total de lecturas

Luego se calculó el **coeficiente medio de variación** aplicando la siguiente fórmula:

Coeficiente Medio de Variación = Desviación Estándar / Promedio

Con los datos obtenidos se puede graficar la firma espectral característica de la planta de Jícama (*Smallanthus sonchifolius*), siendo esta la primera vez que se da a conocer la Firma Espectral característica de esta especie en la Provincia de Cotopaxi.

Luego se procedió a descomponer la Firma Espectral en rangos de colores basada en la longitud de onda corta medida en nanómetros, con el mismo cuadro de datos; y graficamos cada uno de los colores que componen el espectro de luz.

2.5. Metodología

2.5.1. Reconocimiento del lugar

Se realizaron varios viajes a cultivares del Cantón Latacunga como los ubicados en la Parroquia San Buenaventura, Barrio Centro, donde se encontraron plantas en su estado inicial de cultivo y la Parroquia Eloy Alfaro, Barrio Loma Grande donde se pudo apreciar plantas en todos los estados de su desarrollo (inicial, vegetativa, reproductiva) y en buenas condiciones de fitosanidad, por lo que se definió este último como sitio idóneo para la investigación del cultivo de la Jícama (*Smallanthus sonchifolius*), estableciéndose a la par las condiciones climáticas en las que se desarrollan las plantas, basándome en la literatura consultada.

2.5.2. Diagnóstico del sector escogido

Basándonos en el análisis agroclimático del sitio y a través de observaciones insitu, entrevistas a los agricultores locales, referencias bibliográficas se determinó:

2.5.2.1. Acceso a riego.

Se determinó la disponibilidad del líquido vital que tiene el sector escogido. Así el Barrio cuenta con la fuente hídrica del rio Pumacunchi

2.5.2.2. Manejo de cultivo.

En el sitio la jícama o yacón se cultiva bajo el sistema asociado y huerto familiar. Las asociaciones son con frejol arbustivo, maíz y tomate de árbol. No se realiza preparación del terreno (labranza mínima), en cuanto a la época de siembra, la jícama o yacón se siembra todo el año por medio de propágulos (semilla vegetativa)

separados de la corona o con corona completa. El abonamiento es orgánico con estiércol de gallina (gallinaza) y estiércol bovino.

2.5.2.3. Altitud.

Con la ayuda de un GPS determinamos la altitud del lugar donde recolectaremos las muestras. La misma que fue de 2812 m.s.n.m.

2.5.2.4. Temperatura.

Con la ayuda del GPS detallamos la temperatura promedio que es de 15 $^{\circ}$ C en el sector en donde están sembradas las plantas.

2.5.2.5. Tipo de Suelo.

Describimos la forma y textura del suelo del sector que hemos escogido para recolectar las muestras. Siendo el mismo de tipo franco arenoso.

2.5.3. Toma de muestras.

Basados en un proceso sistemático se obtuvo las mejores muestras en las diferentes etapas de desarrollo de la planta. Se escogieron 3 plantas por cada etapa de desarrollo (inicial, vegetativa y reproductiva), tomando énfasis en seleccionar plantas en buenas condiciones de fitosanidad, para la toma de imágenes estructurales, histológicas y espectrales de la de Jícama (*Smallanthus sonchifolius*):

- Desplazamiento al sector escogido, se basó en la fecha que el tribunal de Tesis así lo asignó.

- Se determinó las características generales del cultivo, basándonos en los parámetros aplicados en el diagnóstico del sector.
- Selección, en este trabajo de investigación tomamos 10 plantas completas con las mejores características morfológicas externas en base a desarrollo y sanidad del cultivo de jícama (*Smallanthus sonchifolius*).
- Las plantas seleccionadas fueron capturadas en imágenes de alta calidad en su entorno natural, además fueron desarraigadas y transportadas en gavetas tapadas, con buena humedad para preservarlas en buenas condiciones de fitosanidad y sin que sufran de estrés hídrico, hasta su llegada al Domo laboratorio, para la captura de imágenes estructurales y espectrales, así como los respectivos análisis histológicos.
- Las plantas se encontraban limpias (sin impurezas) ya que previamente se lavaron con abundante agua o en una ducha, de modo que las imágenes no presentaron distorsión.

2.5.4. Análisis Macro y Microestructural

Se utilizó una cámara de color real de 46 megapixeles y tres sensores (RGB) con lentes Zoom de 250 mm. Se tomaron como mínimo diez imágenes de alta definición, de las macro estructuras en su entorno natural. Con estas capturas se elaborarán imágenes tridimensionales de las diferentes macroestructuras, utilizando software especializado de diseño gráfico. Cada una de las macroestructuras y la planta en su totalidad fueron tratadas con ésta técnica.

Para la caracterización microestructural, con la ayuda de un bisturí, se realizó la separación de las estructuras de cada una de las partes de la planta (en este caso se detalló la composición de la hoja, flor y fruto), de las cuales se tomaron micrografías

digitales de alta resolución. El equipo utilizado fue un Estéreo Microscopio Digital de 10 y 20X, equipado con una cámara digital de 10 megapíxeles.

Se realizaron cortes histológicos en forma transversal y longitudinal de las estructuras de la planta, utilizando un kit de microtomía y microscopía. Se realizó la micrografía con un microscopio digital que utiliza lentes de 80X, 200X, 800X y una cámara digital AmScope de 10 megapixeles.

Se recurrió a instituciones especializadas para el tratamiento específico de las muestras de microscopía (INIAP, AGROCALIDAD, INSTITUTO ESPACIAL ECUATORIANO, etc.)

2.5.5. Análisis Espectral.

El análisis espectral se lo realizó en las hojas jóvenes de la planta. El muestreo se lo realizó en 5 hojas tipo de edad media y de evidente vigor. Para la toma de la señal espectral se utilizó un Espectroradiómetro Hiperespectral para el rango visible e infrarrojo cercano.

Las lecturas se integraron cada 10 milisegundos en lapsos de 5 segundos por hoja. Esta información se evaluó estadísticamente para consistencia y se compiló como una línea base para la firma espectral de la especie en estudio.

La metodología óptica de toma de la información espectral incluyó la utilización de óptica de contacto y emisores ópticos activos, incorporados en el Espectroradiómetro.

El equipo utilizado fue provisto por el Instituto Espacial Ecuatoriano, bajo convenio de cooperación para Investigación y Desarrollo con la Universidad Técnica de Cotopaxi.

El procedimiento utilizado para la obtención de la firma espectral de la planta de Jícama (*Smallanthus sonchifolius*) fue el siguiente:

- 1. Se seleccionó una planta de Jícama (*Smallanthus sonchifolius*), joven y totalmente sana.
- 2. Se utilizó un Espectroradiómetro gracias a la colaboración del Instituto Espacial Ecuatoriano (IEE), para tomar 20 lecturas de reflectancia de la luz sobre la planta de Jícama (*Smallanthus sonchifolius*).
- 3. Aplicando el programa ViewSpecPro se decodificó las 20 lecturas seleccionadas.
- 4. Se exportó los datos arrojados por las lecturas tomadas al programa Microsoft Excel para su respectiva tabulación.
- 5. Se procedió a trabajar con el rango de longitud de onda comprendido entre 400 y 1000 nanómetros, que es en donde podemos distinguir los 4 tipos de luz, objeto de nuestro estudio y que contribuyeron para determinar la firma espectral del cultivo de Jícama.
- 6. Se precedió a tabular los datos, obteniendo, la reflectancia media, la desviación estándar y el coeficiente medio de variación.
- 7. Con los datos establecidos de Reflectancia y longitud de Onda se graficó la Firma Espectral.
- 8. El resultado obtenido es la Firma Espectral del cultivo de Jícama, originaria de la Provincia de Cotopaxi, siendo esta un precedente dentro de nuestra investigación, pues es la primera vez que se detalla gráficamente.

- 9. Se realizó el desglose de la Firma Espectral del cultivo de Jícama, basados en la información proporcionada por el IEE, para los diferentes espectros y su rango.
- 10. Dentro de los datos tomados, seleccionamos el rango de longitud de onda entre 400 y 480 nanómetros y obtuvimos el gráfico de la Luz Azul de la Firma Espectral del cultivo de Jícama.
- 11. Dentro de los datos tomados, seleccionamos el rango de longitud de onda entre 480 y 600 nanómetros y obtuvimos el gráfico de la Luz Verde de la Firma Espectral del cultivo de Jícama.
- 12. Dentro de los datos tomados, seleccionamos el rango de longitud de onda entre 600 y 680 nanómetros, y obtuvimos el gráfico de la Luz Roja de la Firma Espectral del cultivo de Jícama.
- 13. Dentro de los datos tomados, seleccionamos el rango de longitud de onda entre 680 y 1000 nanómetros y obtuvimos el gráfico de la Luz Infrarroja de la Firma Espectral del cultivo de Jícama.

2.5.6. Elaboración del material digital para Docencia-Investigación

Se compiló la información obtenida por medios digitales en Microsoft Word, en donde se detalló las macro y microestructuras de la Jícama (*Smallanthus sonchifolius*), así como los correspondientes detalles microscópicos de cada parte y la firma espectral con su desglose en colores de luz.

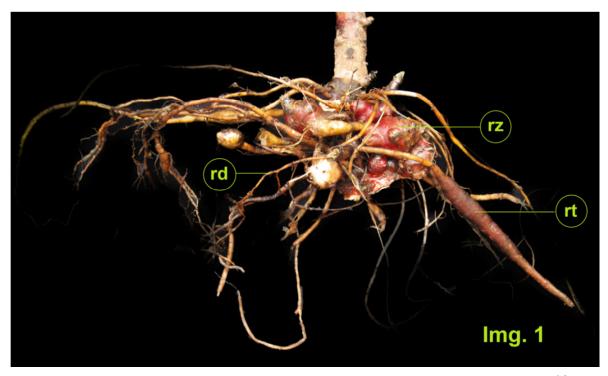
2.5.7. Página Interactiva.

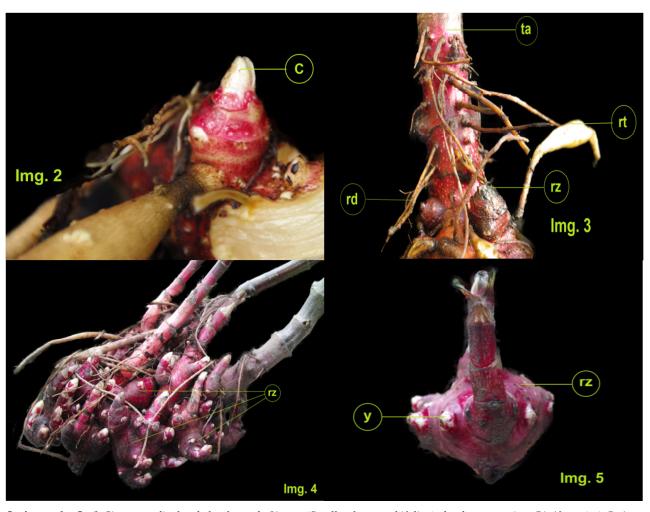
Se recopilo la información de los medios digitales en el programa ADOBE FLASH CS6, y se obtuvo una plataforma interactiva, en donde se muestra en forma

secuencial las macro y microestructuras de la planta de la Jícama (*Smallanthus sonchifolius*) y la firma espectral en diagrama de líneas en la cual se resaltó sus características diferenciales como especie.

2.5.8. Publicación de la Página Interactiva.

Se deja establecida la opción para que a través de los acercamientos y coordinaciones internas de la Universidad Técnica de Cotopaxi se pueda subir en la Web, esta página interactiva; con la finalidad de socializar y a la vez motivar a la comunidad universitaria a continuar realizando este tipo de investigaciones.


CAPITULO III


RESULTADOS Y DISCUSIÓN

3.1. Caracterización Estructural

3.1.1. Caracterización Estructural del Sistema Radicular de la Jícama (Smallanthus sonchifolius).

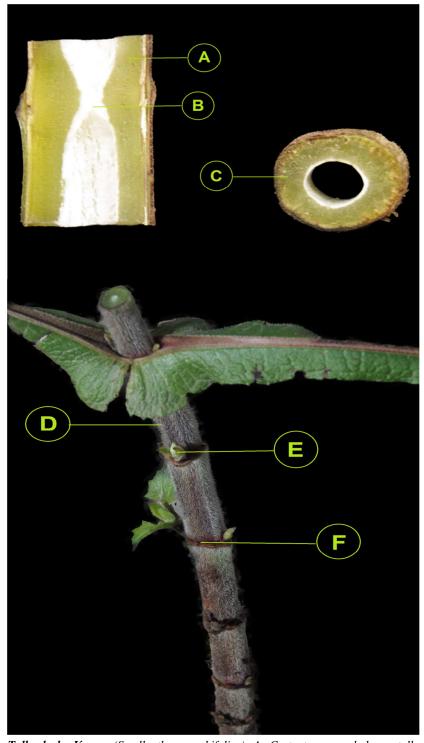
Con el uso de la cámara SIGMA de 46 Megapíxeles con 3 sensores RGB y lente zoom de 250 mm podemos visualizar una imagen que muestra las características básicas del sistema radicular de la Jícama (*Smallanthus sonchifolius*).

Imágenes 1 – 5: 1. Sistema radicular de la planta de Jícama (Smallanthus sonchifolius), donde se aprecian: Rizóforos (rz). Raíces Delgadas (rd) y Raíces Tuberosas (rt). 2. Detalle de un rizóforo unido a la planta madre; se observa también el catafilo o escama (c). 3. Raíces delgadas (rd), tuberosas (rt) y rizóforos (rz) en desarrollo, produciendo raíces en la base del entrenudo; y la base del tallo aéreo (ta). 4. Rebrote de rizóforos unidos a la planta madre. 5. Rizóforo en brotamiento, con proliferación de yemas (y), e inicios de raíces adventicias (escama). Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 1: Estructura del Sistema Radicular de la Jícama (Smallanthus sonchifolius).

En la estructura radicular existen tallos subterráneos responsables para la propagación de la especie llamados rizóforos (rz). Son estructuras cónicas, tiernas y ligeramente engrosadas, cuyo ápice tiene coloración blanquecina, mostrando entrenudos nítidos y además numerosas yemas (y) protegidas por catáfilos (c), aún unidos a la planta madre, pueden originar varias ramas aéreas simultáneamente,

resultando en la formación de brotes (Img 5). En la época de brotamiento los nudos distales del rizóforo presentan coloración rosácea y los proximales son castaños (Img 4). Las yemas originan ramas caulinares aéreas erectas. (Machado, 2004).


Las raíces fibrosas (rd) son muy delgadas y su función es la fijación de la planta al suelo y la absorción de agua y nutrientes. (Seminario J. 2003).

Las Raíces Reservantes o tuberosas (rt) son las raíces de almacenaje que se forman a partir de un sistema ramificado de ejes subterráneos; son mayoritariamente napiformes. Produce abultamientos llamados tubérculos, en los que se acumulan hidratos de carbono, proteínas y otras sustancias de reserva. (Pamplona, 1995).

Los Catáfilos (c) son cada una de las hojas modificadas y reducidas que generalmente protegen a las yemas de la planta que se hallan en reposo, particularmente en órganos subterráneos de reserva como bulbos y rizomas. A menudo presentan forma de escamas y no presentan clorofila ya que no tienen como función la de realizar la fotosíntesis. Cuando se desarrollan sobre los tallos subterráneos se denominan escamas. (Font Quer, 2001).

3.1.2. Caracterización Estructural del Sistema Caulinar de la Jícama (Smallanthus sonchifolius).

Si la planta proviene de una semilla, posee un solo tallo principal, a veces ramificado desde la base, otras veces, sólo con ramas pequeñas en la parte superior. Si la planta proviene de propágulo o semilla vegetativa, consta de varios tallos. Los tallos son huecos, cilíndricos, de color verde a purpura, su altura varia de 1 a 3 metros. (Seminario & Valderrama, 2003).

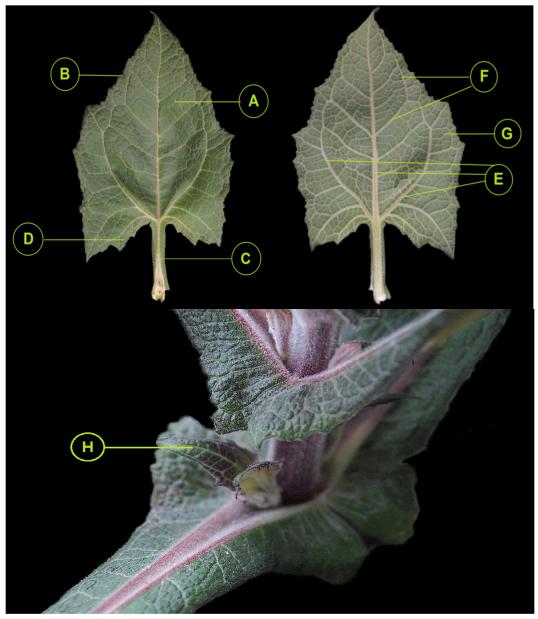
Tallo de la Jícama (Smallanthus sonchifolius). A. Corte transversal de un tallo suculento, en estado de madurez. B. La médula de carácter esponjoso. C. Imagen de un tallo hueco, cilíndrico. D. Parte superior del tallo pubescente E. Yema. F. Nudo Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 2. Tallo de la Jícama (Smallanthus sonchifolius).

Se aprecia en corte longitudinal y transversal, mediante imágenes obtenidas con la cámara digital:

El Tallo suculento (A), en estado de madurez con sustancias de reserva. Es un tallo muy carnoso y grueso, con abundantes jugos. (Font Quer, 2001).

La médula (B) de carácter esponjoso que llena la parte central del tallo y que se aprecia en los tallos de las dicotiledóneas, gimnospermas, lo constituye el parénquima incoloro y de membranas sutiles que ocupa la membrana interna del cilindro central, limitado al exterior por los hacecillos vasculares; con frecuencia el tejido de la medula es muy flojo, por separarse las células que lo constituyen. (Font Quer, 2001).


El tallo hueco, cilíndrico (C). Donde se aprecia la corteza. Las sustancias de reserva y una fina capa de médula. Mientras en la parte superior del tallo pubescente (D), se aprecian gran cantidad de pelos llamados tricomas.

La Yema (E) es la estructura encargada del crecimiento del tallo, también producen hojas y ramificaciones. Una yema es el extremo joven de un vástago. (www.biologia.edu.ar).

El Nudo (F) es el lugar de inserción de la hoja en el tallo, y la parte del tallo comprendida entre dos nudos es el entrenudo o internodio. (www.biologia.edu.ar).

3.1.3. Caracterización Estructural de la Hoja de la Jícama (Smallanthus sonchifolius).

Las hojas son opuestas, con lámina decurrente hacia el pecíolo; anchamente aovada con la base hastada, auriculada o connada; las hojas superiores son aovado-lanceoladas; la haz de la hoja es piloso y el envés pubescente. (Flores, 2010).

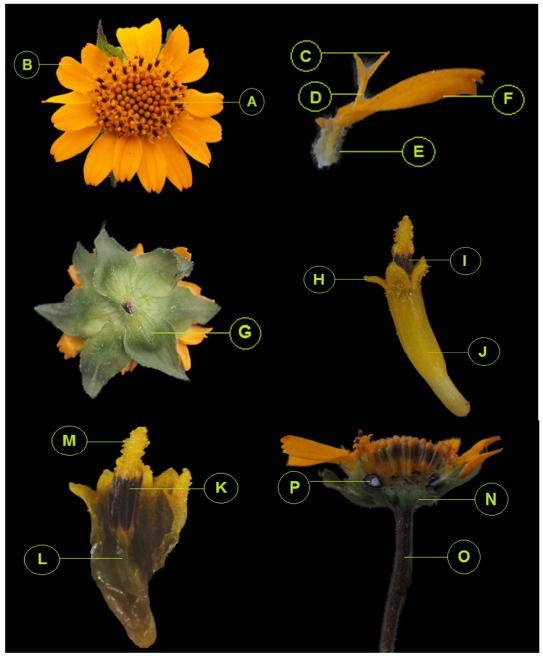
Hoja de la Jicama (Smallanthus sonchifolius). A. Haz de la hoja. B. Margen de la hoja. C. Pecíolo. D. Base de la hoja. E. Venación primaria. F. Venación secundaria. G. Venación terciaria. H. Estípulas. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 3: Estructura de la Hoja de Jícama (Smallanthus sonchifolius).

Utilizando la cámara digital, la jícama (*S. sonchifolius*) presenta hojas simples, opuestas, decusadas, pubescentes, con brillo céreo y color verde. En el Haz de la Hoja (A) se aprecia la lámina es triangular simétrica, ovada, de textura membranácea. Las

nervaduras son muy prominentes, confiriéndole mayor rugosidad al tacto. El ápice es acuminado. (Mercado, 2006).

El margen (B) es dentado-serrado, de seriación compuesta (1er, 2do y 3er orden). La venación primaria (E) es acródroma suprabasal y la secundaria (F), camptódroma broquidódroma. (Mercado, 2006).


El pecíolo(C) es alado con estípulas superpuestas, algunas veces connadas. La lámina es triangular simétrica, ovada, de textura membranácea. Las nervaduras son muy prominentes, confiriéndole mayor rugosidad al tacto. (Mercado, 2006).

La base de la lámina (D) varía de truncada a sagitada o hastada. En este caso se trata de una base sagitada, en forma de saeta o flecha. La venación primaria (E) es acródroma, 3 venas primarias, 1 media y 2 laterales, de posición basal, que corren en arcos convergentes hacia el ápice. (Mercado 2006).

Las venas secundarias (F) son camptódromas broquidódromas, con ángulos de divergencia agudos respecto a las venas primarias y recorrido curvado hacia el ápice formando aréolas por la unión a la vena secundaria suprayacente. Las venas intersecundarias son de tipo compuesto formadas por segmentos de venas terciarias coalescentes en más del 50% de su longitud. (Mercado 2006). Las venas terciarias (G) presentan un modelo de ramificación transversal compuesto. (Mercado 2006).

En la base de las hojas encontramos las Estípulas (H) que corresponden a cada uno de los apéndices, por lo general laminares, que, las más veces en número de dos, se forman a cada lado de la base foliar. Generalmente, las estípulas son asimétricas, y cada una constituye a modo de la imagen especular de la otra, de donde resulta que la pareja, considerada como tal es zigomorfa. Las estípulas puedes ser libres, cuando no contraen adherencia alguna, o adnatas, si se sueldan al pecíolo en mayor o menor trecho. (Font Quer, 2001).

3.1.4. Caracterización Estructural de las Flores de la Jícama (Smallanthus sonchifolius).

Flor de la Jícama(Smallanthus sonchifolius). A. Flósculos (flores masculinas).B. Flor ligulada (flor femenina). C. Estigma (flor femenina). D. Estilo (flor femenina). E.Papus o Vilano. F. Corola (flor femenina) G. Brácteas del Receptáculo. H. Corola (flor masculina) I. Estambres. J. Flor Tubular. K. Anteras soldadas. L. Filamento. M.. Estilo y Estigma. N. Receptáculo. O. Pedúnculo. P. Aquenio conteniendo a la semilla. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 4: Estructura de las Flores de la Jícama (Smallanthus sonchifolius)

En la inflorescencia de la Jícama apreciamos los Flósculos (A) que son las flores tubulares masculinas (J) que se presentan en el capítulo floral. Se presenta también la Flor Ligulada (B) que es la flor femenina. Las flores femeninas se ubican hacia el exterior del capítulo, cuya parte más vistosa y coloreada de amarillo es la lígula; presentan Estilo (D) y Estambres (C) normales pero genéticamente están incapacitadas para producir semilla viable, y si producen dan lugar a plantas débiles (Grau & Rea, 1997).

El Estilo y Estigma (D), de la flor femenina o lígula, se encuentran insertados en esta a manera de antenas. A continuación se observan las Brácteas del receptáculo (G), o también llamadas brácteas del involucro.

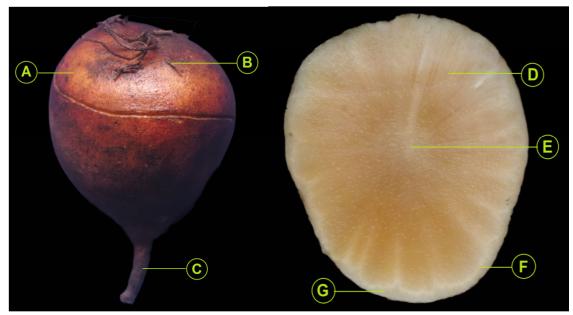
En la flor femenina apreciamos la Corola (F) que está formada por la fusión de cinco pétalos (corola simpétala) tres de estos pétalos forman la lígula, que es ensanchada en la parte media y bi o tridentada (B) en el ápice, a veces con dientes apenas visibles. Los otros dos pétalos están reducidos, formando un pequeño tubo en la parte basal de la lígula. (Seminario & Valderrama).

Rodeando a la rama estigmática, en su parte externa y por encima del ovario, se inserta el papus (E) o vilano, que son brácteas modificadas en pequeñas cerditas o pelos de color blanquecino. La lígula o flor ligulada mide aproximadamente entre 11 a 14 mm. puede ser de forma oblonga, oval-elíptica, o elíptica; se aprecia en (B) una lígula de forma oblonga. La forma de la lígula es un carácter que se tiene en cuenta para la caracterización del germoplasma del yacón. El estilo (D) es recto y en el extremo superior se abre formando un estigma bilabiado (C). El ovario es fusiforme a troncocónico de color púrpura (P). (Seminario & Valderrama, 2003).

Los Estambres son cada uno de los órganos que, en las flores de las angiospermas, traen los sacos polínicos. El estambre consta las más veces de dos partes: la Antera (K) y el Filamento (L). El estilo (M) entonces crece a través de este

tubo, empujando hacia afuera o tomando el polen (con pelos variadamente desarrollados) y presentándoselo a los visitantes florales, después de lo cual los estigmas (M) se vuelven receptivos (con un émbolo o mecanismo de polinización por cepillado). (Font Quer, 2001).

La rama floral es terminal de ramificación dicásica, compuesta de inflorescencias llamadas capítulos. Cada rama puede contar con más de 40 capítulos. Una planta puede producir más de 80 capítulos, los cuales son de colores brillantes amarillos o anaranjados y con pedúnculos (O) sumamente pilosos. (Seminario & Valderrama, 2003).


El Aquenio (P), es el fruto de la Jícama, que se ubica rodeando el capítulo floral inmediatamente debajo de la flor ligulada.

Las flores femeninas presentan corola amarillo-anaranjada, ligulada, simpétala (3 pétalos forman la lígula y 2 el tubo corolino). Exteriormente, por encima del ovario se observan pelos blanquecinos que constituyen el papus (E). El gineceo, no funcional, es ínfero y piriforme; el estilo (D) recto, remata en dos ramas estigmáticas (C). (Mercado, 2006).

Las inflorescencias son racimosas en capítulos de floración centrípeta, constituidos por 14 a 16 flores femeninas ubicadas en el verticilo externo y 80 a 90 flores masculinas tubulosas, ubicadas en los verticilos internos del receptáculo. Ambos tipos de flores presentan una bráctea protectora. (Mercado, 2006).

El Receptáculo (N) presenta un involucro uniseriado de brácteas hirsutas de contorno aovado. Las flores masculinas presentan corola tubulosa (H), simpétala, formada por 5 pétalos originando un tubo pentalobular, hirsuto en su superficie externa. Se observan 5 estambres (K, L) epipétalos de filamentos libres (L), con anteras connadas (K) de color oscuro. (Mercado, 2006).

3.1.5. Caracterización Estructural de La Raíz Tuberosa o Reservante de la Jícama (Smallanthus sonchifolius).

Raíz Tuberosa de la Jícama (Smallanthus sonchifolius. A. Peridemis. B. Yema apical. C. Fragmento de rizóforo. D. Parenquima vascular de reserva. E. Tejido medular. F. Anillo vascular. G. Corteza. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 5: Estructura de la Raíz Tuberosa de la Jícama (Smallanthus sonchifolius).

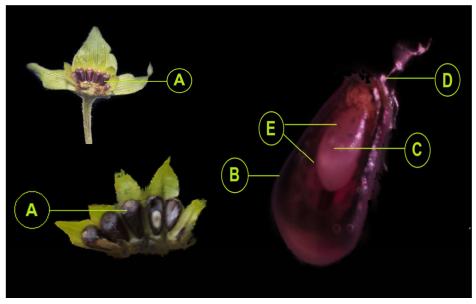
Se observa en la imagen la raíz tuberosa engrosada que presenta en su capa externa la peridermis (A) que es el tejido de protección secundario que reemplaza a la epidermis en tallos y raíces que tienen crecimiento secundario. En algunos frutos como la manzana, y en tubérculos como los de la papa, se forma una peridermis muy delgada con lenticelas. (www.biologia.edu.ar).

La Yema apical (B) está ubicada en el extremo distal y es la que normalmente se desarrolla primero, estableciendo una marcada dominancia. Esta yema equivale al brote apical de una rama normal. La yema apical del tubérculo se encuentra en la región denominada corona.

Se observa además un fragmento de rizóforo (C), de donde se originó el tubérculo. Los rizóforos son tallos subterráneos responsables de la propagación de la especie. (www.redalyc.org).

El parénquima reservante (D) almacena sustancias de reserva, en solución o en forma de partículas sólidas. Se encuentra en raíces engrosadas, tallos subterráneos (tubérculo de papa, rizomas), en semillas, pulpa de frutas, médula y partes profundas del córtex de tallos aéreos. (www.biologia.edu.ar).

El Tejido medular (E) constituye la parte central del tubérculo y posee mayor cantidad de agua. Hacia el centro, denominado área medular, está dividido en una médula externa y una médula interna, y constituye la parte de la pulpa del tubérculo. (Horton, 1992).


El Anillo Vascular (F) se encuentra alrededor de todo el tubérculo e inmediatamente debajo de la piel del tubérculo, y se extiende en toda la superficie interna del tubérculo. (Salazar, 1995).

La Corteza (G). que internamente se distingue, debajo de la peridermis, se deriva del endodermo y tanto raíces como rizóforos presentan los conductos secretores de lípidos en las capas internas de la corteza. (Muñoz, 2009).

3.1.6. Caracterización Estructural del Fruto de la Jícama.

El fruto es un aquenio monotalámico, seco, indehiscente, monoespermo, bicarpelar, unilocular. Tiene forma piramidal de ángulos redondeados, ápice truncado y base ensanchada. La morfología y esculturación permiten diferenciar los morfotipos analizados: frutos de textura córnea, con células epidérmicas colapsadas originando una superficie con aspecto favoso o apanalado, mide 3.7 mm de long. x 2.0 mm de ancho y pesa aprox. 5 mg. es esclerificado, con superficie epidérmica trabecular-

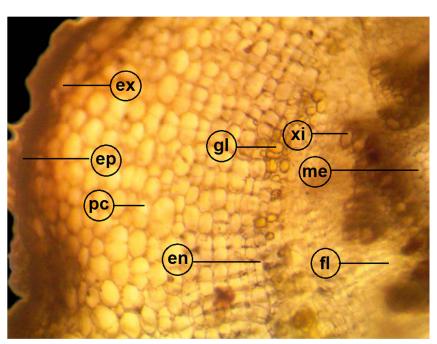
areolada, las trabéculas forman una trama o reticulo, mide 3.4 mm de long. x 2.5 mm de ancho y pesa aprox. 4 mg. (Mercado, 2004).

Fruto de la Jícama(Smallanthus sonchifolius). A. Aquenio. B. Periarpio. C. Semilla. D. Funículo. E. Cotiledones. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 6: Estructura del Fruto de la Jícama (Smallanthus sonchifolius)

El Aquenio (A) es piramidal con ángulos no bien definidos y redondeados, de ápice truncado y base ensanchada, en la cual lleva una pequeña cicatriz (en la unión con el receptáculo floral). Dentro de los tipos de aquenios se le considera como cipsela. (Seminario & Valderrama, 2003).

El Aquenio es un fruto indehiscente, seco y monoespermo, con el pericarpo (B) independiente de la semilla, es decir no soldado o unido con ella. Al proponerse una clasificación racional de estos y otros frutos, se llama cipsela al aquenio resultante de un ovario ínfero, como el de las compuestas y dipsacáceas. (Font Quer, 2001).


EL Pericarpio (B) es la parte del fruto que rodea la semilla y la protege, es delgado y seco a la madurez, externamente presenta estrías longitudinales que forman surcos paralelos. (Seminario & Valderrama, 2003).

La Semilla (C) está unida al pericarpio por el funículo (D) (unión del saco embrionario con el ovario). Es un pequeño cordón que une el óvulo a la placenta. Está constituido por un hacecillo vascular que lo atraviesa y llega hasta la base. Es exalbuminosa, en ella, el albumen o endospermo ha desaparecido y las sustancias de reserva se concentran en los cotiledones. (Seminario & Valderrama, 2003).

Los Cotiledones (E) son las primeras hojas que desarrollan las plantas. Estas no tienen la morfología que desarrollarán el resto de las hojas de la planta. Son más prominentes y ocupan el mayor espacio en la semilla. (biología.laguia2000.com).

3.2. Análisis Histológico

3.2.1. Caracterización Histológica de la Raíz de la Jícama (S. sonchifolius).

Sección transversal de la Raíz de la Jícama (Smallanthus sonchifolius). 200X.. (ep) Epidermis. (ex). Exodermis. (pc) Parenquima cortical. (gl) Gotas de lípidos (en) Endodermis. (xi) Xilema. (fl) Floema. (me) Médula. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 7: Corte Transversal de la Raíz de la Jícama (S. sonchifolius).

Epidermis (ep). Es el sistema de células, variable en estructura y función, que recubre el cuerpo primario de la planta. Sus principales funciones son: protección mecánica de tejidos suyacentes, restricción de la transpiración, regulación del intercambio gaseoso, dar sotén a la planta. (www.biologia.edu.ar).

Exodermis (ex). Es un tejido primario que se origina por debajo de la epidermis, cuando esta pierde actividad absorbente. Formada por una o varias capas de células con forma alargada y muy pocos espacios intercelulares y con pared suberificada y lignificada. Inicialmente, las células exodérmicas son muy semejantes a las endodérmicas e incluso presentan bandas de Caspari que incluirían células de paso, permitiendo el intercambio entre la epidermis y el resto de la planta. (www.elergonomista.com).

Parénquima cortical (pc). Es el tejido de células no especializadas situado entre la epidermis (células superficiales) y los tejidos vasculares o conductores (floema y xilema) de tallos y raíces. Las células corticales pueden almacenar alimento u otras sustancias, como resinas, látex, aceites esenciales y taninos. Puede haber raíces con crecimiento secundario más o menos desarrollado. Las menos desarrolladas poseen epidermis y un córtex superficial formado principalmente por tejido parenquimático, denominado parénquima cortical.. El alimento, generalmente en forma de almidón, de raíces comestibles, bulbos y tubérculos, se almacena en su mayor parte en el parénquima cortical. (Molist, 2011).

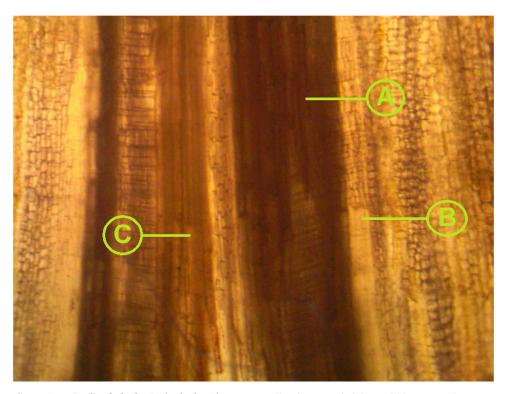
Gotas de lípidos (gl), contenidas dentro de un canal secretor cuya presencia parece ser una característica común a las raíces de representantes de la familia Asteraceae. (Luque, 2003).

Endodermis (en). Es la capa más interna de las células corticales que forma una barrera osmótica entre la corteza y el cilindro vascular de la raíz, por los protoplastos

de las células endodérmicas estrechamente unidas, debido a la presencia de las bandas de Caspary impermeables en sus paredes radiales y transversales. (Raven, 1992).

Xilema (xi). Es el tejido de conducción encargado de transportar la savia bruta desde la raíz hasta los órganos verdes. En el xilema nos encontramos las traqueidas y los elementos de los vasos, que son las células conductoras o traqueales, las células parenquimáticas y las fibras de esclerénquima, que funcionan como células de almacenamiento y sostén respectivamente. (Molist, 2011).

Floema (fl). Conduce la savia elaborada desde los órganos verdes al resto del vegetal. Llamado también líber o tejido criboso. El floema se compone en su mayor parte de células vivas, de diferentes formas y funciones: los tubos cribosos, células anexas, parénquima y células muertas como fibras y esclereidas. De los diferentes tipos de elementos que componen el floema, los tubos cribosos son los directamente implicados en el traslado de las sustancias orgánicas. (Muller, 2000).


Médula (**me**). Se llama médula cuando la raíz ha desarrollado un cilindro vascular. Su función es almacenar alimento en el cilindro vascular. (www.biologia.edu.ar).

La raíz, en corte transversal presenta peridermis con lenticelas conspicuas, córtex parenquimático con escasos canales secretores distribuídos irregularmente y elementos de colénquima aislados. El cilindro vascular, constituido por una estela ectofloica con médula parenquimátima, se presenta delimitado por endodermis. En el rizoma joven, se observan casquetes de esclerénquima asociados al floema. (Mercado, 2006).

S. sonchifolius. Aspecto general de raíz en inicio de engrosamiento, muestra la disposición radial y numerosas divisiones de las células corticales internas; la seta indica el canal secretor. Muestra el inicio de formación de canales secretores

endodérmicos. Detalle de canal en desenvolvimiento, con proliferación de células epiteliales. Canales secretores diferenciados. (Machado, 2004).

El crecimiento secundario de la raíz, el cual determina su engrosamiento, es similar al de las dicotiledóneas. Se produce por un incremento en la actividad del cambium vascular que se ubica entre le xilema y el floema. (Seminario & Valderrama, 2003).

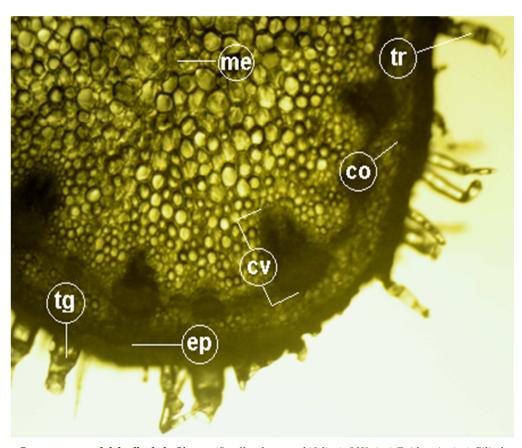
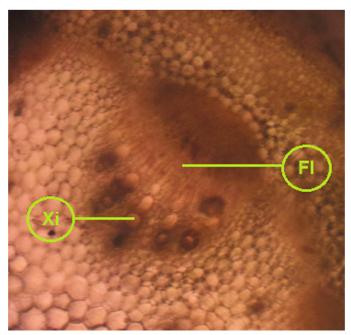

Corte Longitudinal de la Raíz de la Jícama (Smallanthus sonchifolius). 200X.. A. Xilema. B. Floema. C. Periciclo. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 8: Corte Longitudinal de la Raíz de la Jícama (Smallanthus sonchifolius).


A. Xilema. Es un conjunto de vasos leñosos. Su función es la conducción de agua y minerales desde la raíz hasta las hojas. Está formado por células conductoras o elementos traqueales (traqueidas y miembros de vasos). (www.biologia.edu.ar).

- **B. Floema.** Es el tejido conductor encargado del transporte de nutrientes orgánicos, especialmente azúcares, producidos por la parte aérea fotosintética y autótrofa, hacia las partes basales subterráneas, no fotosintéticas, heterótrofas de las plantas vasculares. (www.biologia.edu.ar).
- **C. Periciclo**. Es un tejido que rodea al cilindro vascular de la raíz de las plantas vasculares. Este tejido está formado por una o por varias capas de células, como es el caso de las gimnospermas y de algunas angiospermas. (www.biologia.edu.ar).

3.2.2. Caracterización Histológica Caulinar de la Jícama (Smallanthus sonchifolius).

Corte transversal del tallo de la Jícama (Smallanthus sonchifolius). 80X. (ep) Epidermis. (cv) Cilindro vascular. (co) Córtex. (me) Médula. (tr)Tricoma tector (tg) Tricoma glandular. Fuente: Elaborado por Diego Rengifo, 2013.

Corte transversal del tallo de la Jícama (Smallanthus sonchifolius). Cilindro vascular, aumento 200X. (Xi) Xilema, (Fl) Floema. (col) Colénquima, (pa) Parénquima, (cs) Conducto Secretor Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 9: Corte Transversal del Tallo de la Jícama (S. sonchifolius)

Epidermis (**ep**). Cubre todo el cuerpo de las plantas, es el encargado de la protección del cuerpo de la planta, respiración, pasaje de la luz, reconocimiento de patógenos, etc. Es la capa de células más externa del cuerpo vegetal primario y constituye el sistema epidémico de las hojas, de las partes florales, de los frutos, de las semillas, de los tallos y de las raíces hasta su considerable crecimiento secundario. Las células epidérmicas son muy diversas tanto funcional como estructuralmente. (Raven, 1992).

Cilindro Vascular (cv). Comprende el sistema vascular y el parénquima asociado. Está delimitado por un tejido llamado periciclo, uni a pluriestratificado. Puede faltar en plantas acuáticas y parásitas. Sus células son parenquimáticas, de paredes delgadas, alargadas, rectangulares en sección longitudinal. Puede contener laticíferos y conductos secretores. A veces queda interrumpido por la diferenciación de elementos del xilema y floema. El xilema y floema se encuentran formando haces vasculares colaterales o bicolaterales abiertos, es decir, con cambium. En todos los

casos el floema se ubica hacia la periferia del tallo y el xilema se encuentra hacia el centro del tallo. (anatomiavegetal.weebly.com).

Córtex (co). Incluye los tejidos situados entre la epidermis y el sistema vascular. Generalmente es delgado, excepto en las plantas en roseta como *Apium*, *Plantago* y *Taraxacum* y en las Cycadales. Está constituido básicamente por parénquima, pero frecuentemente hay también tejidos de sostén (colénquima y esclerénquima en Dicotiledóneas) y/o estructuras glandulares como los conductos resiníferos en las Coníferas, y los laticíferos o los conductos mucilaginosos en Dicotiledóneas. (www.biología.edu.ar).

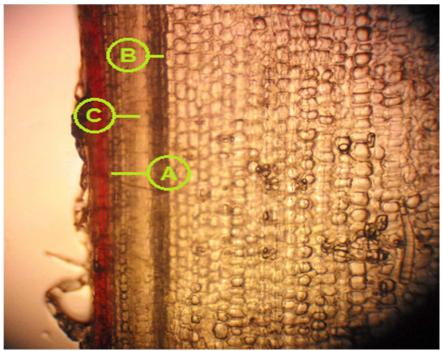
Médula (**me**). Es la porción que queda encerrada por el sistema vascular. Es básicamente parenquimática, a veces puede tener función de almacenamiento, o presentar idioblastos diversos y estructuras glandulares. En algunas especies la médula se destruye, resultando en la formación de un tallo hueco; a veces la destrucción ocurre sólo en los entrenudos, mientras los nudos retienen la médula formando los diafragmas nodales. (www.biologia.edu.ar).

Es el tejido localizado en la parte más interna del tallo, formado por células parenquimáticas. Se encuentra rodeada por el xilema primario. En los tallos leñosos es tejido muerto y su diámetro es de unos pocos milímetros. (Molist, 2011).

Tricoma tector (tr). El término tricoma se utiliza para designar a cualquier apéndice epidérmico. Son estructuras simples forman, generalmente, una densa cobertura, pudiendo servir de barrera mecánica contra varios factores externos. Los tricomas tectores son de dos tipos siendo ambos pluricelulares, los del sistema caulinar son uniseriados, y en las nervaduras foliares multiseriados. (De Fátima, 2005).

Tricoma glandular (tg). Generalmente presentan una cabeza uni o pluriceular. Pueden ser sésiles, con pie corto o largo. El pie unicelular o pluricelular, uniseriado o

pluriseriado. La cabeza unicelular globosa, 2-4-pluricelular, globosa, alargada, en forma de clavo. Pueden ser escamoso-peltados. (anatomiavegetal.weebly.com).


Xilema (**Xi**). Las células del xilema forman un tejido estructural y funcionalmente complejo, el cual, asociado al floema, se extiende de manera continua por todo el cuerpo de la planta. Tiene por misión la conducción de agua, el almacenamiento y el soporte. El xilema puede ser de origen primario o secundario. Las células conductoras de agua son las traqueidas y los miembros de los vasos; estos miembros están unidos por los extremos formando los vasos. (Esau, 1985).

Floema (FI). Las células del floema constituyen un tejido complejo, que se presenta a todo lo largo de la planta junto con el xilema, pudiendo ser de origen primario y secundario. Su misión es el transporte y almacenamiento de substancias nutritivas y posee también elementos de sostén. Las principales células conductoras son las cribosas y los miembros de los tubos cribosos. Los miembros de los tubos cribosos están unidos unos a otros por sus extremos formando los tubos cribosos y están asociados con células parenquimáticas. El floema secundario contiene parénquima en disposición radial. Las células de sostén son fibras y esclereidas. (Esau, 1985).

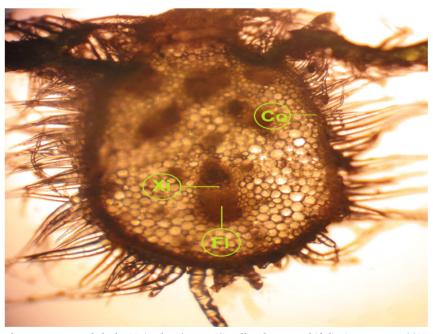
Producido por el cambium vascular hacia la superficie del tallo. Las partes más viejas, las más externas, van degenerando y formando parte de la corteza. El floema secundario, próximo al cambium vascular, el más reciente, está formado por células parenquimáticas, tubos cribosos y células acompañantes. (Molist, 2001).

La epidermis caulinar persiste, presentando un único estrato de células y tricomas semejantes a los de la hoja. En el córtex (co) hay una franja continua de colénquima angular y varias capas de parénquima, ambos conteniendo pocos cloroplastos, y una endodermis, con estrías de Caspary. Conductos secretores, de epitelio uniestratificado, se producen en la región cortical y la médula. En el cilindro vascular, es posible distinguir diversos haces vasculares colaterales, aunque

el floema y xilema secundarios estén continuos en toda la circunferencia del tallo. Capas de esclerénquima se apoyan al floema, que está formado de elementos crivados y células parenquimáticas. En el xilema, se encuentran elementos traqueales, fibras y células parenquimáticas. La médula es parenquimática y representa gran parte del volumen caulinar. (Duarte, 2008).

Corte longitudinal del tallo de Jícama (Smallanthus sonchifolius). 200X. A. Vasos criboso, B. Parénquima, C. Vasos Leñoso, D. Traqueidas. Fuente: Elaborado por Diego Rengifo, 2013.

IMAGEN N° 10: Corte Longitudinal del Tallo de la Jícama (S. sonchifolius)


A. Vasos Cribosos. Serie de células que funcionan como el principal conductor del Floema, las células que lo constituyen están vivas y son alargadas, con paredes terminales inclinadas u horizontales que se disponen una tras de otra, conectándose a través de sus extremos en los que se sitúa la placa cribosa. Los vasos liberianos o floema que llevan la sabia elaborada, está formado por vasos de células vivas con tabiques de separación entre ellas. Esta estructura, impediría el paso de sustancias

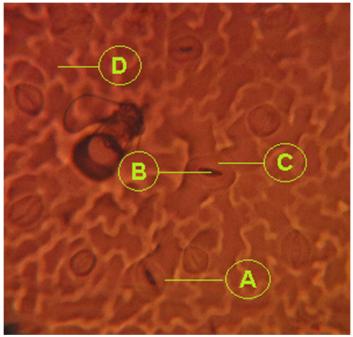
alimenticias, pero las plantas han resuelto este problema con el desarrollo, entre célula y célula, de una placa con orificios denominada placa cribosa. (Campos, 2002).

B. Parénquima. O células parenquimáticas, existen en gran cantidad a lo largo del tallo. En el Floema primario son alargadas paralelamente a los tubos, en el Floema Secundario se presentan en el sistema vertical y en el horizontal. La capa más interna del parénquima, que se encuentra limitando el círculo de haces vasculares, llamada capa amilífera acumula gran cantidad de almidón. (anatomiavegetal.weebly.com).

C. Vasos Leñosos. o Xilema encargados de transportar la savia bruta, está constituido por células muertas, sin paredes de separación, entre célula y célula. Por otro lado las paredes laterales están reforzadas por una sustancia dura llamada lignina que contribuye a mantener erguida la planta. (Campos, 2002).

3.2.3. Caracterización Histológica Foliar de la Jícama

Corte transversal de la Hoja de Jícama (Smallanthus sonchifolius), aumento 80X. (Co) colenquima, (Xi) Xilema, (Fl) Floema. Fuente: Elaborado por Diego Rengifo, 2013.


IMAGEN N° 11: Corte transversal de la Hoja de la Jícama (S. sonchifolius).

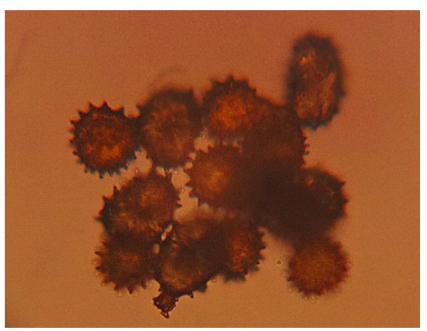
La hoja en vista paradermal presenta células poligonales con paredes anticlinales levemente sinuosas a muy sinuosas en las epidermis adaxial y abaxial, respectivamente. (Mercado, 2006).

En sección transversal se observa que la vena media (de 1er orden) presenta epidermis con células de paredes engrosadas, densamente pubescente, con 3-7 estratos de colénquima subepidérmico angular, laminar y lacunar tanto adaxial como abaxialmente. El sistema vascular está formado por 5-7 haces vasculares colaterales abiertos con casquete de colénquima (**Co**) a nivel del floema y del xilema, los cuales se distribuyen 3 abaxiales y 3 ó 4 adaxiales. Los haces abaxiales hacia el ápice de la lámina se unen constituyendo un único haz inverso con xilema interno. (Mercado, 2006).

El tejido parenquimático que rodea a los haces, está formado por células isodiamétricas y conductos esquizógenos en número variable, presentes también en el floema. Los conductos esquizógenos distribuidos sin un orden aparente, están tapizados por un epitelio secretor uniestrato de 6-8 células. (Mercado, 2006).

Las venas laterales de 1er orden presentan el mismo esquema básico que la vena media. Las venas de 2do orden presentan haces vasculares colaterales con una viga parenquimática abaxial y conductos esquizógenos en el parénquima circundante. El pecíolo en sección transversal presenta una estructura compleja con epidermis con células de paredes engrosadas, tricomas glandulares y eglandulares y 5-6 estratos de colénquima angular subepidérmico. Se observan quince haces vasculares colaterales abiertos con casquetes de colénquima a nivel del floema, dispuestos en 3-4 arcos abiertos hacia la superficie adaxial. En transcorte el ala presenta clorénquima esponjoso y haces menores de igual estructura que los de la lámina foliar. (Mercado, 2006).

Envés de la hoja de Jícama (Smallanthus sonchifolius), aumento 800X. (es)estomas. Fuente: Elaborado por Diego Rengifo, 2013.


IMAGEN N° 12: Epidermis del Envés de la Hoja de la Jícama (Smallanthus sonchifolius)

El Estoma Anomocítico o Ranunculáceo (A) sin células anexas; es el más frecuente en dicotiledóneas y también el más antiguo. (www.biologia.edu.ar). Son pequeños orificios o poros de las plantas localizados en el envés de las hojas. Constan de dos grandes células oclusivas (C). La separación que se produce entre las dos células se denomina Ostiolo (B), el cual regula el tamaño total del poro y por tanto la capacidad de intercambio de gases así como la pérdida de agua en las plantas. Los estomas son los principales participantes en la Fotosíntesis ya que por ellos transcurre el intercambio gaseoso mecánico, es decir en este lugar sale el Oxígeno (O2) y entra el Dióxido de Carbono (CO2). Las células epidérmicas también llamadas células fundamentales (D), se aprecian en forma alargada o isiodiamétrica. (Nazca, 2010).

La cutícula es delgada y lisa en ambos casos. Se trata de una hoja anfiestomática, con estomas anomocíticos levemente elevados respecto al nivel de la epidermis, con

cámara subestomática, los mismos se hallan más densamente en la epidermis abaxial. Los tricomas son glandulares y eglandulares. Los glandulares son pluricelulares, con pie biseriado de 5 a 6 pares de células (en algunos casos el primer par se halla elongado) y cabeza globosa bicelular. Los tricomas eglandulares son pluricelulares uniseriados. Los mismos se clasifican en flexuosos sin células basales y rígidos cuya base está compuesta por un conjunto de 2-8 células en roseta. Presentan un tamaño que varía entre 3 y 7 células de longitud, los mayores se encuentran en la epidermis adaxial; el diámetro se consideró a la altura de la segunda célula desde la epidermis. La lámina en transcorte presenta mesofilo dorsiventral, compuesto por 1-2 estratos de células en empalizada con canales esquizógenos y algunas células características, las cuales muestran invaginaciones de la pared y membrana hacia el interior de la célula confiriéndole el aspecto de letra Y o H. Hacia la cara abaxial el tejido esponjoso es compacto con células isodiamétricas. (Mercado, 2006).

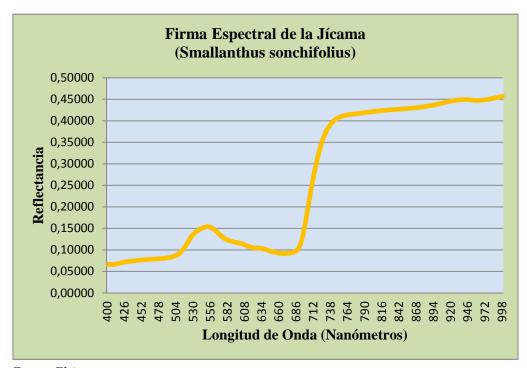
3.2.4. Caracterización del Grano de Polen de la Jícama (Smallanthus sonchifolius).

Grano de Polen de Jícama, aumento 800X. Fuente: Elaborado por Diego Rengifo, 2013

IMAGEN N° 13: Grano de Polen de la Jícama (Smallanthus sonchifolius).

El argumento más contundente para sostener que el yacón es de polinización cruzada es la presencia de acúleos o espinas en la superficie y la viscosidad del grano de polen. Uno de los problemas de la propagación sexual del yacón es la baja fertilidad del polen, expuesto por Grau 1993; citado por Grau y Rea 1997. Probó la polinización artificial, pero el polen fue altamente estéril y no logró obtener frutos llenos. (Seminario & Valderrama, 2003).

El grano de polen es esférico, aculeado, triporado, amarillo, de 27 μm de diámetro. (Mercado, 2006).


3.3. Análisis Espectral.

La luz es uno de los tres factores más importantes que actúan sobre el crecimiento y desarrollo de las plantas, junto al Oxígeno (CO2) y los minerales. Es un factor imprescindible para llevar adelante una serie de procesos fisiológicos en las plantas, siendo el más importante de todos, la fotosíntesis. La mayor parte de la Luz del sol que captan las plantas es transformada en calor y solo una pequeña parte del espectro son esenciales para su crecimiento.

La región del espectro visible en la vegetación se caracteriza por baja reflectancia y transmitancia, dada la fuerte absorción por los pigmentos foliares.

Los pigmentos de clorofila absorben la luz violeta-azul y roja por la fotosíntesis. La luz verde es reflejada para la fotosíntesis, razón por la cual muchas de la plantas aparecen verdes. El espectro de reflectancia de la vegetación verde muestra picos de absorción de alrededor de 420nm (violeta), 490nm (azul) y 660nm (rojo). Estos son causados por una fuerte absorción de la clorofila. (Meer & Jong, 2002).

3.3.1. Firma Espectral de la Jícama (Smallanthus sonchifolius).

Fuente: El Autor.

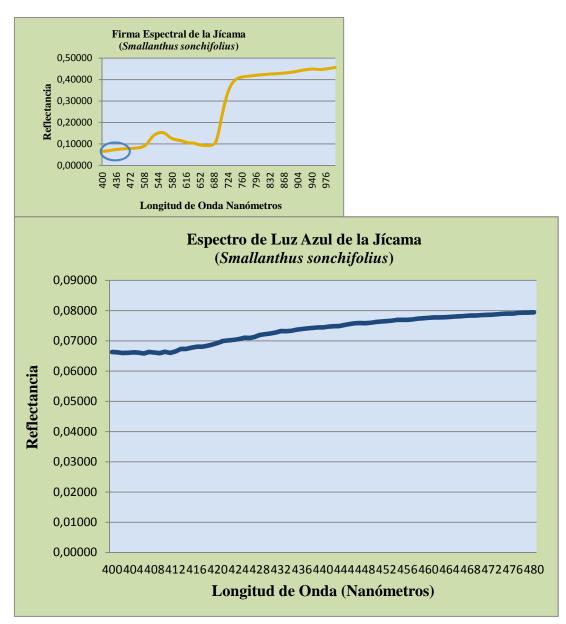

Elaborado por Diego Rengifo, 2013.

Gráfico N° 1: Firma Espectral de la Jícama (Smallanthus sonchifolius) de 400 a 1000 nm.

Según el afamado cultivador Ed Rosenthal, el espectro electromagnético se clasifica por longitud de onda. Cuanto más tiempo dure la onda, menos energía contiene. Así la luz azul, que tiene una longitud de onda corta de 475 nm, tiene más energía que la luz roja de 660 nm. La luz infrarroja va más allá de la visión humana, a partir de los 730 nm. Y aunque no podemos verlo, podemos sentirla como calor.

Dentro de los datos tomados seleccionamos el Rango de 400 a 480 nanómetros donde obtenemos el siguiente gráfico de la Luz Azul de la Firma Espectral del cultivo de Jícama (*Smallanthus sonchifolius*).

3.3.2. Firma Espectral en el Rango de Luz Azul de la Jícama

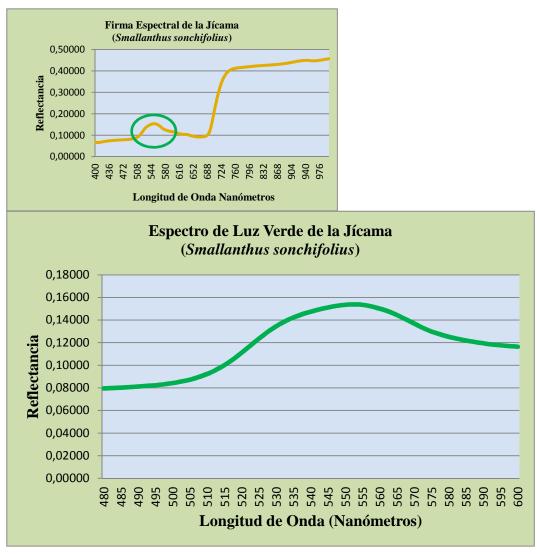
Fuente: El Autor.

Elaborado por Diego Rengifo, 2013.

Gráfico Nº 2: Firma Espectral de la Jícama (*Smallanthus sonchifolius*). De 400 a 480 nm De Espectro De Luz Azul.

Las plantas usan la luz entre los 400-480 nm (conocida como radiación PAR, radiación fotosintéticamente activa, o luz de crecimiento), variando el efecto de la longitud de onda según las horas del día y los estadios de crecimiento de la planta.

Las células interiores de las plantas que absorben la luz están adaptadas para absorber eficientemente la luz azul, que es de onda corta.


La luz azul en las plantas la usan para regular el crecimiento de sus hojas o vegetativo, a su vez la absorción de esta luz permite un desarrollo de plantas más sanas, con hojas más grandes y numerosas ramas.

La luz **AZUL 400-480nm** Actúa sobre la fotosíntesis, Fotomorfogénesis, Fototropismo. La luz azul (400-480nm) tiene un efecto inhibitorio sobre el crecimiento de las plantas, por lo que puede ser usada como alternativa a los productos químicos que retardan el crecimiento vegetal en altura. Así, la luz azul es una estrategia potencial para producir plantas con un crecimiento más compacto. Además, se facilita la aclimatación de los cultivos in vitro contribuyendo al crecimiento de las plantillas.

Esta luz afecta a la cantidad de agua que las plantas retienen. Es el principal responsable del crecimiento de la hoja vegetativa. Estimula la producción de clorofila y las reacciones fotosintéticas. Y se manifiesta dando plantas cortas y con entrenados también cortos, fuertes y vigorosas. Su ausencia proporciona plantas enfermizas, delgadas y delicadas.

Dentro de los datos tomados seleccionamos el Rango de 480 a 600 nanómetros donde obtenemos el siguiente gráfico de la Luz Verde de la Firma Espectral del cultivo de Jícama (*Smallanthus sonchifolius*).

3.3.3. Firma Espectral en el Rango de Luz Verde de la Jícama (Smallanthus sonchifolius).

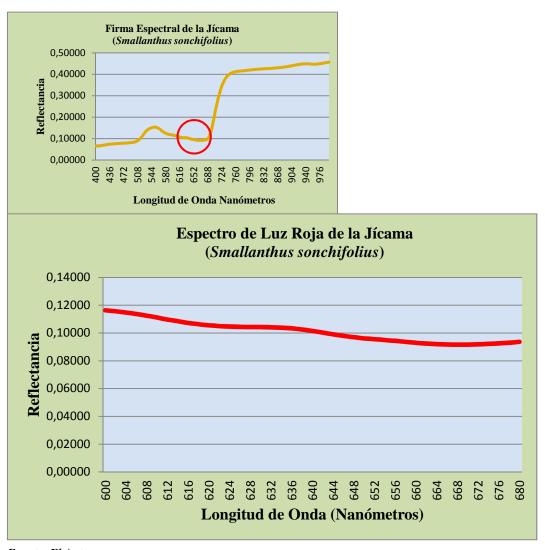
Fuente: El Autor.

Elaborado por Diego Rengifo, 2013.

Gráfico N° 3: Firma Espectral de la Jícama (Smallanthus sonchifolius). De 480 a 600nm De Espectro De Luz Verde.

Las plantas usan la luz entre los 480-600nm (conocida como radiación PAR, radiación fotosintéticamente activa, o luz de crecimiento), variando el efecto de la longitud de onda según las horas del día y los estadios de crecimiento de la planta.

La luz verde en las plantas no es muy absorbida, es por ello que se ven verdes sus hojas ya que rechazan la mayoría de los rayos de luz verde.


Los mecanismos envueltos en la absorción de la radiación por pigmentos en la vegetación verde son las transiciones de electrones. Los pigmentos como la clorofila y los carotenos absorben la luz de energía específica, causando transición de electrones entre la estructura molecular del pigmento. La energía resultante de estas transiciones es usada para las reacciones fotoquímicas de la planta. Dado que la luz viene en pequeños paquetes (fotones) solo la de cierta energía puede causar la transición de electrones; de ahí que los pigmentos de las plantas absorban luz fuertemente en algunas longitudes de onda y no en todas. (Meer & Jong, 2002).

Durante la senescencia, la clorofila en las hojas se degrada más rápido que los carotenos, lo que genera un notable incremento de la reflectancia en las longitudes de onda del rojo (600-700 nm), y por lo tanto las absorciones generadas por la clorofila tenderán a desaparecer; a demás, los carotenos y la xantofila dominaran químicamente las hojas, ocasionando mayores absorciones en el rango del azul (400-500 nm), y una mayor reflectancia de luz en el rojo y el verde (500-600 nm), que resultará visualmente en un tono amarillo. Una vez que las hojas mueran, aparecerán algunos pigmentos foliares conocidos como taninos, los cuales se caracterizan por reflejar luz visible con tonalidades cafés. (Meer & Jong, 2002).

Los pigmentos de clorofila absorben la luz violeta-azul y roja para la fotosíntesis. El espectro de reflectancias de la vegetación verde muestra los principales picos de absorción en nanómetros causados por la clorofila a en las longitudes: 420 (violeta), 490 (azul) y 660 nm (rojo) del espectro visible, para la clorofila b 435 (violeta), 464 (azul), en el caso de los carotenos para el β-caroteno: 425 (violeta), 450 (azul), 480 (azul); para el α-caroteno 420 (violeta), 440 (violeta), 470 (azul), mientras que para la xantofila: 425 (violeta), 450 (azul), 475 (azul). (Meer & Jong, 2002).

El **VERDE 480-600nm** La mayoría de las plantas reflejan la luz verde, razón por la que las veamos de este color. Las plantas absorben muy poca luz verde, y así la misma tiene un efecto mínimo sobre estas.

3.3.4. Firma Espectral en Rango de Luz Roja de Jícama (Smallanthus sonchifolius).

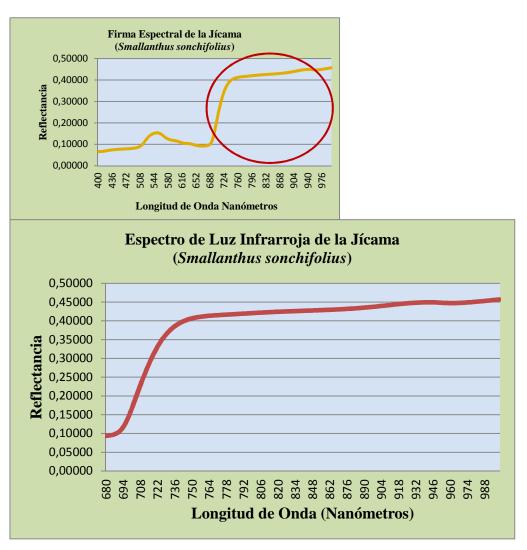
Fuente: El Autor.

Elaborado por Diego Rengifo, 2013.

Gráfico Nº 4: Firma Espectral de la Jícama (*Smallanthus sonchifolius*). De 600 a 800nm De Espectro De Luz Roja.

Las plantas usan la luz comprendida entre los 600-680nm (conocida como radiación PAR, radiación fotosintéticamente activa, o luz de crecimiento), variando el efecto de la longitud de onda según las horas del día y los estadios de crecimiento de la planta.

Las células interiores de las plantas que absorben la luz están adaptadas para absorber eficientemente la roja y la azul, que son de onda corta.


La luz roja es la que estimula la floración pero ha de ser combinada con el azul para seguir su desarrollo molecular y proteínico.

EL AMBAR 600-620nm Entra dentro de los espectros que se encargan de controlar el fotoperiodo. Con él las plantas controlan el ciclo diario de la luz (día/noche), abriendo o cerrando las hojas o pétalos de ciertas flores. Y también ayudan a reconocer incluso el estado anual de la luz y por tanto el momento idóneo para florecer.

ROJO 630-680nm. Las bandas de color rojo de la luz fomentan el crecimiento del tallo, inducen la germinación de las semillas, el proceso del brote y la floración al desencadenar la liberación de hormonas, también actúan sobre el enraizamiento y es el causante de repeler gran mayoría de insectos y plagas.

3.3.5. Firma Espectral en el Rango de Luz Infrarroja de la Jícama (Smallanthus sonchifolius).

En el intervalo visible-infrarrojo medio, las hojas presentan tres zonas diferenciadas: una en el visible $(0,4-0,7~\mu m)$ caracterizada por su baja reflectancia, otra en el infrarrojo próximo $(0,7-1,3~\mu m)$ y otra en el infrarrojo medio $(1,3-2,5~\mu m)$. (Ormeño, 1991).

Fuente: El Autor.

Elaborado por Diego Rengifo, 2013.

Gráfico Nº 5: Firma Espectral de la Jícama (*Smallanthus sonchifolius*). De 600 a 800nm De Espectro De Luz Infrarroja.

ROJO LEJANO 700-800 nm. Desempeña un papel importante en el crecimiento de las plantas. Es un factor de importancia a la hora de potenciar la respuesta de la planta para evitar sombra.

Infrarrojo IR 800-1000 nm. La Temperatura es el factor más importante a tener en cuenta en la creación de un ambiente en el cultivo principalmente de interior, ya

que es el que más influye sobre el crecimiento y desarrollo de las plantas. Para el manejo de la temperatura es importante conocer las necesidades y limitaciones de la especie cultivada.

Las plantas usan la luz roja e infrarroja para regular el crecimiento del tallo y la respuesta fotoperiódica. Las células vegetales producen un compuesto químico llamado fitocromo, que tiene dos versiones. Una versión PR, sensible a la luz roja 660 nm que la convierte en PFR. PFR es quien señala que la planta crezca con tallos cortos y robustos aunque también puede ayudar a crecer de otras formas específicas.

Las plantas también usan la luz roja e infrarroja para medir el tiempo de oscuridad continua.

PFR es sensible a la luz infrarroja 730 nm convirtiendo en PR. Cuando los niveles de PR constituyen una medida critica, los científicos presumen que una hormona llamada Floragen se activa e induce la planta a florecer, pero esto es teórico pues nadie la encontrado.

CONCLUSIONES

- ✓ Se generó la información gráfica a través de la captura de imágenes de alta definición, de los tejidos estructurales e histológicos, los mismos que muestran detalles tales como color del tallo, forma de las hojas, forma del tubérculo, color del brote, entre otros, los mismos que representan el primer paso para futuras investigaciones. Además se describen estructuras microscópicas como por ejemplo los tricomas que son de mucha utilidad en taxonomía, ya que tienen caracteres constantes en muchas especies, lo que permitirá el estudio e identificación de otros morfotipos. Por otro lado aplicando un modelo estadístico basado en la Desviación Estándar encontramos un Coeficiente de Variación del 4.12% que corresponde a la firma espectral única de la Jícama (*Smallanthus sonchifolius*), misma que se encuentra en el rango mínimo de error, la cual demuestra que la respuesta espectral de la planta es viable y autentica.
- ✓ En la presente investigación se describió con detalle cada una de las partes macro y micro estructurales de la planta de Jícama (Smallanthus sonchifolius), en donde podemos concluir que están acorde a la Bibliografía, ya que se utilizó imágenes de alta definición del Microscopio AMSCOPE con el fin de que posteriores investigaciones continúen desarrollando sus estudios.
- ✓ Utilizando software especializado de diseño gráfico, se montó una página interactiva con el fin de transmitir la información digital a todos los usuarios de las características estructurales, histológicas y espectrales de la Jícama (Smallanthus sonchifolius).

RECOMENDACIONES

- ✓ Para apreciar de mejor manera las características de las Macroestructuras de la planta de Jícama (*Smallanthus sonchifolius*) se recomienda utilizar la Cámara SIGMA de 46 Megapíxeles con 3 sensores RGB y lente zoom de 250mm.
- ✓ Para la identificación de las microestructuras de la planta de Jícama (Smallanthus sonchifolius) se recomienda utilizar del Microscopio AMSCOPE utilizando lentes de 80X, 200X y 800X.
- ✓ Se recomienda seguir manteniendo el convenio entre la Universidad Técnica de Cotopaxi (UTC) y el Instituto Espacial Ecuatoriano (IEE), a fin de acceder a los equipos necesarios para las investigaciones espectrales.
- ✓ Socializar la Pagina Interactiva de la presente investigación para que sirva como punto de partida para futuras investigaciones.
- ✓ Se recomienda que la presente investigación sirva de base para que se realicen estudios con mayor profundidad en donde se puedan determinar factores que inciden en el estrés de la planta como déficit nutricional, estrés hídrico, manejo de sanidad vegetal, así como para canalizar y difundir una agricultura de precisión en el cultivo de Jícama (Smallanthus sonchifolius).

GLOSARIO

Abaxial. Parte de un órgano más alejada del eje de la planta, en una hoja es el envés.

Acródroma. Dos o más venas primarias o venas secundarias fuertemente desarrolladas formando arcos no recurvos que convergen hacia el ápice

Acúleo. Protuberancia rígida y punzante, de origen epidérmico; sinónimo de aguijón.

Acuminada. Hoja que se estrecha paulatinamente en un ápice alargado.

Adaxial. Parte de un órgano más cercana al eje de la planta, en una hoja es el haz.

Análisis Espectral. Consiste específicamente en el estudio de una luz previamente descompuesta en radiaciones monocromáticas mediante un prisma o una red de difracción.

Ápice. El ápice designa el extremo superior o punta de la hoja.

Aquenio. Es un tipo de fruto seco producido por numerosas especies de plantas.

Autótrofo. Organismo capaz de sintetizar sus metabolitos esenciales a partir de sustancias inorgánicas.

Brácteas. Es el órgano foliáceo en la proximidad de las flores y diferente a las hojas normales y las piezas del perianto.

Broquidódroma. Nervios foliares secundarios que antes de alcanzar el borde de la hoja se arquean y se enlazan entre sí.

Bulbos. Los bulbos, al igual que los rizomas, cormos y tubérculos, son órganos subterráneos de almacenamiento de nutrientes. Las plantas que poseen este tipo de estructuras se denominan colectivamente plantas bulbosas.

Camptódroma: venas secundarias terminando antes del margen de la hoja.

Capítulo. Inflorescencia que consiste de pequeñas flores (flósculos), generalmente numerosas, agrupadas densamente hasta formar una cabeza.

Caracterización.- Conversión de los estados de un carácter en términos de dígitos, datos o valores, mediante el uso de descriptores. Todos los estados de un mismo carácter deben ser homólogos.

Caracter. Cualquier propiedad o evidencia taxonómica que varía entre las entidades estudiadas o descritas. Ejemplo: Forma de las alas del tallo.

Carpelo. Estructura femenina que contiene los óvulos y soporta al estigma.

Caulinar. El sistema caulinar está compuesto por rizomas y por tallos. Los rizomas, que corresponden a tallos modificados que nacen alternadamente desde subnudos ubicados en los tallos, presentan un crecimiento horizontal bajo la superficie del suelo.

Centrípeta. Se usa este término para dar idea de lago que avanza o se dirige desde la periferia hacia el centro.

Cipsela. Tipo de fruto seco indehiscente formado por un aquenio procedente de un ovario bicarpelar ínfero, con pericarpio duro separado de la semilla.

Cloroplastos. Son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis.

Colénquima. Tejido mecánico formado por células vivas, más o menos alargadas en el sentido longitudinal del órgano, de paredes generalmente primarias y con engrosamientos irregulares.

Connada. Se dicen connados los órganos que se hallan más o menos unidos entre sí. Por ejemplo, las hojas opuestas unidas por sus bases.

Dicásica. Tipo de inflorescencia cimosa, en la cual cada rama desarrolla a otras dos ramas.

Electroforesis. Es una técnica para la separación de moléculas según la movilidad de estas en un campo eléctrico. La separación puede realizarse sobre la superficie hidratada de un soporte sólido.

Endospermo. Es el tejido nutricional formado en el saco embrionario de las plantas con semilla.

Epipétalos. Que se halla sobre los pétalos; refiriéndose también a los estambres, que parecen estar insertos sobre la corola y precisamente frente a los pétalos o los lóbulos de la misma.

Esclereida. Célula corta del esclerénquima, con forma variada y pared secundaria lignificada y con puntuaciones.

Esclerénquima. Tejido mecánico de sostén formado por esclereidas y fibras.

Esclerificación. Proceso de formación de esclerénquima (Tejido de sostén de algunas plantas formado por células muertas a la madurez), tejido de paredes secundarias rígidas.

Estados. Los posibles valores que ese carácter pueda presentar. Ejemplo: para forma de las alas del tallo: ausente, recto, ondulado y dentado.

Estípulas. Se denomina estípula a una estructura, usualmente laminar, que se forma a cada lado de la base foliar de una Traqueofita. Suele encontrarse una a cada lado de la base de la hoja, a veces más.

Etnobotánica. Estudia las relaciones entre los grupos humanos y su entorno vegetal, es decir el uso y aprovechamiento de las plantas en los diferentes espacios culturales y en el tiempo.

Exalbuminada. Semilla que no presenta endosperma en la madurez.

Firma espectral. El emisor de radiación más usual para imágenes de teledetección es el Sol. El Sol emite la radiación que incide, en primer lugar, en la atmósfera. Los gases presentes en la atmósfera, como el resto de la materia presente en el Universo, interactúa con la radiación, absorbiéndola, reflejándola o transmitiéndola.

Floema. Tejido conductor que permite el transporte de la savia elaborada y de las sustancias orgánicas.

Fusiforme. Raíz que es más ancha en el centro y se estrecha hacia la parte superior y la parte inferior: por ejemplo, rábano.

Hastada. . Tiene una forma de asta de bandera como acontece en la mayoría de las hojas de la familia Poligonáceas.

Histología vegetal. Trata del estudio de todos los tejidos orgánicos propios de las plantas. En una planta vascular existen tejidos diferenciados de acuerdo a la función que desempeñan: tejidos de crecimiento (*meristemas*), protectores (*epidermis* y *peridermis*), fundamentales (*parénquima*), de sostén (*colénquima* y *esclerénquima*), conductores (*floema* y *xilema*).

Homología.- estados de los caracteres de dos o más organismos cuyo origen pueden determinarse en el mismo estado del carácter del antecesor común de esos organismos. Aplicable en estudios inter-específicos o Taxones superiores.

Indehiscente. Fruto que no se abre al madurar, o que no está preparado para abrirse espontáneamente de forma que puedan salir las semillas.

Ínfero. Se aplica al ovario que ocupa una posición inferior, que se desarrolla por debajo del cáliz.

In situ. Es una expresión latina que significa «en el sitio» o «en el lugar», y que es generalmente utilizada para designar un fenómeno observado en el lugar, o una manipulación realizada en el lugar.

Involucro. Conjunto de brácteas que rodea o envuelve a un órgano de la planta, usualmente una flor o una inflorescencia, particularmente en el caso de los capítulos o de las umbelas.

Isodiamétrica. Son las células que tienen sus tres dimensiones iguales o casi iguales.

Lanceolada. Aplicase a los órganos laminares, como hojas, brácteas, pétalos, de figura de hierro de lanza.

Lignificación. Proceso propio del final del periodo de crecimiento celular de las plantas superiores por el cual la lignina sustituye a la mayor parte del agua de la membrana y produce el endurecimiento de la misma y su aumento de volumen.

Lígulas. Es uno de los tipos de flores que pueden hallarse en el capítulo de ciertas familias de plantas, tales como las Compuestas.

Medios digitales. Los medios digitales hacen referencia al contenido de audio, vídeo e imágenes que se ha codificado (comprimido digitalmente). La codificación de contenidos implica convertir la entrada de audio y vídeo en un archivo de medio digital como, por ejemplo, un archivo de Windows Media. Una vez codificado el medio digital, se puede manipular, distribuir y representar (reproducir) fácilmente en otros equipos, así como transmitir a través de redes informáticas.

Mesófilo. Es un término botánico que designa el tejido que se encuentra entre las epidermis del haz y del envés de las hojas. Parénquima clorofiliano de las hojas, puede ser en empalizada, esponjoso o indiferenciado.

Monotalámico. De un solo lecho o tálamo. Fruto formado por los carpelos separados de una flor.

Monoespermo. Fruto que presenta una sola semilla.

Morfología.- Estudio e interpretación de las formas y colores de los tejidos, órganos y estructuras (expresiones), y el desarrollo durante el ciclo vital de las plantas.

Napiforme. Se denomina raíz napiforme (o sea, con forma de nabo) a aquella raíz primaria central, nítida y dominante sobre las raíces laterales, que se engrosa total o parcialmente por acumulación de sustancias de reserva.

Nervadura. Conjunto y disposición de los nervios de una hoja, que se aprecia a simple vista, ya por el resalto de los mismos en el envés o por el examen de la hoja a contraluz.

Nudos. Son zonas del tallo desde donde nacen las hojas. La porción de tallo que separa dos nudos se denomina entrenudo.

Papus. Vilano. Cáliz reducido a pelos o escamas característico de las Compuestas.

Pedicelo. En Botánica se llama pedúnculo, pedículo o pedicelo (si bien éste último término se aplica más a setas), a la ramita o rabillo que sostiene una inflorescencia o un fruto tras su fecundación.

Pedúnculo. Cabo de una flor, Eje de una inflorescencia.

Pericarpo. Parte del fruto que rodea a la semilla, generalmente se compone de tres capas: epicarpo, mesocarpo y endocarpo, de afuera hacia adentro respectivamente.

Piloso. Con pelos muy suaves y largos.

Pinnatífida: hoja con nerviación pinnada, con el limbo dividido en lóbulos que como mucho llegan a la mitad del espacio entre el margen de la hoja el nervio medio.

Protoplasto. Expresa el contenido plasmático total del interior de la célula, con todas sus inclusiones, considerado como unidad biológica fundamental.

Pubescente. Hoja o tallo que presenta una superficie cubierta de pelillos que retienen el rocío matutino.

Sésil. Sentado. Que carece de pie o estructura de soporte. En el caso de una hoja que carece de pecíolo.

Simpétala. Se dice de la corola que trae los pétalos soldados entre sí, al menos en la base.

Suberificada. Que corresponde a la región inmediatamente por debajo del cuello de la raíz, protegida por una sustancia llamada suberina. En esta zona, los pelos se han marchitado y caído y la raíz se protege suberificando las células periféricas. En las plantas adultas la zona suberosa, constituye la mayor parte de las mismas. Esta zona cumple principalmente con la función de sostén o anclaje del vegetal.

Suprabasal. Originadas arriba de la base.

Tálamo. Porción axial en la que se asientan los diversos verticilos de una flor.

Tanino. Compuesto polifenólico muy astringente y amargo.

Teca. Cada una de las dos mitades de la antera completa (con cuatro sacos polínicos en total), compuestas de dos sacos polínicos.

Trabéculas. Fila o ringlera de células que atraviesa una laguna o espacio intercelular.

Transmitancia. Es una magnitud que expresa la cantidad de energía que atraviesa un cuerpo en la unidad de tiempo (potencia).

Traqueida. Elemento conductor del xilema también con funciones de sostén. Es un elemento imperforado y primitivo.

Tricomas. Son formaciones o apéndices epidérmicos, distintos de las células fundamentales típicas. Su nombre proviene del griego trichos, que significa cabellera. También se los llama pelos y tienen funciones y características muy diversas. Se originan a partir de meristemoides epidérmicos.

Truncada. Ápice de la hoja cuando finaliza en cuadrado. Con el extremo aplanado, cortado.

Unilocular. De un solo lóculo o cavidad

Uniseriado. Dispuesto en una sola serie o fila.

Verticilos. La agrupación circular de las hojas u otras estructuras en un solo nudo. Los verticilos florales son: el cáliz, la corola, el androceo y el gineceo.

Xilema. Tejido de las plantas vasculares que sirve para la conducción de agua y sustancias disueltas través del cuerpo del vegetal.

Yemas. Las estructuras encargadas del crecimiento del tallo son las yemas, que también producen hojas y ramificaciones. La yema situada en el extremo del eje es la yema terminal. Las que se encuentran en la unión de las hojas con el tallo son las yemas axilares.

Zigomorfa. Cualquier órgano que tiene simetría bilateral.

BIBLIOGRAFIA

- **1. ÁLVAREZ, C G.** Manual Técnico para el cultivo de Jícama, Universidad Nacional de Loja, Loja Ecuador, 2012, Pp. 5,6.
- **2. BARET, F. ANDRIEU, B.** Interet du moyen infrarouge reflectif por caracteriser la vegetation. *Bol. Societé Française pour la Photogrametrie et Teledetection, Francia 1994. Pp.* 136.
- **3. BARRERA V.** Raíces y Tubérculos Andinos: Alternativas para la conservación y uso sostenible en el Ecuador, Edit. INIAP, CIP, Agencia Suiza para el Desarrollo y la Cooperación, Quito Ecuador, Lima Perú, 2004, Pp. 7,8.
- **4. CALLE M.** Yacón en Jujuy. Un Alimento Ancestral, Editorial Universidad Nacional de Jujuy, Argentina, 2012, Pp. 8.
- **5. CAMPOS** Patricia. Biología 2, Editorial Limusa S.A. Grupo Noriega Editores, México, D.F. 2002, Pp 102.
- **6. CIP.** Centro Internacional de la Papa, COTESU, Cooperación Técnica Suiza, Biodiversidad de Raíces y Tubérculos Andinos, La Molina, Lima Perú, 1995, Pp. 53 54.
- **7. DE FÄTIMA** Vanessa. Caracterización de los tipos de tricomas en el sistema caulinar de *Stylosanthes mineirao*, Campo Grande Brasil, 2005, Pp. 8,9.
- **8. DUARTE** Márcia do Rocio. Smallanthus sonchifolius: Identificación microscópica de Hoja y Tallo para el control de calidad farmacológica. Universidad Federal de Paraná, 2008, Pp. 158 162.

- 9. ESAU Katherine. Anatomía Vegetal, Ediciones Omega, Barcelona España, 1985,Pp. 25
- **10. ESPINOZA** Patricio. Raíces y Tubérculos Andinos. Cultivos Marginados del Ecuador, Centro Internacional de la Papa, Quito Ecuador, 1997, Pp. 10 -11.
- **11. FAIRLIE** Tommy. Raíces y Tubérculos Andinos. Avances de Investigación, Edit. Centro Internacional de la Papa, Lima Perú, 1999, Pp. 38.
- **12. FAO** (Food and Agricultural Organization). Global Plan of Action for the Conservation and Sustainable Utilization of Plant Genetic Resources for Food and Agriculture. Rome, 1996, Pp. 63.
- **13. FLORES D.** Uso Histórico: Yacón (*Smallanthus sonchifolius*), Proyecto Perú biodiverso, Lima Perú, 2010, Pp. 6 8.
- **14. FONT QUER P**. Diccionario de Botánica Península, Ediciones Península S.A. Barcelona España, 2001, Pp. 642.
- **15. GRAU, A. & REA, J.** "Yacón, Smallanthus sonchifolius. Raíces y Tubérculos Andinos, Ahipa, arracaha, maca y yacón. Edit. CIP, centro Internacional de la Papa. 1997. Pp. 223.
- **16. HAIMOVICH,** David. Caracterización morfológica de plantas mediante procesamiento digital de imágenes, Universidad Nacional del Litoral, Santa Fe Argentina, 2012. Pp. 1 5.
- **17. HERNÁNDEZ J**. Cultivos Marginados, Programa Etnobotánica, FAO, Andalucía España, 1992, Pp. 1, 174, 175, 176.

- **18. HORTON** Douglas. La Papa, Centro Internacional de la Papa, Editorial Hemisferio Sur, Lima Perú, 1992, Pp. 30 31.
- **19. LOBO, A**. Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. *Ciencia y Tecnología Agropecuaria. CORPOICA*, 2006, Pp. 40-54
- **20. LEÓN** Jorge. Botánica de los Cultivos Tropicales, Editorial Agroamérica del IICA, San José Costa Rica, 2000, Pp. 367.
- **21. LUQUE R.** Estructura primaria del sistema radical *Coespeletia*, Universidad de los Andes, Mérida Venezuela, 2003, Pp 16, 17.
- **22. MACHADO** Silvia. Morfoanatomía del Sistema Subterráneo de Smallanthus sonchifolius (Poepp & Endl.) H. Robinson Asteraceae), Revista Brasil de Botánica, 2004, Pp. 115 121.
- **23. MACHUCA** Florentino. La Cadena de Valor del Yacón en la Región Cajamarca, Proyecto Perúbiodiverso, Biblioteca Nacional del Perú, Lima Perú, 2013, Pp. 3 19.
- **24. MANRIQUE** Iván. Conservación y uso de la biodiversidad de raíces y tubérculos andinos. Edit. Centro internacional de la papa, Lima Perú, 2005, Pp. 4 5.
- **25. MEER, F.; JONG, S.** Imaging Spectrometry. Remote Sensing and Digital Image Processing. Kluwe Academic Publishers, 2002, Pp. 111-197.
- **26. MERCADO** María. Morfología y Anatomía Foliar de Yacón, *Smallanthus sonchifolius*, con fines de control de calidad, Tucumán Argentina, 2006, Pp. 526 530.

- **27. MOLIST** Pilar. Atlas de Histología Vegetal y Animal, Depto. De Biología Funcional y Ciencias de la Salud, Facultad de Biología. Universidad de Vigo España, 2011, Pp. 12 13.
- **28. MULLER** Ludwing. Manual de Laboartorio de Morfología Vegetal, CATIE, Turrialba Costa Rica, 2000.
- **29. MUÑOZ,** Ana María. Monografía del Yacón, Perúbiodiverso, Lima Perú, 2009, Pp. 2,3.
- **30. NASCA** Patricia. Histología Vegetal, Facultad de Agronomía y Zootecnia UNT, Tucumán Argentina, Pp. 4 10
- **31. ORMEÑO, S**. Fundamentos Físicos de la Teledetección, Universidad Politécnica de Madrid, Madrid España, 1991.
- **32. PAMPLONA** Jorge. Plantas que Curan, Editorial Safeliz, Madrid España, 1995, Pp. 25
- **33. PÉREZ Carlos, MUÑOZ Ángel.** Teledetección: Nociones y Aplicaciones, Universidad de Salamanca, 2006, Pp. 5 6.
- **34. RAVEN** Peter. Biología de las Plantas, Editorial Reverté S. A. Barcelona España, 1992, Pp. 394, 542, 543.
- **35. REUTER** Fabián. Principios de Teledetección, Universidad Nacional de Santiago del Estero, Santiago Argentina, 2009, Pp. 26 30.
- **36. SALAZAR** Luis. Los virus de la papa y su control, Centro Internacional de la Papa, Lima Perú, 1995, Pp. 4.

- **37. SEMINARIO J, VALDERRAMA M.** El Yacón: fundamentos para el aprovechamiento de un cultivo promisorio. Centro Internacional de la Papa (CIP), Lima Perú. 2003. Pp. 10 18.
- **38. TAPIA** C. Catálogo de Recursos Genéticos de Raíces y Tubérculos Andinos en Ecuador, INIAP DENAREF, Edit. Tecnigraba, Quito Ecuador, 1996, Pp. 1 14.
- **39. TAPIA** Mario, **FRIES** Ana. Guía de Campo de los Cultivos Andinos, FAO, Editorial Millenium Digital, Lima Perú, 2007, Pp. 59
- **40. VALDERRAMA, M.** Manual del Cultivo de Yacón. Experiencias de introducción y manejo técnico en el Valle Condebamba. Programa PyMAGROS. Cajamarca Perú, 2005, Pp. 3.
- **41. VELEZMORO** Jill. Perfil de Mercado del Yacón, Universidad del Pacífico, Cajamarca Perú, 2004, Pp. 3 4.
- **42. VIGNALE** Nilda. Identificación micrográfica de las Hojas de Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson (Asteraceae). Universidad Nacional de Jujuy, Buenos Aires Argentina, 2005, Pp. 96 98.
- www.solucionespracticas.org.pe Ficha Técnica, El Cultivo del Yacón, Lima Perú,
 2012.
- www.biologia.edu.ar ARBO, M. Botánica Morfológica. Morfología de las Plantas
 Vasculares, Facultad de Ciencias Agrarias, Corrientes Argentina.
- www.redalyc.org VILHENA, S. Contenido de fructanos en raíces tuberosas de yacón (*Polymia sonchifolia*), Ciencia y Tecnología Alimentaria. Red de revistas

científicas de América Latina, el Caribe, España y Portugal, México D.F. 2003, pp. 35-40.

- anatomiavegetal.weebly.com Estructura primaria del tallo. Características de los tallos de dicotiledóneas
- biología.laguia2000.com. Fisiología Vegetal, Publicado por Ramón Contreras,
 2014.
- www.elergonomista.com

ANEXO 1 FOTOGRAFÍAS DE LA PRÁCTICA

Foto 1. Cultivo de Jícama

Foto 2. Flores de una planta adulta

Foto 3. Detalle de una flor

Foto 4. Microscopio AMSCOPE

Foto 5. Tomas con el Estereoscopio

Foto 6. Tomas con el Microscopio

Foto 7. Tomas Espectrales con el Espectroradiómetro Hiperespectral

Foto 8. Resultados Espectrales de las tomas

Foto 9. Cámara Digital para tomas Macro

ANEXO 2

DATOS ESPECTRALES

DATOS DE LA FIRMA ESPECTRAL DE LA JÍCAMA (Smallanthus sonchifolius)

Longitud	JICAMA _C0000	JICAMA _C000	JICAMA _C000	JICAMA _C000	JICAMA _C0001	JICAMA _C000	JICAMA _C000	JICAMA _C000	JICAMA _C000	JICAMA _C000	JICAMA _C000									
de Onda	0.asd	1.asd	2.asd	3.asd	4.asd	5.asd	6.asd	7.asd	8.asd	9.asd	10.asd	11.asd	12.asd	3.asd	14.asd	15.asd	16.asd	17.asd	18.asd	19.asd
400	0,05998	0,05940	0,05939	0,06018	0,06003	0,06315	0,06228	0,06378	0,06540	0,06472	0,06781	0,06897	0,06911	0,06997	0,07078	0,07094	0,07110	0,07272	0,07279	0,07306
401	0,05925	0,05968	0,05954	0,06003	0,06004	0,06265	0,06208	0,06383	0,06501	0,06413	0,06700	0,06918	0,06913	0,07028	0,07078	0,07092	0,07203	0,07254	0,07246	0,07281
402	0,05861	0,05932	0,05855	0,06017	0,06038	0,06213	0,06159	0,06454	0,06442	0,06468	0,06652	0,06827	0,06924	0,07019	0,07088	0,07072	0,07168	0,07231	0,07194	0,07257
403	0,05984	0,05811	0,05901	0,06044	0,06065	0,06300	0,06259	0,06413	0,06490	0,06507	0,06672	0,06737	0,06883	0,07000	0,07055	0,07042	0,07198	0,07198	0,07206	0,07257
404	0,05969	0,05818	0,05948	0,06063	0,06013	0,06350	0,06302	0,06376	0,06442	0,06502	0,06698	0,06828	0,06882	0,07038	0,07018	0,07079	0,07251	0,07207	0,07295	0,07265
405	0,05938	0,05853	0,05960	0,06004	0,06005	0,06295	0,06290	0,06353	0,06399	0,06472	0,06674	0,06881	0,06897	0,07013	0,07020	0,07079	0,07241	0,07191	0,07276	0,07251
406	0,05972	0,05857	0,05950	0,05918	0,06079	0,06196	0,06269	0,06360	0,06435	0,06467	0,06635	0,06823	0,06902	0,06927	0,07069	0,07024	0,07169	0,07154	0,07143	0,07220
407	0,05994	0,05904	0,05981	0,06048	0,06103	0,06284	0,06304	0,06438	0,06519	0,06565	0,06752	0,06894	0,06899	0,07002	0,07122	0,07068	0,07173	0,07233	0,07189	0,07225
408	0,06024	0,05921	0,05955	0,06036	0,06008	0,06243	0,06278	0,06436	0,06467	0,06518	0,06763	0,06912	0,06812	0,06977	0,07052	0,07070	0,07134	0,07172	0,07236	0,07233
409	0,06050	0,05913	0,05961	0,05986	0,05973	0,06221	0,06250	0,06385	0,06447	0,06453	0,06725	0,06905	0,06819	0,06932	0,06990	0,07060	0,07113	0,07117	0,07249	0,07222
410	0,06048	0,05914	0,06053	0,06038	0,06111	0,06339	0,06277	0,06355	0,06582	0,06503	0,06729	0,06917	0,06996	0,06971	0,07038	0,07074	0,07162	0,07207	0,07241	0,07190
411	0,05971	0,05946	0,05986	0,06034	0,06120	0,06229	0,06259	0,06364	0,06521	0,06494	0,06690	0,06836	0,06899	0,06975	0,06964	0,06995	0,07148	0,07212	0,07222	0,07181
412	0,05985	0,06028	0,05975	0,06105	0,06166	0,06266	0,06283	0,06411	0,06482	0,06559	0,06730	0,06869	0,06893	0,07040	0,07010	0,07078	0,07191	0,07274	0,07309	0,07288
413	0,06055	0,06102	0,06038	0,06174	0,06219	0,06378	0,06327	0,06465	0,06506	0,06636	0,06814	0,06964	0,06978	0,07122	0,07141	0,07223	0,07262	0,07345	0,07429	0,07398
414	0,06063	0,06089	0,06088	0,06104	0,06182	0,06313	0,06334	0,06491	0,06545	0,06601	0,06839	0,06972	0,06989	0,07130	0,07197	0,07195	0,07276	0,07317	0,07442	0,07353
415	0,06126	0,06085	0,06076	0,06141	0,06224	0,06306	0,06408	0,06572	0,06615	0,06610	0,06863	0,07059	0,07055	0,07180	0,07240	0,07213	0,07363	0,07393	0,07499	0,07412
416	0,06164	0,06103	0,06069	0,06182	0,06253	0,06336	0,06458	0,06590	0,06639	0,06695	0,06920	0,07098	0,07084	0,07188	0,07247	0,07256	0,07378	0,07424	0,07510	0,07441
417	0,06164	0,06134	0,06099	0,06187	0,06255	0,06364	0,06456	0,06555	0,06623	0,06802	0,06981	0,07068	0,07055	0,07146	0,07248	0,07300	0,07326	0,07408	0,07473	0,07418
418	0,06195	0,06155	0,06143	0,06214	0,06312	0,06363	0,06455	0,06624	0,06671	0,06812	0,06954	0,07079	0,07045	0,07147	0,07326	0,07334	0,07385	0,07513	0,07494	0,07469
419	0,06246	0,06167	0,06215	0,06270	0,06341	0,06436	0,06478	0,06668	0,06708	0,06820	0,06966	0,07151	0,07108	0,07231	0,07323	0,07352	0,07420	0,07535	0,07555	0,07522
420	0,06294	0,06218	0,06264	0,06335	0,06391	0,06538	0,06507	0,06700	0,06776	0,06859	0,07015	0,07230	0,07183	0,07327	0,07336	0,07398	0,07486	0,07512	0,07635	0,07620

421	0,06328	0,06310	0,06265	0,06389	0,06478	0,06610	0,06539	0,06740	0,06873	0,06925	0,07073	0,07267	0,07222	0,07383	0,07419	0,07476	0,07596	0,07522	0,07704	0,07735
422	0,06356	0,06331	0,06292	0,06421	0,06482	0,06633	0,06641	0,06764	0,06861	0,06978	0,07128	0,07244	0,07267	0,07437	0,07414	0,07481	0,07599	0,07628	0,07717	0,07614
423	0,06385	0,06347	0,06308	0,06433	0,06516	0,06648	0,06657	0,06820	0,06871	0,06948	0,07149	0,07245	0,07324	0,07415	0,07428	0,07486	0,07569	0,07696	0,07711	0,07619
424	0,06429	0,06381	0,06350	0,06442	0,06566	0,06667	0,06648	0,06858	0,06910	0,06922	0,07160	0,07274	0,07380	0,07402	0,07470	0,07524	0,07588	0,07698	0,07721	0,07728
425	0,06486	0,06430	0,06442	0,06466	0,06579	0,06685	0,06714	0,06827	0,06944	0,06991	0,07188	0,07302	0,07408	0,07484	0,07508	0,07586	0,07687	0,07665	0,07764	0,07793
426	0,06478	0,06435	0,06424	0,06485	0,06543	0,06680	0,06750	0,06842	0,06978	0,06993	0,07168	0,07325	0,07340	0,07464	0,07506	0,07563	0,07665	0,07675	0,07761	0,07794
427	0,06494	0,06454	0,06447	0,06518	0,06581	0,06705	0,06781	0,06882	0,07014	0,07048	0,07212	0,07371	0,07368	0,07479	0,07553	0,07602	0,07698	0,07733	0,07777	0,07802
428	0,06557	0,06508	0,06522	0,06570	0,06677	0,06762	0,06817	0,06930	0,07049	0,07140	0,07299	0,07422	0,07478	0,07545	0,07632	0,07683	0,07780	0,07801	0,07824	0,07836
429	0,06628	0,06576	0,06550	0,06628	0,06709	0,06803	0,06854	0,06970	0,07072	0,07146	0,07309	0,07433	0,07494	0,07577	0,07646	0,07666	0,07768	0,07822	0,07868	0,07868
430	0,06635	0,06588	0,06589	0,06659	0,06702	0,06819	0,06884	0,06989	0,07086	0,07165	0,07315	0,07472	0,07502	0,07607	0,07649	0,07671	0,07796	0,07852	0,07917	0,07886
431	0,06649	0,06615	0,06622	0,06706	0,06742	0,06848	0,06924	0,07022	0,07113	0,07192	0,07354	0,07518	0,07529	0,07639	0,07697	0,07721	0,07838	0,07903	0,07945	0,07914
432	0,06695	0,06673	0,06638	0,06765	0,06822	0,06893	0,06966	0,07071	0,07153	0,07215	0,07411	0,07543	0,07568	0,07665	0,07770	0,07788	0,07867	0,07951	0,07953	0,07956
433	0,06683	0,06651	0,06657	0,06735	0,06777	0,06884	0,06954	0,07071	0,07156	0,07223	0,07393	0,07529	0,07567	0,07672	0,07730	0,07784	0,07896	0,07929	0,08005	0,07969
434	0,06727	0,06664	0,06705	0,06730	0,06787	0,06905	0,06967	0,07097	0,07190	0,07244	0,07409	0,07569	0,07588	0,07686	0,07726	0,07787	0,07908	0,07946	0,08018	0,07986
435	0,06779	0,06703	0,06733	0,06756	0,06845	0,06948	0,06989	0,07139	0,07232	0,07276	0,07436	0,07624	0,07623	0,07707	0,07771	0,07811	0,07921	0,07990	0,08018	0,08019
436	0,06779	0,06730	0,06710	0,06789	0,06892	0,06982	0,06995	0,07166	0,07247	0,07305	0,07435	0,07637	0,07653	0,07731	0,07828	0,07848	0,07949	0,08025	0,08042	0,08064
437	0,06779	0,06738	0,06726	0,06820	0,06897	0,06962	0,07058	0,07176	0,07258	0,07319	0,07449	0,07628	0,07674	0,07776	0,07842	0,07875	0,07950	0,08070	0,08057	0,08103
438	0,06807	0,06775	0,06767	0,06835	0,06902	0,06987	0,07065	0,07178	0,07289	0,07333	0,07497	0,07633	0,07708	0,07805	0,07844	0,07900	0,07984	0,08068	0,08071	0,08114
439	0,06839	0,06813	0,06803	0,06851	0,06919	0,07036	0,07037	0,07173	0,07313	0,07342	0,07538	0,07657	0,07724	0,07813	0,07845	0,07910	0,08027	0,08047	0,08081	0,08109
440	0,06831	0,06793	0,06804	0,06890	0,06938	0,07028	0,07062	0,07166	0,07291	0,07332	0,07518	0,07682	0,07676	0,07819	0,07847	0,07891	0,08015	0,08077	0,08081	0,08119
441	0,06845	0,06815	0,06811	0,06908	0,06939	0,07060	0,07092	0,07202	0,07338	0,07379	0,07546	0,07687	0,07712	0,07833	0,07865	0,07921	0,08026	0,08108	0,08128	0,08116
442	0,06874	0,06834	0,06820	0,06910	0,06951	0,07073	0,07102	0,07228	0,07370	0,07398	0,07566	0,07688	0,07749	0,07830	0,07877	0,07936	0,08042	0,08112	0,08146	
443	0,06903	0,06837	0,06833	0,06911	0,06980	0,07061	0,07101	0,07236	0,07357	0,07378	0,07563	0,07704	0,07752	0,07819	0,07885	0,07924	0,08059	0,08104	0,08130	0,08150
444	0,06914	0,06869	0,06861	0,06919	0,06995		0,07146	-	-							0,07953	0,08102	0,08152	0,08188	0,08197
445	0,06940	0,06898	-		-	0,07144	-	0,07315			0,07650						0,08141	0,08182	0,08220	0,08227
446		,		,		0,07168														
														L	<u> </u>	L.				

447	0,06979	0,06945	0,06927	0,07018	0,07070	0,07173	0,07199	0,07356	0,07437	0,07499	0,07647	0,07823	0,07845	0,07919	0,08004	0,08040	0,08135	0,08201	0,08215	0,08247
448	0,06987	0,06941	0,06906	0,07009	0,07041	0,07181	0,07206	0,07355	0,07431	0,07503	0,07669	0,07795	0,07835	0,07915	0,07997	0,08024	0,08148	0,08205	0,08220	0,08253
449	0,06999	0,06970	0,06929	0,07015	0,07053	0,07197	0,07221	0,07356	0,07442	0,07512	0,07674	0,07806	0,07843	0,07931	0,08004	0,08036	0,08176	0,08218	0,08249	0,08265
450	0,07017	0,07003	0,06980	0,07041	0,07095	0,07220	0,07244	0,07368	0,07465	0,07528	0,07672	0,07847	0,07872	0,07960	0,08027	0,08065	0,08197	0,08243	0,08282	0,08284
451	0,07037	0,06987	0,07001	0,07074	0,07120	0,07244	0,07273	0,07391	0,07482	0,07547	0,07692	0,07859	0,07907	0,07985	0,08041	0,08078	0,08197	0,08279	0,08290	0,08308
452	0,07061	0,07006	0,06995	0,07077	0,07125	0,07230	0,07277	0,07400	0,07480	0,07536	0,07713	0,07858	0,07916	0,07994	0,08061	0,08082	0,08211	0,08293	0,08300	0,08313
453			0.07004	0.07078	0.07137	0,07240	0.07293	0.07417	0.07486	0.07555	0.07745	0.07885			-	0.08113	0,08243	0,08314	0,08318	0.08344
454		,	,	,		0,07275	,	0,07441	,	,	0,07772		,		0,08115		0,08272	0,08338	0,08341	
455	0.07067				-	0,07274							0,07963				0,08260		0,08359	
456	0.07087	0,07020	,	0,07116	,	,			,	0,07595	0,07759		0,07951		0,08104	-	0,08268	,	0,08358	ŕ
457	.,.	,	,	,	,	0,07298									-	-	0,08288	0,08362	0,08371	
458	,				-	0.07315		0,07495			0,07799			0,08084			0,08304	,	0,08408	ŕ
459	-,-	-,	-,-	0,07163	-,-	0,07327			0,07569	,	0,07816	,	0,08015	,	0,08147	,	0,08300	0,08394	0,08416	0,08449
460	,			0,07161				0,07511					0,08020	, i	0,08182		0,08315	0,08394	0,08425	0,08448
461	,	,	,	,	,								,		-	,	,	,	,	
462	-,-	0,07104	,	0,07150		,	,	,	0,07623	0,07676	0,07848	,	· ·		0,08200	0,08235	0,08344	0,08424	0,08433	
	,	,	,	,	,	0,07351		0,07508			0,07852						0,08365		0,08428	0,08465
463	.,.	,	,	,		0,07363	,	0,07517	,		0,07854		,	,	<u> </u>	, , , , , , , , , , , , , , , , , , ,	,		0,08442	0,08479
464	,	,	,	0,07197	-	,					0,07862		0,08054		0,08199	-	0,08385	0,08430	0,08470	0,08505
465	0,07186	0,07140	0,07116	0,07212	0,07283	0,07371	0,07424	0,07548	0,07637	0,07720	0,07875	0,08029	0,08058	0,08128	0,08210	0,08254	0,08392	0,08450	0,08490	0,08528
466	0,07194	0,07129	0,07109	0,07217	0,07263	0,07391	0,07434	0,07562	0,07653	0,07736	0,07888	0,08015	0,08060	0,08154	0,08211	0,08267	0,08395	0,08476	0,08473	0,08517
467	0,07196	0,07144	0,07137	0,07225	0,07284	0,07419	0,07447	0,07579	0,07686	0,07735	0,07908	0,08038	0,08079	0,08171	0,08236	0,08298	0,08403	0,08482	0,08494	0,08521
468	0,07193	0,07148	0,07155	0,07231	0,07305	0,07430	0,07457	0,07590	0,07697	0,07724	0,07916	0,08052	0,08101	0,08178	0,08252	0,08321	0,08412	0,08487	0,08515	0,08533
469	0,07196	0,07134	0,07148	0,07235	0,07300	0,07419	0,07462	0,07593	0,07674	0,07722	0,07907	0,08038	0,08110	0,08182	0,08248	0,08321	0,08417	0,08500	0,08512	0,08543
470	0,07235	0,07172	0,07175	0,07258	0,07317	0,07423	0,07474	0,07606	0,07689	0,07772	0,07913	0,08058	0,08111	0,08192	0,08261	0,08325	0,08434	0,08501	0,08523	0,08564
471	0,07228	0,07186	0,07194	0,07261	0,07311	0,07430	0,07469	0,07609	0,07708	0,07780	0,07923	0,08078	0,08114	0,08202	0,08273	0,08314	0,08443	0,08500	0,08524	0,08563
472	0,07220	0,07183	0,07198	0,07260	0,07312	0,07440	0,07464	0,07609	0,07717	0,07770	0,07938	0,08092	0,08122	0,08218	0,08285	0,08316	0,08443	0,08516	0,08525	0,08567

473	0,07262	0,07192	0,07198	0,07275	0,07354	0,07452	0,07479	0,07619	0,07716	0,07786	0,07957	0,08107	0,08138	0,08243	0,08302	0,08352	0,08441	0,08554	0,08541	0,08599
474	0,07274	0,07222	0,07227	0,07284	0,07367	0,07461	0,07511	0,07646	0,07727	0,07788	0,07963	0,08131	0,08156	0,08252	0,08314	0,08353	0,08467	0,08551	0,08570	0,08597
475	0,07269	0,07219	0,07234	0,07283	0,07361	0,07465	0,07513	0,07647	0,07730	0,07786	0,07956	0,08138	0,08168	0,08245	0,08316	0,08351	0,08490	0,08547	0,08582	0,08593
476	0,07268	0,07203	0,07227	0,07287	0,07364	0,07472	0,07507	0,07638	0,07730	0,07796	0,07960	0,08132	0,08173	0,08246	0,08325	0,08360	0,08505	0,08563	0,08582	0,08606
477	0,07290	0,07240	0,07248	0,07318	0,07401	0,07495	0,07545	0,07669	0,07747	0,07824	0,08007	0,08138	0,08179	0,08285	0,08357	0,08381	0,08524	0,08598	0,08594	0,08634
478	0,07304	0,07257	0,07250	0,07331	0,07391	0,07496	0,07539	0,07671	0,07755	0,07838	0,08007	0,08144	0,08186	0,08280	0,08355	0,08391	0,08507	0,08601	0,08595	0,08642
479	0,07303	0,07264	0,07249	0,07332	0,07377	0,07495	0,07533	0,07668	0,07767	0,07839	0,07993	0,08151	0,08196	0,08277	0,08348	0,08399	0,08502	0,08596	0,08602	0,08645
480	0,07295	0,07273	0,07259	0,07334	0,07392	0,07503	0,07550	0,07680	0,07786	0,07839	0,07997	0,08162	0,08207	0,08299	0,08358	0,08413	0,08524	0,08605	0,08622	0,08655
481	0,07303	0,07282	0,07277	0,07357	0,07422	0,07516	0,07562	0,07710									0,08523	0,08628	0,08632	0,08664
482	0,07323	0,07296	0,07287	0,07365	0,07437	0,07539	0,07583	0,07723		-	0,08037				-	0,08444	0,08549	0,08648	0,08650	0,08686
483	0,07347	0,07309	0,07296	0,07377	0,07447		0,07603	0,07731	0,07809		0,08052	0,08207	0,08241	0,08333	0,08409	0,08459	0,08578	0,08666	0,08667	0,08710
484	0,07365	0,07317	0,07315	0,07410	0,07466	0,07561	0,07614	0,07751	0,07829		0,08049		0,08274				0,08584	0,08685	0,08678	0,08725
485	0,07382	0,07346	0,07325	0.07411	0.07465	0,07576	0.07631	0,07756	0.07847	0,07920	0,08065	0,08236	0,08294	0,08373	0,08447	0,08490	0,08603	0,08686	0,08719	0,08740
486	0.07393	0,07359		0,07417		0,07605		0,07768			0,08096	0,08241	0,08302	, i	0,08464		0,08626	0,08707	0,08735	0,08755
487	0,07407	0,07358	0,07367	0,07436	0,07507	0,07633	0,07659		0,07879	0,07948	0,08130		0,08309		0,08490	-	0,08647	0,08740	0,08736	0,08773
488	0.07434	0.07368	0,07384	,	,	,	0,07678	,	,	,	0,08151	,	,	,	-	0,08556	,	0,08756	,	0,08790
489	,	,	,		,	0,07661	,			0,07991	0,08174		0,08363		-	-	0,08699	0,08772	,	0,08811
490	0.07477	,	,	,		0,07688	,	,	0,07954		0,08189		0,08387	,	0,08534	, , , , , , , , , , , , , , , , , , ,	0,08734	0,08793	0,08825	0,08840
491			0,07447			,	-	0,07875	,	-			,		-	-	0,08757	0,08822	0,08834	0,08871
492	0.07531	0.07472	0,07464	0,07545				, i	0,07988	0,08056	0,08238		0,08429			0,08646	0,08768	0,08858	0,08859	0,08889
493	-,	-,-		,	,	0,07741		0,07919	,		0,08254	,	,	,	,	, , , , , , , , , , , , , , , , , , ,	0,08781	0,08862	,	0,08900
494	-,	0,07495	0,07493	,	,	0,07742	,	,	0,08021	,	0,08264		0,08472	,	0,08634	, , , , , , , , , , , , , , , , , , ,	0,08801	0,08872	0,08893	0,08920
495	,	,	0,07528	,	,	,		,	0,08055		0,08292		· ·	,	0,08670	, , , , , , , , , , , , , , , , , , ,	0,08829	0,08918	,	0,08959
496	-,	,	,	,	· ·	0,07834	,	0,08014	,		0,08345		· ·	,			0,08879	0,08958		0,08999
497		0.07594		0,07666		0,07875		,	0,08145	0,08218	0,08379	,	0,08564	,	0,08735	,	0,08911	0,08988	0,09007	0,09036
498	-,-		,	,	,	0,07907	,	,	,	,	,	,	,	,	,	0,08815	,	,	0,09056	
	0,07034	0,07027	0,07017	5,07033	0,07700	0,07507	5,07541	0,00000	0,00103	0,00233	0,00000	5,00545	0,00000	0,00007	0,00774	0,00013	5,00540	0,03021	0,0000	0,00010

						1										1	1			
499	0,07742	0,07673	0,07689	0,07734	0,07812	0,07946	0,07995	0,08136	0,08215	0,08283	0,08431	0,08607	0,08668	0,08732	0,08829	0,08866	0,08995	0,09073	0,09108	0,09116
500	0,07763	0,07711	0,07723	0,07778	0,07861	0,07975	0,08040	0,08166	0,08246	0,08320	0,08473	0,08657	0,08710	0,08776	0,08856	0,08912	0,09048	0,09119	0,09141	0,09154
501	0,07805	0,07753	0,07765	0,07842	0,07913	0,08021	0,08086	0,08205	0,08293	0,08366	0,08529	0,08706	0,08763	0,08841	0,08905	0,08969	0,09096	0,09171	0,09187	0,09216
502	0,07874	0,07803	0,07826	0,07913	0,07963	0,08083	0,08135	0,08263	0,08361	0,08425	0,08596	0,08765	0,08829	0,08919	0,08983	0,09038	0,09149	0,09232	0,09252	0,09295
503	0,07928	0,07862	0,07869	0,07950	0,08027	0,08134	0,08179	0,08326	0,08411	0,08497	0,08664	0,08834	0,08881	0,08971	0,09045	0,09103	0,09220	0,09295	0,09311	0,09343
504	0,07967	0,07919	0,07918	0,08003	0,08087	0,08194	0,08253		0,08483	0,08553	0,08746	0,08897	0,08955	0,09032	0,09107	0,09171	0,09299	0,09362	0,09378	0,09401
505	0.08017	,		0,08073		0,08267			0,08567	0,08615	0.08825	0.08972	0,09033		-	-	0,09374	0.09439	0,09455	0.09468
506	. ,	-,-	,	0,08152		0,08350	,	,	,		0,08896		,	,	0,09275		0,09443	0,09529	0,09538	,
507	.,			0,08228	-	,	,	0,08640		0,08805							0,09536		0,09619	
508	0.08290	,	,	0,08324	,	,	,	0,08736	,	0,08917	0,09095				-	0,09510	,	,	0,09707	
509	.,	,			-	0,08666	-		0,08961		,	,	0,09431	,		,	0,09761		0,09808	
510	ŕ		,	· ·		0,08782	,	,	,								0.09875	,	0,09923	ŕ
511	,	,	,	,	,	0,08782	,	0,08378	,	0,09277	,	,	0,09694	,		0,09885	0,10002		0,10028	
512	,	,		0,08676			, i	, i						, i						
513	ŕ	,	,	0,08814	,	0,09049	,	,	0,09362	-	0,09622	0,09797		0,09912		-	0,10141	0,10175	0,10157	,
	0,08922	,	0,08889	,	0,09076	0,09221	,	,	0,09531	,	,	,		,		-	0,10291	0,10341	0,10311	
514	,	,	,	0,09159	,	,	,		0,09706	-			0,10202					,	0,10458	
515	0,09257	0,09216	0,09227	0,09329	0,09425	0,09589	,	0,09790	0,09905	0,09977	,	,	0,10390	,	,		0,10630	0,10648	0,10623	0,10610
516	0,09450	0,09413	0,09421	0,09522	0,09633	0,09796	0,09845	0,09998	0,10121	0,10192	0,10391	0,10559	0,10595	0,10635	0,10701	0,10727	0,10822	0,10826	0,10794	0,10781
517	0,09654	0,09621	0,09638	0,09751	0,09859	0,10032	0,10076	0,10225	0,10350	0,10426	0,10621	0,10778	0,10817	0,10855	0,10902	0,10918	0,11019	0,11015	0,10962	0,10944
518	0,09873	0,09840	0,09853	0,09974	0,10078	0,10248	0,10313	0,10478	0,10582	0,10661	0,10844	0,11002	0,11040	0,11061	0,11114	0,11125	0,11220	0,11198	0,11135	0,11123
519	0,10117	0,10078	0,10098	0,10220	0,10325	0,10498	0,10579	0,10739	0,10833	0,10917	0,11098	0,11249	0,11281	0,11289	0,11337	0,11346	0,11437	0,11399	0,11326	0,11306
520	0,10370	0,10327	0,10356	0,10477	0,10589	0,10765	0,10848	0,10995	0,11090	0,11179	0,11366	0,11509	0,11532	0,11526	0,11564	0,11572	0,11661	0,11603	0,11524	0,11490
521	0,10616	0,10580	0,10606	0,10729	0,10848	0,11025	0,11097	0,11246	0,11342	0,11434	0,11623	0,11767	0,11781	0,11755	0,11792	0,11797	0,11884	0,11797	0,11714	0,11674
522	0,10869	0,10840	0,10866	0,10992	0,11107	0,11302	0,11371	0,11538	0,11629	0,11698	0,11890	0,12012	0,12043	0,12002	0,12044	0,12031	0,12109	0,12016	0,11917	0,11872
523	0,11132	0,11104	0,11130	0,11264	0,11383	0,11588	0,11652	0,11825	0,11915	0,11977	0,12156	0,12275	0,12305	0,12252	0,12283	0,12263	0,12333	0,12237	0,12119	0,12067
524	0,11400	0,11366	0,11398	0,11538	0,11667	0,11873	0,11930	0,12098	0,12188	0,12258	0,12419	0,12548	0,12557	0,12495	0,12507	0,12487	0,12552	0,12441	0,12315	0,12252

525	0,11663	0,11619	0,11675	0,11804	0,11930	0,12143	0,12202	0,12380	0,12456	0,12520	0,12678	0,12797	0,12799	0,12721	0,12734	0,12702	0,12763	0,12626	0,12503	0,12432
526	0,11911	0,11877	0,11921	0,12056	0,12186	0,12399	0,12467	0,12638	0,12708	0,12776	0,12937	0,13038	0,13039	0,12943	0,12957	0,12926	0,12966	0,12812	0,12682	0,12609
527	0,12151	0,12125	0,12156	0,12304	0,12444	0,12656	0,12729	0,12893	0,12960	0,13029	0,13187	0,13273	0,13274	0,13166	0,13174	0,13141	0,13168	0,12996	0,12856	0,12778
528	0,12389	0,12358	0,12397	0,12550	0,12700	0,12917	0,12983	0,13149	0,13211	0,13277	0,13421	0,13500	0,13497	0,13383	0,13380	0,13335	0,13364	0,13174	0,13025	0,12938
529	0,12615	0,12585	0,12631	0,12784	0,12930	0,13150	0,13214	0,13380	0,13437	0,13500	0,13639	0,13715	0,13698	0,13573	0,13565	0,13513	0,13530	0,13346	0,13181	0,13091
530	0,12828	0,12803	0,12850	0,13005	0,13146	0,13360	0,13427	0,13592	0,13652	0,13705	0,13842	0,13902	0,13886	0,13744	0,13733	0,13672	0,13690	0,13502	0,13331	0,13223
531	0,13030	0,13006	0,13053	0,13207	0,13352	0,13561	0,13633	0,13799	0,13858	0,13901	0,14033	0,14084	0,14068	0,13912	0,13897	0,13831	0,13850	0,13643	0,13470	0,13350
532	0,13224	0,13192	0,13240	0,13390	0,13545	0,13763	0,13834	0,14002	0,14051	0,14094	0,14212	0,14274	0,14245	0,14080	0,14060	0,13997	0,14007	0,13777	0,13594	0,13487
533	0,13397	0,13365	0,13415	0,13566	0,13718	0,13938	0,14012	0,14168	0,14219	0,14265	0,14376	0,14427	0,14400	0,14217	0,14198	0,14126	0,14128	0,13899	0,13712	0,13592
534	0,13563	0,13534	0,13582	0,13730	0,13886	0,14099	0,14174	0,14318	0,14372	0,14418	0,14520	0,14561	0,14531	0,14340	0,14323	0,14245	0,14245	0,14011	0,13817	0,13689
535	0,13719	0,13691	0,13735	0,13879	0,14041	0,14246	0,14321	0,14463	0,14513	0,14555	0,14652	0,14689	0,14646	0,14455	0,14435	0,14357	0,14356	0,14113	0,13908	0,13782
536	0,13858	0,13818	0,13870	0,14012	0,14167	0,14375	0,14453	0,14605	0,14640	0,14678	0,14784	0,14812	0,14763	0,14565	0,14534	0,14455	0,14441	0,14203	0,13988	0,13865
537	0,13980	0,13946	0,13995	0,14149	0,14298	0,14509	0,14574	0,14739	0,14769	0,14801	0,14899	0,14927	0,14880	0,14671	0,14634	0,14563	0,14542	0,14288	0,14074	0,13945
538	0,14095	0,14068	0,14112	0,14272	0,14419	0,14629	0,14690	0,14851	0,14887	0,14911	0,15001	0,15023	0,14979	0,14767	0,14731	0,14654	0,14640	0,14373	0,14159	0,14020
539	0,14207	0,14180	0,14222	0,14376	0,14523	0,14726	0,14798	0,14943	0,14986	0,15004	0,15093	0,15106	0,15061	0,14849	0,14817	0,14723	0,14719	0,14454	0,14236	0,14091
540	0,14310	0,14283	0,14328	0,14476	0,14614	0,14815	0,14884	0,15027	0,15069	0,15091	0,15179	0,15201	0,15150	0,14924	0,14882	0,14797	0,14778	0,14510	0,14300	0,14166
541	0,14410	0,14372	0,14418	0,14568	0,14705	0,14912	0,14974	0,15119									0,14846	0,14572	0,14359	0,14218
542	0,14501	0,14459	0,14503	0,14657	0,14795	0,15007	0,15062	0,15210	0,15236	0,15270	0,15352	0,15359	0,15303	0,15074	0,15037	0,14941	0,14919	0,14638	0,14416	0,14269
543						0,15085											0,14987	0,14700	0,14474	0,14336
544						0,15150														
545	0,14751	0,14713	0,14749	0,14898	0,15035	0,15226	0,15293	0,15435	0,15449	0,15481	0,15556	0,15555	0,15498	0,15258	0,15209	0,15124	0,15101	0,14808	0,14585	0,14439
546	0,14822	0,14788	0,14822	0,14967	0,15104	0,15305	0,15359	0,15506	0,15520	0,15547	0,15621	0,15617	0,15556	0,15320	0,15268	0,15181	0,15155	0,14855	0,14631	0,14485
547	0,14890	0,14856	0,14898	0,15037	0,15169	0,15363	0,15420	0,15562	0,15578	0,15606	0,15677	0,15669	0,15607	0,15374	0,15318	0,15225	0,15197	0,14908	0,14676	0,14529
548			-		-	0,15415	-	-	-	-			0,15651		-	-	0,15243	0,14948		
549			-		-	0,15461	-	-	-	-					-	-	-	,		
550		,		,		0,15497					,							,	,	
			·			L														

551	0,15082	0,15042	0,15078	0,15209	0,15327	0,15511	0,15566	0,15708	0,15722	0,15735	0,15801	0,15789	0,15733	0,15493	0,15436	0,15342	0,15320	0,15025	0,14801	0,14651
552	0,15106	0,15056	0,15093	0,15222	0,15344	0,15522	0,15578	0,15711	0,15730	0,15742	0,15808	0,15800	0,15739	0,15499	0,15448	0,15350	0,15326	0,15033	0,14806	0,14661
553	0,15116	0,15064	0,15100	0,15226	0,15353	0,15526	0,15576	0,15707	0,15722	0,15740	0,15803	0,15799	0,15734	0,15493	0,15450	0,15351	0,15328	0,15036	0,14802	0,14663
554	0,15100	0,15065	0,15094	0,15218	0,15342	0,15515	0,15559	0,15699	0,15701	0,15726	0,15785	0,15781	0,15718	0,15478	0,15437	0,15343	0,15321	0,15033	0,14796	0,14657
555	0,15071	0,15031	0,15067	0,15187	0,15303	0,15477	0,15524	0,15659	0,15670	0,15693	0,15753	0,15749	0,15686	0,15455	0,15409	0,15320	0,15295	0,15011	0,14783	0,14646
556	0,15029	0,14990	0,15017	0,15142	0,15253	0,15431	0,15473	0,15606	0,15618	0,15642	0,15708	0,15706	0,15640	0,15416	0,15370	0,15287	0,15266	0,14982	0,14759	0,14625
557	0,14971	0,14936	0,14952	0,15082	0,15193	0,15371	0,15408	0,15541	0,15549	0,15576	0,15649	0,15647	0,15583	0,15363	0,15316	0,15241	0,15226	0,14945	0,14723	0,14590
558	0,14892	0,14855	0,14885	0,15005	0,15116	0,15287	0,15332	0,15462	0,15476	0,15502	0,15575	0,15570	0,15517	0,15301	0,15245	0,15177	0,15163	0,14894	0,14678	0,14541
559	0,14809	0,14766	0,14803	0,14915	0,15032	0,15193	0,15242	0,15373	0,15387	0,15413	0,15488	0,15491	0,15437	0,15222	0,15183	0,15111	0,15101	0,14836	0,14621	0,14490
560	0,14723	0,14675	0,14706	0,14823	0,14936	0,15096	0,15144	0,15279	0,15292	0,15318	0,15392	0,15408	0,15348	0,15140	0,15111	0,15036	0,15029	0,14772	0,14556	0,14435
561	0,14629	0,14579	0,14599	0,14728	0,14829	0,14997	0,15041	0,15178	0,15192	0,15216	0,15290	0,15312	0,15253	0,15055	0,15022	0,14951	0,14946	0,14701	0,14487	0,14371
562	0,14516	0,14475	0,14493	0,14614	0,14724	0,14893	0,14934	0,15063	0,15079	0,15102	0,15176	0,15198	0,15149	0,14954	0,14929	0,14863	0,14862	0,14623	0,14421	0,14298
563	0,14397	0,14358	0,14375	0,14495	0,14602	0,14766	0,14807	0,14935	0,14956	0,14979	0,15056	0,15075	0,15033	0,14843	0,14822	0,14758	0,14766	0,14530	0,14340	0,14220
564	0,14266	0,14224	0,14243	0,14363	0,14462	0,14621	0,14665	0,14792	0,14816	0,14839	0,14920	0,14940	0,14902	0,14718	0,14699	0,14636	0,14652	0,14425	0,14241	0,14131
565	0,14120	0,14077	0,14098	0,14214	0,14309	0,14469	0,14514	0,14637	0,14659	0,14682	0,14766	0,14792	0,14756	0,14578	0,14565	0,14505	0,14523	0,14312	0,14129	0,14027
566	0,13975	0,13931	0,13942	0,14058	0,14155	0,14311	0,14354	0,14484	0,14505	0,14529	0,14608	0,14634	0,14602	0,14440	0,14429	0,14374	0,14397	0,14194	0,14016	0,13916
567	0,13826	0,13776	0,13785	0,13899	0,13995	0,14148	0,14192	0,14321	0,14343	0,14369	0,14452	0,14479	0,14451	0,14299	0,14291	0,14241	0,14265	0,14076	0,13902	0,13808
568	0,13671	0,13616	0,13630	0,13740	0,13834	0,13985	0,14029	0,14155	0,14177	0,14205	0,14295	0,14329	0,14302	0,14154	0,14152	0,14106	0,14132	0,13958	0,13788	0,13704
569	0,13511	0,13459	0,13474	0,13581	0,13674	0,13823	0,13864	0,13993	0,14014	0,14044	0,14132	0,14176	0,14149	0,14007	0,14009	0,13969	0,14004	0,13838	0,13676	0,13596
570	0,13352	0,13300	0,13309	0,13410	0,13508	0,13654	0,13689	0,13817	0,13841	0,13876	0,13964	0,14010	0,13986	0,13858	0,13860	0,13817	0,13859	0,13709	0,13550	0,13476
571	0,13184	0,13134	0,13140	0,13242	0,13339	0,13483	0,13521	0,13644	0,13671	0,13705	0,13795	0,13840	0,13822	0,13705	0,13710	0,13667	0,13717	0,13575	0,13429	0,13358
572	0,13014	0,12970	0,12976	0,13081	0,13175	0,13317	0,13363	0,13478	0,13508	0,13540	0,13631	0,13677	0,13664	0,13554	0,13564	0,13530	0,13584	0,13446	0,13317	0,13247
573	0,12861	0,12820	0,12831	0,12929	0,13022	0,13163	0,13205	0,13321	0,13352	0,13389	0,13478	0,13529	0,13520	0,13415	0,13429	0,13405	0,13452	0,13332	0,13210	0,13139
574	0,12728	0,12679	0,12689	0,12783	0,12881	0,13018	0,13063	0,13177	0,13211	0,13250	0,13338	0,13394	0,13385	0,13288	0,13308	0,13283	0,13335	0,13225	0,13108	0,13043
575	0,12600				-	0,12886	-		-	-					-	-			0,13013	
576						0,12769	, i												0,12928	0,12867
	•/	-/	-,	-,	-,	-,	-/	-/	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,

	,																			
577	0,12367	0,12318	0,12326	0,12425	0,12513	0,12657	0,12700	0,12818	0,12856	0,12892	0,12992	0,13056	0,13046	0,12970	0,12995	0,12986	0,13050	0,12962	0,12851	0,12797
578	0,12268	0,12219	0,12224	0,12324	0,12415	0,12552	0,12595	0,12717	0,12754	0,12793	0,12892	0,12966	0,12957	0,12882	0,12913	0,12901	0,12974	0,12892	0,12782	0,12734
579	0,12172	0,12128	0,12126	0,12228	0,12322	0,12456	0,12492	0,12622	0,12655	0,12701	0,12799	0,12877	0,12875	0,12804	0,12835	0,12822	0,12900	0,12822	0,12716	0,12675
580	0,12078	0,12038	0,12036	0,12137	0,12227	0,12368	0,12402	0,12533	0,12571	0,12618	0,12720	0,12792	0,12794	0,12734	0,12765	0,12756	0,12827	0,12755	0,12652	0,12618
581	0,12001	0,11954	0,11956	0,12062	0,12147	0,12285	0,12333	0,12452	0,12493	0,12537	0,12639	0,12720	0,12726	0,12662	0,12699	0,12694	0,12767	0,12699	0,12601	0,12569
582	0,11927	0,11875	0,11880	0,11985	0,12071	0,12206	0,12261	0,12373	0,12417	0,12457	0,12565	0,12648	0,12653	0,12594	0,12633	0,12631	0,12709	0,12643	0,12549	0,12519
583	0,11850	0,11801	0,11806	0,11905	0,11995	0,12131	0,12182	0,12297	0,12341	0,12384	0,12497	0,12574	0,12578	0,12529	0,12566	0,12570	0,12649	0,12587	0,12496	0,12466
584	0,11776	0,11735	0,11739	0,11833	0,11924	0,12061	0,12105	0,12225	0,12268	0,12321	0,12426	0,12502	0,12509	0,12465	0,12504	0,12513	0,12590	0,12535	0,12450	0,12412
585	0,11714	0,11667	0,11675	0,11764	0,11860	0,11998	0,12040	0,12165	0,12207	0,12257	0,12362	0,12447	0,12450	0,12411	0,12449	0,12460	0,12539	0,12487	0,12403	0,12374
586	0,11662	0,11607	0,11617	0,11705	0,11803	0,11941	0,11982	0,12110	0,12155	0,12197	0,12309	0,12396	0,12401	0,12365	0,12403	0,12411	0,12495	0,12447	0,12361	0,12344
587	0,11611	0,11557	0,11562	0,11655	0,11750	0,11888	0,11928	0,12053	0,12105	0,12142	0,12262	0,12343	0,12359	0,12321	0,12361	0,12363	0,12456	0,12414	0,12327	0,12313
588	0,11551	0,11503	0,11506	0,11598	0,11693	0,11830	0,11873	0,11990	0,12043	0,12086	0,12205	0,12294	0,12308	0,12273	0,12312	0,12316	0,12414	0,12371	0,12290	0,12272
589	0,11497	0,11447	0,11454	0,11545	0,11640	0,11771	0,11816	0,11933	0,11991	0,12031	0,12156	0,12250	0,12258	0,12225	0,12268	0,12278	0,12370	0,12332	0,12259	0,12236
590	0,11448	0,11396	0,11404	0,11496	0,11590	0,11718	0,11761	0,11883	0,11942	0,11982	0,12109	0,12201	0,12210	0,12180	0,12227	0,12240	0,12328	0,12294	0,12226	0,12201
591	0,11402	0,11352	0,11357	0,11451	0,11541	0,11675	0,11715	0,11837	0,11888	0,11941	0,12057	0,12145	0,12165	0,12138	0,12184	0,12197	0,12289	0,12256	0,12185	0,12163
592	0,11355	0,11308	0,11316	0,11408	0,11493	0,11630	0,11671	0,11796	0,11842	0,11894	0,12015	0,12103	0,12122	0,12090	0,12143	0,12155	0,12247	0,12224	0,12150	0,12128
593	0,11317	0,11272	0,11280	0,11365	0,11452	0,11593	0,11632	0,11759	0,11805	0,11855	0,11979	0,12070	0,12084	0,12054	0,12109	0,12119	0,12214	0,12194	0,12121	0,12101
594	0,11286	0,11241	0,11244	0,11328	0,11418	0,11560	0,11599	0,11723	0,11774	0,11822	0,11944	0,12040	0,12050	0,12027	0,12079	0,12089	0,12187	0,12165	0,12095	0,12079
595	0,11257	0,11210	0,11210	0,11299	0,11392	0,11527	0,11570	0,11690	0,11744	0,11791	0,11910	0,12008	0,12021	0,12000	0,12045	0,12061	0,12156	0,12140	0,12069	0,12054
596						0,11501														
597	0,11209	0,11159	0,11163	0,11253	0,11342	0,11478	0,11524	0,11642	0,11696	0,11739	0,11861	0,11950	0,11969	0,11946	0,12002	0,12014	0,12112	0,12097	0,12026	0,12013
598	0,11189	0,11135	0,11139	0,11225	0,11321	0,11454	0,11498	0,11616	0,11665	0,11712	0,11829	0,11929	0,11941	0,11921	0,11973	0,11983	0,12084	0,12067	0,12008	0,11991
599	0,11168	0,11115	0,11117	0,11204	0,11295	0,11426	0,11468	0,11587	0,11640	0,11690	0,11804	0,11903	0,11920	0,11891	0,11948	0,11959	0,12054	0,12041	0,11981	0,11970
600						0,11402											0,12033	0,12019	0,11957	0,11943
601			-		-	0,11371	-	-	-	-					-	-	-	,	0,11928	
602	,	,		,		0,11331					,							,		
						· · · · · · · · · · · · · · · · · · ·		•												

603	0,11042	0,10987	0,10987	0,11075	0,11163	0,11290	0,11328	0,11444	0,11494	0,11542	0,11657	0,11743	0,11762	0,11749	0,11802	0,11821	0,11916	0,11915	0,11854	0,11849
604	0,10997	0,10946	0,10945	0,11033	0,11118	0,11244	0,11284	0,11397	0,11448	0,11494	0,11607	0,11701	0,11715	0,11704	0,11755	0,11776	0,11875	0,11873	0,11815	0,11805
605	0,10949	0,10897	0,10897	0,10983	0,11066	0,11190	0,11232	0,11344	0,11396	0,11440	0,11551	0,11651	0,11664	0,11653	0,11704	0,11727	0,11829	0,11824	0,11771	0,11759
606	0,10892	0,10840	0,10835	0,10921	0,11006	0,11130	0,11170	0,11283	0,11332	0,11379	0,11493	0,11584	0,11606	0,11591	0,11647	0,11673	0,11774	0,11772	0,11720	0,11714
607	0,10826	0,10777	0,10772	0,10859	0,10942	0,11067	0,11106	0,11217	0,11265	0,11315	0,11429	0,11520	0,11542	0,11533	0,11585	0,11610	0,11716	0,11716	0,11666	0,11665
608	0,10760	0,10713	0,10707	0,10794	0,10876	0,11003	0,11041	0,11149	0,11200	0,11249	0,11363	0,11460	0,11478	0,11472	0,11530	0,11549	0,11659	0,11662	0,11615	0,11615
609	0,10695	0,10645	0,10640	0,10726	0,10809	0,10935	0,10972	0,11080	0,11136	0,11181	0,11297	0,11397	0,11416	0,11407	0,11474	0,11489	0,11600	0,11607	0,11562	0,11562
610	0,10627	0,10570	0,10567	0,10650	0,10739	0,10859	0,10896	0,11008	0,11060	0,11112	0,11226	0,11322	0,11345	0,11342	0,11403	0,11425	0,11533	0,11545	0,11503	0,11504
611	0,10549		0,10489			,							0,11271							
612	0,10471		0,10414	0,10501	-	0,10709	-			-			0,11201		-	-	-			
613	0.10401				-	0,10642	-	,			,	,	0,11140	,		,	,	,		
614	ŕ	,	,			0,10574	,	,												
615	ŕ	,		,	,	0,10510	,	,	,	,	,	,	0,11015	,		,	,	,		
616			0,10159						0,10652				0,10956	, i				0,11220		
617	0.10157	,	0,10105	,	,	,	-	0,10542	,	-						-	0,11146	,		
618	-,	,		,	,	0,10339	-	0,10491		-	,	,	0,10859	,		-	,	,		
619	,				-	0,10292	-			-						-	0,11065		0,11073	
620	0.10021		,			0,10252	,	,	,				· ·	,	,	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	0,11103	,	ŕ
621	-,				-	0,10219	-			-						-	-			
622	0.09954	0.09905	0,09902						0,10404		0,10584		0,10733		0,10827	0,10861	0,10983	0,11048	0,11023	
623	0.09927	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,	0,10192			,	,						-	,	,		
624	0,09927					,	,		0,10363							-	0,10963	,	,	
625	,	0,09862		0,09943	,	,	-	,	,	0,10417			0,10686			-	,	0,10996	,	
626	0,09899					0,10135							0,10678				0,10936	,		
627	0,09891					0,10128	,	,			,	,	0,10669	,		,	,	,	,	
	.,	0,09827	,	0,09907	,	0,10119	,	,	0,10332	0,10388	0,10518	,	0,10661	,	0,10762	,	0,10922	0,10970	0,10952	,
628	0,09870	0,09823	0,09815	0,09903	0,09986	0,10110	0,10147	0,10259	0,10326	0,10382	0,10511	0,10623	0,10658	0,10685	0,10756	0,10795	0,10914	0,10969	0,10951	0,10964

629	0,09869	0,09821	0,09817	0,09900	0,09983	0,10113	0,10146	0,10260	0,10324	0,10382	0,10509	0,10627	0,10657	0,10687	0,10758	0,10796	0,10919	0,10968	0,10949	0,10968
630	0,09865	0,09815	0,09812	0,09894	0,09977	0,10106	0,10143	0,10255	0,10321	0,10377	0,10508	0,10623	0,10654	0,10685	0,10754	0,10795	0,10918	0,10967	0,10946	0,10965
631	0,09857	0,09805	0,09801	0,09884	0,09968	0,10094	0,10136	0,10245	0,10314	0,10367	0,10503	0,10615	0,10648	0,10678	0,10746	0,10790	0,10911	0,10963	0,10941	0,10960
632	0,09847	0,09793	0,09795	0,09874	0,09961	0,10086	0,10124	0,10238	0,10304	0,10356	0,10493	0,10612	0,10642	0,10672	0,10746	0,10782	0,10906	0,10953	0,10935	0,10959
633	0,09831	0,09781	0,09782	0,09860	0,09949	0,10074	0,10111	0,10228	0,10294	0,10346	0,10485	0,10599	0,10631	0,10662	0,10738	0,10770	0,10897	0,10947	0,10929	0,10951
634	0,09812	0,09765	0,09762	0,09843	0,09929	0,10057	0,10096	0,10211	0,10278	0,10333	0,10469	0,10584	0,10617	0,10648	0,10724	0,10761	0,10886	0,10937	0,10920	0,10940
635	0,09788	0,09741	0,09735	0,09821	0,09902	0,10035	0,10075	0,10188	0,10255	0,10314	0,10445	0,10568	0,10599	0,10628	0,10705	0,10750		0,10922	0,10904	0,10926
636	0,09756	0,09706	0,09703	0,09789	0,09877	0,10006	0,10043	0,10163	0,10228	0,10283	0,10416	0,10541	0,10571	0,10604	0,10683	0,10723	0,10842	0,10902	0,10883	0,10905
637	0,09716	0,09665	0,09665	0,09746	0,09836		0,10001						0,10535				0,10812	0,10875	0,10859	0,10878
638	0,09668	0,09618	0,09619	0,09696	0,09786	0,09917	0,09955	0,10075		-	0,10341						0,10775	0,10838	0,10824	0,10845
639	0.09615	0.09566				0,09868		0,10022			0,10287	,	0,10442	,	,	,	0,10729	0,10793	0,10779	0,10805
640	0.09555	0.09506	,	0,09588	,	0,09813	,		0,10032		· ·					0,10553		0,10745	,	
641	0.09495	0,09447	,	0,09530	,	0,09753	,	0,09906	,	,	,	,	,	,	,	,	0,10626	0,10694	0,10683	
642	0.09435	0,09388	0,09386		0,09558	0,09689	0,09728	0,09847	0,09913		0,10103			, i	0,10394		0,10565	0,10640	0,10633	
643	0.09372	0.09328	0,09326	,	0,09496	,	0,09665	0,09781	0,09852	-			0,10202		-	-	0,10504	0,10584	0,10578	
644	-,	-,	0,09260	,	,	,	0,09601	,	0,09787	,					-	0,10318	,	,	0,10521	
645	-,	,	0,09200	,	,	0,09500	,	0,09653		-			0,10075		-	-	-	0,10470		
646	-,	0.09144	,	0,09224	,	,	,	,	0,09668		0,09856		· ·	,	<u> </u>	, , , , , , , , , , , , , , , , , , ,	0,10332	,	0,10412	
647	-,	-,	0,09092	,	,	0,09392	-	0,09543	,	-			0,09972		-	-	0,10282	0,10367	,	
648	0.09099	0,09055	,	,	,	,			0,09566	0,09624	0,09763		·		0,10057		0,10234	0,10319	0,10321	0,10360
649	,		,	,	,	0,09305		,	,		0,09716	,	0,09879		,	,	,	0,10275	,	
650	0,09022	0,08972	0,08967	,	,	,	,	,	,	0,09539	0,09674		· ·	,	0,09974	, , , , , , , , , , , , , , , , , , ,	<u> </u>	0,10237	0,10243	
651	0.08995	0.08946	,	0,09022	,	0,09236	,	0,09382		-	0,09646	,			0,09938	,	0,10132	,	0,10213	
652	0,08967	-,	0,08915	,	,	0,09202	,	0,09349	,				·			0,09956	0,10085	0,10179		
653	0.08941	0.08891	,	,	0,09052	0,09202	0,09240		0,09392	0,09446	0,09579	,			0,09875	,	0,10053	0,10179	0,10178	
654	-,	,	.,	.,	,	,	,	,	,	,	,	,	,	,	,	,	,			,
034	0,08921	0,08868	0,08866	0,08940	0,09031	0,09155	0,09187	0,09297	0,09366	0,09425	0,09549	0,09674	0,09/13	0,09764	0,09851	0,09899	0,10027	0,10118	0,10121	0,10164

655	0,08890	0,08834	0,08830	0,08905	0,08997	0,09122	0,09154	0,09261	0,09329	0,09392	0,09516	0,09644	0,09678	0,09729	0,09816	0,09864	0,09994	0,10081	0,10084	0,10129
656	0,08857	0,08800	0,08799	0,08874	0,08967	0,09093	0,09125	0,09231	0,09299	0,09357	0,09487	0,09610	0,09646	0,09697	0,09783	0,09833	0,09963	0,10051	0,10054	0,10096
657	0,08822	0,08767	0,08767	0,08843	0,08939	0,09065	0,09096	0,09202	0,09273	0,09323	0,09457	0,09577	0,09614	0,09665	0,09750	0,09802	0,09931	0,10021	0,10028	0,10066
658	0,08782	0,08730	0,08729	0,08806	0,08904	0,09025	0,09058	0,09162	0,09238	0,09290	0,09420	0,09546	0,09577	0,09629	0,09710	0,09763	0,09894	0,09985	0,09993	0,10036
659	0,08744	0,08694	0,08691	0,08771	0,08866	0,08990	0,09025	0,09127	0,09204	0,09257	0,09389	0,09512	0,09545	0,09597	0,09678	0,09733	0,09862	0,09958	0,09964	0,10008
660	0,08707	0,08654	0,08650	0,08733	0,08828	0,08953	0,08989	0,09091	0,09169	0,09221	0,09355	0,09473	0,09512	0,09565	0,09649	0,09700	0,09833	0,09927	0,09934	0,09979
661	0,08668	0,08615	0,08611	0,08694	0,08794	0,08917	0,08952	0,09056	0,09135	0,09186	0,09319	0,09437	0,09477	0,09534	0,09620	0,09665	0,09804	0,09894	0,09903	0,09948
662	0,08631	0,08586	0,08583	0,08666	0,08766	0,08891	0,08924	0,09029	0,09105	0,09159	0,09291	0,09414	0,09453	0,09510	0,09594	0,09642	0,09776	0,09870	0,09879	0,09923
663	0,08603	0,08559	0,08556	0,08637	0,08741	0,08868	0,08901	0,09007	0,09081	0,09138	0,09266	0,09394	0,09432	0,09487	0,09571	0,09623	0,09755	0,09852	0,09860	0,09906
664	0,08580	0,08534	0,08531	0,08612	0,08718	0,08847	0,08878	0,08988	0,09061	0,09120	0,09248	0,09376	0,09414	0,09469	0,09552	0,09606	0,09738	0,09836	0,09844	0,09891
665	0,08559	0,08511	0,08511	0,08596	0,08699	0,08828	0,08859	0,08972	0,09043	0,09103	0,09236	0,09360	0,09398	0,09459	0,09539	0,09591	0,09723	0,09820	0,09830	0,09877
666	0,08542	0,08492	0,08497	0,08581	0,08688	0,08815	0,08853	0,08960	0,09034	0,09092	0,09226	0,09350	0,09389	0,09448	0,09533	0,09577	0,09712	0,09809	0,09822	0,09869
667	0,08532	0,08484	0,08486	0,08571	0,08679	0,08808	0,08850	0,08956	0,09026	0,09084	0,09219	0,09340	0,09384	0,09440	0,09526	0,09574	0,09704	0,09805	0,09816	0,09863
668	0,08526	0,08478	0,08478	0,08567	0,08674	0,08805	0,08847	0,08955	0,09022	0,09083	0,09215	0,09338	0,09382	0,09437	0,09522	0,09575	0,09701	0,09804	0,09815	0,09863
669	0,08521	0,08468	0,08476	0,08567	0,08674	0,08808	0,08847	0,08953	0,09022	0,09088	0,09217	0,09348	0,09383	0,09440	0,09524	0,09573	0,09706	0,09806	0,09824	0,09871
670	0,08522	0,08472	0,08478	0,08568	0,08680	0,08819	0,08855	0,08963	0,09036	0,09095	0,09225	0,09358	0,09390	0,09448	0,09530	0,09578	0,09718	0,09816	0,09830	0,09877
671	0,08526	0,08478	0,08483	0,08575	0,08688	0,08829	0,08867	0,08975	0,09046	0,09104	0,09237	0,09366	0,09401	0,09457	0,09542	0,09588	0,09726	0,09827	0,09838	0,09888
672	0,08531	0,08483	0,08489	0,08585	0,08696	0,08839	0,08881	0,08987	0,09055	0,09115	0,09249	0,09374	0,09413	0,09467	0,09555	0,09600	0,09733	0,09838	0,09849	0,09901
673	0,08538	0,08492	0,08496	0,08596	0,08706	0,08854	0,08893	0,09001	0,09074	0,09127	0,09261	0,09390	0,09428	0,09480	0,09566	0,09609	0,09746	0,09851	0,09862	0,09908
674	0,08547	0,08500	0,08511	0,08605	0,08726	0,08875	0,08913	0,09020	0,09094	0,09151	0,09281	0,09408	0,09444	0,09501	0,09582	0,09629	0,09765	0,09867	0,09881	0,09928
675	0,08561	0,08513	0,08528	0,08620	0,08746	0,08898	0,08933	0,09043	0,09115	0,09175	0,09303	0,09427	0,09463	0,09522	0,09599	0,09652	0,09789	0,09887	0,09901	0,09946
676	0,08577	0,08530	0,08543	0,08638	0,08766	0,08920	0,08952	0,09067	0,09136	0,09194	0,09324	0,09447	0,09486	0,09541	0,09617	0,09672	0,09812	0,09908	0,09919	0,09961
677	0,08590	0,08545	0,08555	0,08658	0,08789	0,08941	0,08980	0,09087	0,09158	0,09215	0,09348	0,09471	0,09509	0,09559	0,09642	0,09692	0,09828	0,09927	0,09938	0,09985
678	0,08615	0,08565	0,08577	0,08685	0,08815	0,08971	0,09008	0,09116	0,09189	0,09242	0,09374	0,09498	0,09535	0,09588	0,09670	0,09720	0,09854	0,09956	0,09962	0,10011
679	0,08645	0,08592	0,08607	0,08714	0,08846	0,09007	0,09040	0,09151	0,09224	0,09275	0,09405	0,09530	0,09566	0,09621	0,09704	0,09755	0,09888	0,09988	0,09994	0,10040
680	0,08673	0,08623	0,08638	0,08744	0,08881	0,09045	0,09078	0,09187	0,09259	0,09312	0,09441	0,09568	0,09602	0,09657	0,09743	0,09792	0,09926	0,10020	0,10031	0,10071
L	•				•						•				•	•				

681	0,08705	0,08653	0,08672	0,08777	0,08917	0,09082	0,09121	0,09226	0,09296	0,09352	0,09481	0,09605	0,09643	0,09690	0,09778	0,09826	0,09959	0,10056	0,10065	0,10105
682	0,08739	0,08692	0,08707	0,08817	0,08961	0,09123	0,09163	0,09272	0,09341	0,09396	0,09525	0,09648	0,09686	0,09735	0,09820	0,09868	0,10000	0,10097	0,10103	0,10146
683	0,08781	0,08736	0,08750	0,08864	0,09007	0,09170	0,09210	0,09323	0,09391	0,09444	0,09577	0,09699	0,09736	0,09788	0,09871	0,09919	0,10051	0,10147	0,10151	0,10197
684	0,08837	0,08784	0,08803	0,08918	0,09055	0,09223	0,09269	0,09378	0,09444	0,09501	0,09638	0,09760	0,09796	0,09845	0,09931	0,09976	0,10110	0,10206	0,10213	0,10255
685	0,08900	0,08847	0,08865	0,08974	0,09118	0,09288	0,09336	0,09441	0,09509	0,09567	0,09704	0,09828	0,09861	0,09912	0,09998	0,10044	0,10182	0,10274	0,10280	0,10322
686	0,08976	0,08922	0,08941	0,09052	0,09198	0,09371	0,09414	0,09523	0,09592	0,09649	0,09786	0,09912	0,09948	0,09996	0,10082	0,10129	0,10268	0,10358	0,10363	0,10406
687	0,09074	0,09017	0,09039	0,09154	0,09298	0,09475	0,09512	0,09626	0,09694	0,09750	0,09890	0,10017	0,10058	0,10102	0,10190	0,10235	0,10375	0,10462	0,10464	0,10506
688	0,09200	0,09149	0,09165	0,09278	0,09422	0,09599	0,09643	0,09749	0,09820	0,09877	0,10022	0,10150	0,10192	0,10235	0,10325	0,10365	0,10505	0,10587	0,10585	0,10623
689	0,09372			0,09441	-	0,09755			0,09982		0,10188						0,10668	0,10747	0,10740	
690	0,09585	0,09519	0,09530	0,09645	0,09785	0,09957	0,10000	0,10118	0,10189	-					-	-	0,10872	0,10942	0,10930	0,10965
691	0.09848	0,09787	0.09791	0.09903	0.10041	0,10216		,			,	,	,	,	,	,	0.11121	0,11177	0,11156	0.11190
692	,					0,10535										0,11299	,	· ·	,	ŕ
693	,	,	,	0,10620	,	,	,	,	,	,	,	,	,	,	,	0,11664	,	,		
694	,					0,11389		0,11551		0,11687	0,11854			, i				0,12176		
695	,				-	0,11932			0,12163	-			0,12553		-	-	0,12662			
696	,				-	0,12548			,	,					-	-	,	,	,	
697	,				-	0,13248				-					-	-				
698						0,14022												0,14232		
699	,				-	0,14856				-					-	0,15096	,	,		
700				0,15379					0,16005	0,16064			0,16230				0,15827	0,15512		
701	-,				-	0,16668				-					-	-		0,16193		
702	0,17147			0,17218		,		,			0,18117		0,18034				0,17346	0,16893	0,16570	
703	,	,	,		,	0,18613		,	,	,	0,19103						,	,	,	
704	-,					0,19606										0,19066	,	0,18310		
705		0.19875		0,20102		0,20605	0,20689	,	0,20944	0,20982	,	,	,	,	,	,	0,19690	0,19011	0,18561	
706		-,		,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
700	0,20879	0,20819	0,208/5	0,210/0	0,21280	0,21605	0,21090	0,21907	0,21955	0,21988	0,22088	0,21983	0,21//8	U,Z11/1	0,20950	0,20080	0,20405	0,19/08	0,19212	0,10893

	ı	1			1	ı										ı				
707	0,21818	0,21766	0,21829	0,22039	0,22263	0,22601	0,22701	0,22920	0,22966	0,22995	0,23082	0,22941	0,22705	0,22037	0,21792	0,21486	0,21228	0,20399	0,19860	0,19509
708	0,22751	0,22705	0,22776	0,22997	0,23232	0,23590	0,23694	0,23925	0,23963	0,23986	0,24055	0,23878	0,23617	0,22881	0,22608	0,22271	0,21979	0,21075	0,20494	0,20108
709	0,23670	0,23630	0,23709	0,23941	0,24186	0,24562	0,24669	0,24911	0,24941	0,24957	0,25007	0,24794	0,24506	0,23703	0,23398	0,23035	0,22708	0,21730	0,21109	0,20689
710	0,24576	0,24542	0,24629	0,24870	0,25125	0,25516	0,25626	0,25874	0,25902	0,25910	0,25940	0,25689	0,25372	0,24506	0,24165	0,23778	0,23415	0,22364	0,21703	0,21253
711	0,25477	0,25446	0,25543	0,25792	0,26055	0,26459	0,26573	0,26825	0,26849	0,26845	0,26853	0,26566	0,26224	0,25287	0,24926	0,24502	0,24107	0,22988	0,22282	0,21807
712	0,26369	0,26342	0,26446	0,26703	0,26970	0,27384	0,27503	0,27762	0,27775	0,27761	0,27745	0,27424	0,27049	0,26051	0,25660	0,25207	0,24779	0,23592	0,22843	0,22339
713	0,27252	0,27228	0,27337	0,27601	0,27871	0,28291	0,28415	0,28678	0,28677	0,28655	0,28615	0,28260	0,27852	0,26795	0,26371	0,25892	0,25433	0,24177	0,23392	0,22856
714	0,28124	0,28101	0,28211	0,28482	0,28757	0,29182	0,29305	0,29568	0,29557	0,29525	0,29463	0,29070	0,28635	0,27513	0,27064	0,26556	0,26069	0,24747	0,23929	0,23364
715	0,28977	0,28951	0,29060	0,29337	0,29613	0,30045	0,30169	0,30429	0,30405	0,30362	0,30277	0,29847	0,29382	0,28203	0,27726	0,27192	0,26672	0,25289	0,24433	0,23840
716	0,29811	0,29785	0,29895	0,30172	0,30450	0,30885	0,31009	0,31268	0,31227	0,31174	0,31063	0,30596	0,30107	0,28870	0,28364	0,27806	0,27257	0,25812	0,24920	0,24302
717	0,30629	0,30602	0,30714	0,30990	0,31268	0,31701	0,31826	0,32084	0,32023	0,31962	0,31822	0,31318	0,30807	0,29510	0,28976	0,28395	0,27820	0,26314	0,25390	0,24749
718	0,31432	0,31398	0,31509	0,31786	0,32063	0,32491	0,32614	0,32870	0,32794	0,32722	0,32552	0,32014	0,31474	0,30120	0,29560	0,28952	0,28354	0,26795	0,25839	0,25171
719	0,32210	0,32168	0,32276	0,32553	0,32823	0,33247	0,33370	0,33621	0,33532	0,33443	0,33250	0,32678	0,32114	0,30708	0,30126	0,29497	0,28864	0,27252	0,26267	0,25576
720	0,32966	0,32918	0,33021	0,33298	0,33561	0,33983	0,34100	0,34345	0,34241	0,34140	0,33926	0,33318	0,32730	0,31274	0,30670	0,30015	0,29356	0,27692	0,26678	0,25965
721	0,33699	0,33646	0,33742	0,34017	0,34277	0,34695	0,34804	0,35042	0,34923	0,34811	0,34573	0,33931	0,33317	0,31815	0,31186	0,30504	0,29827	0,28113	0,27068	0,26337
722	0,34404	0,34342	0,34433	0,34706	0,34962	0,35369	0,35478	0,35707	0,35572	0,35444	0,35180	0,34507	0,33873	0,32324	0,31673	0,30974	0,30273	0,28512	0,27438	0,26688
723	0,35076	0,35008	0,35097	0,35361	0,35615	0,36015	0,36119	0,36339	0,36184	0,36050	0,35761	0,35062	0,34406	0,32812	0,32141	0,31424	0,30699	0,28896	0,27793	0,27026
724	0,35722	0,35647	0,35731	0,35991	0,36237	0,36630	0,36729	0,36943	0,36768	0,36625	0,36314	0,35588	0,34912	0,33274	0,32586	0,31849	0,31102	0,29258	0,28132	0,27346
725	0,36343	0,36260	0,36334	0,36597	0,36831	0,37215	0,37310	0,37517	0,37327	0,37170	0,36839	0,36082	0,35387	0,33707	0,33004	0,32246	0,31482	0,29596	0,28451	0,27646
726	0,36934	0,36843	0,36911	0,37166	0,37399	0,37771	0,37859	0,38055	0,37851	0,37688	0,37335	0,36548	0,35835	0,34117	0,33393	0,32620	0,31839	0,29914	0,28749	0,27929
727	0,37491	0,37393	0,37458	0,37707	0,37934	0,38295	0,38380	0,38567	0,38348	0,38172	0,37799	0,36990	0,36261	0,34507	0,33766	0,32975	0,32177	0,30214	0,29031	0,28196
728	0,38019	0,37914	0,37975	0,38221	0,38439	0,38793	0,38874	0,39051	0,38818	0,38628	0,38235	0,37408	0,36660	0,34873	0,34114	0,33309	0,32494	0,30498	0,29294	0,28445
729	0,38518	0,38408	0,38462	0,38705	0,38914	0,39264	0,39335	0,39503	0,39258	0,39062	0,38648	0,37800	0,37033	0,35212	0,34434	0,33621	0,32791	0,30765	0,29537	0,28678
730	0,38983	0,38869	0,38912	0,39153	0,39354	0,39695	0,39760	0,39926	0,39664	0,39464	0,39033	0,38156	0,37382	0,35532	0,34742	0,33915	0,33068	0,31018	0,29776	0,28902
731	0,39424		0,39343			,						·	,	0,35836		,		0,31254	0,29997	0,29112
732	0,39843	0,39710	0,39752	0,39985	0,40177	0,40500	,	,	,	,	,	,		,	,	ŕ	0,33580	0,31474	0,30202	

733	0,40234	0,40095	0,40129	0,40360	0,40547	0,40857	0,40915	0,41060	0,40755	0,40533	0,40059	0,39130	0,38317	0,36385	0,35559	0,34696	0,33814	0,31683	0,30395	0,29492
734	0,40591	0,40452	0,40480	0,40710	0,40888	0,41193	0,41249	0,41385	0,41073	0,40841	0,40357	0,39413	0,38585	0,36632	0,35797	0,34922	0,34026	0,31872	0,30575	0,29662
735	0,40923	0,40780	0,40806	0,41031	0,41203	0,41506	0,41557	0,41685	0,41365	0,41127	0,40630	0,39672	0,38834	0,36859	0,36016	0,35131	0,34224	0,32051	0,30744	0,29820
736	0,41235	0,41085	0,41110	0,41331	0,41498	0,41799	0,41844	0,41968	0,41637	0,41397	0,40885	0,39914	0,39068	0,37071	0,36220	0,35327	0,34413	0,32223	0,30903	0,29970
737	0,41531	0,41377	0,41396	0,41619	0,41780	0,42076	0,42118	0,42240	0,41899	0,41655	0,41131	0,40149	0,39293	0,37278	0,36417	0,35518	0,34594	0,32386	0,31054	0,30118
738	0,41804	0,41646	0,41668	0,41884	0,42042	0,42332	0,42367	0,42489	0,42137	0,41886	0,41357	0,40358	0,39497	0,37465	0,36595	0,35690	0,34757	0,32531	0,31193	0,30249
739					,	,						,	,	,		0,35852	0.34911	0.32669	0,31322	0.30372
740				0,42362										0,37812			0,35059	0,32801	0,31444	,
741	0,42510			0,42570										0,37964				0,32922		
742	,			0,42769												0,36278	-			
743	-,				,	,						,	,	,		0,36402	,		,	
744	,															0,36522		0,33251	,	
745	,		,	,	,	,	,		,	,		,	,	0,38484		,	0,35652	0,33342	,	
746				0,43413	,			0,43926					0,40713	, i	0,37670		,	0,333423	0,32024	
747	-,	,	,	,												-	-		,	
747	0,43501	,	,	0,43542	,	,								0,38681		-	0,35831		0,32098	
- 10	,			0,43663												0,36894	-	0,33573	,	
749	,		,	0,43776		,	,	,	,		,		· ·	0,38854	,	<u> </u>	<u> </u>	0,33643	0,32237	
750	,			0,43877							0,43089			0,38932	-	-	0,36055	0,33709		
751	0,43937	0,43775	0,43778	0,43970	0,44100	0,44345	0,44360	0,44445	0,44044	0,43762	0,43170	0,42087	0,41163	0,39002	0,38073	0,37108	0,36117	0,33767	0,32351	0,31356
752	0,44027	0,43859	0,43860	0,44057	0,44183	0,44423	0,44442	0,44523	0,44122	0,43836	0,43244	0,42161	0,41231	0,39065	0,38134	0,37169	0,36174	0,33816	0,32398	0,31400
753	0,44104	0,43939	0,43940	0,44131	0,44259	0,44499	0,44512	0,44596	0,44196	0,43911	0,43313	0,42230	0,41298	0,39126	0,38195	0,37227	0,36229	0,33870	0,32445	0,31451
754	0,44175	0,44011	0,44012	0,44204	0,44329	0,44567	0,44581	0,44663	0,44263	0,43978	0,43377	0,42292	0,41361	0,39184	0,38252	0,37282	0,36283	0,33920	0,32496	0,31499
755	0,44240	0,44076	0,44075	0,44271	0,44391	0,44626	0,44644	0,44724	0,44322	0,44036	0,43436	0,42347	0,41417	0,39236	0,38302	0,37332	0,36333	0,33965	0,32544	0,31540
756	0,44296	0,44135	0,44132	0,44322	0,44443	0,44680	0,44697	0,44777	0,44372	0,44088	0,43487	0,42399	0,41467	0,39282	0,38347	0,37377	0,36375	0,34005	0,32578	0,31576
757	0,44352	0,44194	0,44192	0,44377	0,44498	0,44730	0,44746	0,44825	0,44421	0,44138	0,43539	0,42449	0,41514	0,39333	0,38397	0,37421	0,36418	0,34045	0,32616	0,31615
758	0,44407	0,44248	0,44244	0,44431	0,44550	0,44778	0,44793	0,44872	0,44470	0,44184	0,43589	0,42494	0,41559	0,39375	0,38438	0,37458	0,36456	0,34080	0,32651	0,31647

759 0,44459 0,44296 0,44280 0,44479 0,44524 0,44823 0,44836 0,44917 0,44517 0,44227 0,43632 0,42536 0,41602 0,39409 0,38470 0,37492 0,36491 0,34112 0,32681 0,3117 0,44510 0,4
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775 0,44881 0,44722 0,44711 0,44885 0,44988 0,45200 0,45206 0,45206 0,45286 0,44896 0,44618 0,44036 0,42961 0,42033 0,39841 0,38902 0,37926 0,36926 0,34543 0,33103 0,322
9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320 9,1320
776 0,44885 0,44728 0,44718 0,44892 0,44992 0,45205 0,45213 0,45290 0,44900 0,44626 0,44045 0,42973 0,42044 0,39855 0,38920 0,37942 0,36943 0,34558 0,33123 0,323
777 0,44896 0,44741 0,44733 0,44907 0,45003 0,45215 0,45225 0,45302 0,44914 0,44638 0,44060 0,42989 0,42060 0,39875 0,38941 0,37964 0,36966 0,34582 0,33148 0,323
778 0,44913 0,44760 0,44751 0,44925 0,45020 0,45230 0,45240 0,45319 0,44932 0,44654 0,44078 0,43011 0,42083 0,39900 0,38967 0,37992 0,36995 0,34616 0,33178 0,323
779 0,44923 0,44771 0,44759 0,44929 0,45026 0,45238 0,45246 0,45325 0,44939 0,44665 0,44089 0,43027 0,42100 0,39921 0,38988 0,38016 0,37019 0,34643 0,33205 0,322
780 0,44939 0,44783 0,44773 0,44943 0,45039 0,45249 0,45259 0,45340 0,44955 0,44683 0,44109 0,43049 0,42125 0,39947 0,39014 0,38040 0,37050 0,34671 0,33233 0,323
781 0,44958 0,44800 0,44791 0,44962 0,45057 0,45265 0,45276 0,45355 0,44973 0,44703 0,44132 0,43073 0,42150 0,39973 0,39040 0,38065 0,37077 0,34697 0,33259 0,322
782 0,44974 0,44817 0,44807 0,44978 0,45073 0,45280 0,45292 0,45366 0,44987 0,44718 0,44150 0,43094 0,42171 0,39993 0,39062 0,38088 0,37100 0,34724 0,33284 0,322
783 0,44981 0,44827 0,44815 0,44984 0,45077 0,45287 0,45298 0,45375 0,44998 0,44726 0,44162 0,43109 0,42185 0,40012 0,39079 0,38110 0,37123 0,34749 0,33315 0,323
784 0,44998 0,44843 0,44830 0,45000 0,45092 0,45303 0,45314 0,45393 0,45015 0,44746 0,44181 0,43130 0,42211 0,40034 0,39104 0,38137 0,37148 0,34780 0,33344 0,323

-																				
785	0,45017	0,44861	0,44846	0,45017	0,45111	0,45320	0,45331	0,45411	0,45030	0,44767	0,44203	0,43153	0,42237	0,40061	0,39133	0,38167	0,37179	0,34815	0,33377	0,32378
786	0,45032	0,44875	0,44861	0,45029	0,45125	0,45334	0,45341	0,45423	0,45042	0,44780	0,44220	0,43172	0,42259	0,40089	0,39161	0,38198	0,37214	0,34849	0,33413	0,32414
787	0,45038	0,44882	0,44874	0,45041	0,45133	0,45341	0,45349	0,45430	0,45052	0,44793	0,44235	0,43193	0,42277	0,40110	0,39188	0,38224	0,37240	0,34876	0,33444	0,32444
788	0,45051	0,44898	0,44887	0,45054	0,45148	0,45357	0,45365	0,45446	0,45068	0,44812	0,44254	0,43217	0,42303	0,40138	0,39216	0,38251	0,37269	0,34909	0,33475	0,32478
789	0,45063	0,44912	0,44897	0,45065	0,45159	0,45370	0,45380	0,45460	0,45082	0,44827	0,44272	0,43241	0,42330	0,40165	0,39244	0,38278	0,37300	0,34943	0,33508	0,32511
790	0,45070	0,44917	0,44905	0,45073	0,45165	0,45374	0,45387	0,45465	0,45091	0,44835	0,44288	0,43259	0,42351	0,40187	0,39270	0,38307	0,37330	0,34975	0,33540	0,32541
791	0,45088	0,44931	0,44922	0,45087	0,45179	0,45385	0,45397	0,45474	0,45102	0,44847	0,44300	0,43278	0,42370	0,40210	0,39294	0,38333	0,37359	0,35007	0,33574	0,32578
792	0,45098	0,44942	0,44933	0,45097	0,45189	0,45393	0,45401	0,45482	0,45111	0,44859	0,44313	0,43294	0,42387	0,40231	0,39317	0,38357	0,37387	0,35036	0,33605	0,32609
793						0,45403	-													
794			-		-	0,45420	-			-						-			0,33676	
795	0,45131	0,44977	0,44966	0,45131	0,45225	0,45430	0,45441	0,45524	0,45154	0,44906	0,44365	0,43354	0,42451	0,40307	0,39399	0,38443			0,33705	0,32710
796						0,45443	-											,	0,33738	
797	,	,	0,44994	,	,	,	,	,	,	,	,	,	,	,		,	0,37538	0,35201	0,33774	
798	ŕ		0,45002								0,44423			, i			0,37565	0,35233		0,32816
799	0.45182	,	0,45015				-	0,45570		-	0,44438					0,38556	0,37596	0,35268	0,33842	
800	-,	,	0,45027							,	,	,	,	,		,	0,37629	0,35301		0,32886
801			-		-	0,45503	-			-						-			0,33909	
802	,	,	,	,	,	0,45517	,	,	,		0,44492		· ·	,	,	<u> </u>	0,37689	0,35365	,	
803	,		-		-	0,45525	-			-						-		0,35398		
804	0.45237	0,45087		0,45243					0,45271		0,44523						0,37745	0,35427		0,33014
805	-,		-		-	0,45552	-			,					-	-		,	,	
806		0,45103	,			0,45555	,		0,45288		0,44545	,	,	,			0,37797	0,35484	0,34062	
807	,	,	,		,	0,45567	,	,	,	,	0,44561	,	,				0,37827	,	0,34098	
808						0,45583	-										,	· ·	,	ŕ
809			0,45130			,	,	0,45683		-	0,44594				-	-	0,37879	,	0,34160	
810	ŕ	,	,	,	,	,	,	,	,								,	,	,	,
010	0,45504	0,43130	0,43139	0,45504	0,45593	0,45601	0,43013	0,45089	0,43340	0,45108	0,44007	0,43043	0,42704	0,40002	0,33775	0,30037	0,37902	0,33003	0,34163	0,33133

811	0,45318	0,45166	0,45151	0,45317	0,45404	0,45612	0,45624	0,45701	0,45354	0,45123	0,44624	0,43661	0,42785	0,40683	0,39800	0,38864	0,37930	0,35631	0,34213	0,33231
812	0,45329	0,45175	0,45161	0,45329	0,45415	0,45626	0,45635	0,45716	0,45368	0,45137	0,44640	0,43681	0,42808	0,40706	0,39825	0,38891	0,37957	0,35658	0,34241	0,33262
813	0,45337	0,45184	0,45168	0,45337	0,45426	0,45638	0,45645	0,45727	0,45379	0,45148	0,44651	0,43699	0,42826	0,40727	0,39846	0,38911	0,37979	0,35681	0,34263	0,33285
814	0,45343	0,45190	0,45175	0,45341	0,45434	0,45643	0,45652	0,45728	0,45386	0,45155	0,44663	0,43705	0,42835	0,40740	0,39862	0,38924	0,37995	0,35700	0,34282	0,33302
815	0,45360	0,45206	0,45190	0,45353	0,45450	0,45657	0,45669	0,45746	0,45399	0,45171	0,44680	0,43725	0,42855	0,40761	0,39882	0,38948	0,38018	0,35727	0,34308	0,33328
816	0,45376	0,45224	0,45207	0,45371	0,45466	0,45673	0,45685	0,45764	0,45416	0,45190	0,44698	0,43747	0,42879	0,40784	0,39904	0,38973	0,38042	0,35754	0,34335	0,33357
817	0,45387	0,45236	0,45220	0,45387	0,45477	0,45684	0,45694	0,45773	0,45431	0,45205	0,44715	0,43762	0,42898	0,40804	0,39925	0,38994	0,38066	0,35778	0,34361	0,33383
818	0,45396	0,45243	0,45229	0,45397	0,45491	0,45697	0,45707	0,45786	0,45442	0,45218	0,44728	0,43780	0,42915	0,40824	0,39949	0,39017	0,38092	0,35804	0,34389	0,33411
819	0,45403	0,45252	0,45237	0,45402	0,45497	0,45708	0,45717	0,45795	0,45451	0,45228	0,44738	0,43795	0,42931	0,40840	0,39967	0,39034	0,38112	0,35825	0,34413	0,33437
820	0,45411	0,45260	0,45245	0,45409	0,45503	0,45716	0,45726	0,45803	0,45460	0,45238	0,44749	0,43807	0,42945	0,40856	0,39981	0,39050	0,38129	0,35843	0,34432	0,33457
821	0,45421	0,45265	0,45253	0,45420	0,45512	0,45721	0,45733	0,45814	0,45471	0,45246	0,44761	0,43818	0,42958	0,40873	0,39996	0,39070	0,38146	0,35859	0,34446	0,33471
822	0,45421	0,45270	0,45256	0,45422	0,45517	0,45726	0,45736	0,45819	0,45474	0,45252	0,44768	0,43829	0,42969	0,40882	0,40008	0,39079	0,38158	0,35873	0,34462	0,33486
823	0,45433	0,45282	0,45268	0,45436	0,45527	0,45738	0,45748	0,45829	0,45487	0,45263	0,44784	0,43846	0,42986	0,40899	0,40026	0,39097	0,38179	0,35898	0,34485	0,33509
824						0,45753										0,39122	0,38203	0,35925	0,34510	0,33534
825		-			-	0,45762	-	-	-	-					-	-			0,34532	0.33552
826						0,45778							0,43041				0,38238		0,34549	0.33575
827		-			-	0,45790	-						0,43054				0,38252	,	0,34563	
828		-			-	0,45799	-	-	-	-					-	-	,		0,34576	
829	<u> </u>					0,45808													0,34591	
830						0,45810	, i	, i									0.38290	,	0,34600	
831	<u> </u>	, , , , , , , , , , , , , , , , , , ,	,	· ·		0,45814	,	,	,				, , , , , , , , , , , , , , , , , , ,	,	<u> </u>	, , , , , , , , , , , , , , , , , , ,	-,	0,36024	0,34611	
832	0,45522					0,45826							0,43110				0,38316	0,36038	,	0,33655
833	0.45534	,		0,45536			,	,	,		,	,	0,43121	,	,	,	0,38332	,	0,34639	
834	-,	,	,	,	,	0,45855	-	-	-	-			0,43140		-	-	0,38351	0,36074	0,34661	
835		-			-	0,45865	-	-	-	-			0,43156		-	-	0,38364	,	0,34679	
836	,		,	,		0,45876														
	0,73300	0,70710	0,75700	0,7004	0,73003	0,73070	0,73030	0,73300	0,73034	0,73717	0,775	0,77022	0,73100	0,71000	0,70217	0,33233	0,30370	0,30103	0,54050	0,33710

837	0,45582	0,45423	0,45414	0,45581	0,45676	0,45885	0,45901	0,45983	0,45648	0,45429	0,44959	0,44038	0,43180	0,41101	0,40234	0,39305	0,38394	0,36110	0,34697	0,33723
838	0,45591	0,45432	0,45420	0,45590	0,45685	0,45901	0,45912	0,45995	0,45658	0,45442	0,44971	0,44051	0,43192	0,41113	0,40246	0,39317	0,38407	0,36126	0,34713	0,33737
839	0,45599	0,45443	0,45426	0,45597	0,45693	0,45915	0,45924	0,46005	0,45668	0,45454	0,44984	0,44063	0,43204	0,41125	0,40260	0,39328	0,38417	0,36142	0,34730	0,33753
840	0,45608	0,45455	0,45438	0,45608	0,45704	0,45926	0,45937	0,46018	0,45680	0,45466	0,44999	0,44075	0,43220	0,41139	0,40275	0,39342	0,38430	0,36156	0,34743	0,33769
841	0,45619	0,45464	0,45451	0,45623	0,45719	0,45938	0,45951	0,46033	0,45691	0,45480	0,45013	0,44091	0,43238	0,41152	0,40289	0,39360	0,38448	0,36171	0,34752	0,33782
842	0,45631	0,45473	0,45465	0,45630	0,45728	0,45945	0,45958	0,46041	0,45702	0,45491	0,45021	0,44103	0,43245	0,41169	0,40300	0,39375	0,38460	0,36184	0,34770	0,33797
843	0,45639	0,45479	0,45470	0,45635	0,45737	0,45952	0,45965	0,46047	0,45711	0,45498	0,45029	0,44112	0,43254	0,41182	0,40310	0,39387	0,38471	0,36196	0,34782	0,33808
844	0,45643	0,45484	0,45472	0,45641	0,45744	0,45960	0,45974	0,46056	0,45719	0,45504	0,45040	0,44122	0,43268	0,41190	0,40320	0,39396	0,38482	0,36206	0,34788	0,33815
845	0,45649	0,45491	0,45482	0,45649	0,45749	0,45965	0,45980	0,46062	0,45728	0,45512	0,45052	0,44133	0,43280	0,41202	0,40328	0,39404	0,38491	0,36212	0,34798	0,33824
846	0,45658	0,45502	0,45489	0,45658	0,45758	0,45980	0,45994	0,46077	0,45742	0,45528	0,45066	0,44147	0,43296	0,41218	0,40346	0,39418	0,38504	0,36230	0,34815	0,33841
847	0,45672	0,45519	0,45504	0,45673	0,45774	0,45997	0,46009	0,46093	0,45757	0,45545	0,45081	0,44164	0,43312	0,41236	0,40367	0,39438	0,38524	0,36252	0,34834	0,33863
848			0,45523					0,46108	0,45770	0,45558	0,45094	0,44181	0,43327	0,41253	0,40385	0,39457	0,38546	0,36271	0,34853	0,33883
849	0,45697	0,45538	0,45526	0,45699	0,45801	0,46023	0,46035	0,46121	0,45782	0,45569	0,45106	0,44196	0,43345	0,41267	0,40402	0,39471	0,38565	0,36287	0,34870	0,33898
850						0,46033	, i											0,36297	0,34883	0,33907
851		-			-	0,46043	-		-	-					-	-			0,34895	0.33920
852		,	0,45551	,									0,43377				0,38604	0.36328	0,34910	0.33940
853	0.45734	,	0,45565	,			0,46071		0,45822				0,43392				0,38623	0,36348	0,34932	
854	0,45743	,		,	,	0,46071	-		,	-			0,43407		-	-	,		,	
855	,	,		,		0,46081	,	,	,		,	,	,	,	,	,			,	
856	0.45757					0,46092	, i										0,38673		0.34988	
857	-,	,	0,45597	,		,	,	,	, , , , , , , , , , , , , , , , , , ,				0,43450	,	<u> </u>	<u> </u>	,	-,	0,35013	
858	<u> </u>		0,45609										0,43470				0,38720	0,36452	,	0,34069
859	0.45781	,	0,45617				,	,	,		,	,	0,43487	,	,	,	,		0,35067	
860	-,	,		,	-	0,46125	-		-	-			0,43497		-	-	0,38761		0,35087	0,34115
861	,	,	0,45626		-		-		-	-			0,43509		-	-	0,38781		0,35109	
862	, , ,		,	,		0,46140					,							,		
	5,15,52	5, 150 75	5, 15052	5, 15007	0,10017	0,10110	0,10104	0,10232	0, 10000	5, 15, 51	0,10207	S) 1 1307	J, 13327	J, 11 17 1	0,10010	5,55,50	5,55557	5,505 70	0,00101	0,0 1107

						1										1				
863	0,45801	0,45653	0,45642	0,45817	0,45926	0,46150	0,46164	0,46244	0,45920	0,45715	0,45275	0,44386	0,43550	0,41500	0,40643	0,39730	0,38836	0,36583	0,35171	0,34202
864	0,45813	0,45657	0,45654	0,45825	0,45928	0,46158	0,46168	0,46255	0,45930	0,45726	0,45283	0,44404	0,43570	0,41520	0,40668	0,39756	0,38863	0,36613	0,35205	0,34237
865	0,45814	0,45656	0,45651	0,45827	0,45929	0,46154	0,46170	0,46251	0,45929	0,45727	0,45287	0,44410	0,43577	0,41532	0,40681	0,39774	0,38881	0,36631	0,35226	0,34262
866	0,45816	0,45662	0,45656	0,45827	0,45934	0,46162	0,46178	0,46257	0,45933	0,45733	0,45300	0,44424	0,43593	0,41556	0,40707	0,39795	0,38910	0,36665	0,35261	0,34301
867	0,45823	0,45672	0,45664	0,45834	0,45941	0,46174	0,46189	0,46267	0,45945	0,45748	0,45314	0,44442	0,43617	0,41586	0,40738	0,39827	0,38946	0,36706	0,35304	0,34345
868	0,45835	0,45681	0,45671	0,45846	0,45948	0,46180	0,46196	0,46276	0,45958	0,45763	0,45324	0,44460	0,43640	0,41611	0,40765	0,39864	0,38983	0,36745	0,35343	0,34382
869	0,45838	0,45681	0,45675	0,45843	0,45950	0,46183	0,46198	0,46282	0,45959	0,45766	0,45340	0,44478	0,43659	0,41632	0,40791	0,39887	0,39010	0,36781	0,35382	0,34419
870	0,45840	0,45683	0,45677	0,45843	0,45954	0,46186	0,46201	0,46283	0,45970	0,45772	0,45350	0,44491	0,43676	0,41652	0,40815	0,39915	0,39037	0,36818	0,35421	0,34456
871	0,45842	0,45688	0,45677	0,45847	0,45957	0,46191	0,46206	0,46286	0,45977	0,45778	0,45359	0,44505	0,43693	0,41677	0,40844	0,39949	0,39075	0,36859	0,35465	0,34502
872	0,45844	0,45690	0,45678	0,45853	0,45959	0,46195	0,46210	0,46292	0,45974	0,45782	0,45370	0,44524	0,43713	0,41709	0,40880	0,39983	0,39121	0,36905	0,35512	0,34555
873	0,45843	0,45692	0,45684	0,45853	0,45964	0,46193	0,46204	0,46290	0,45978	0,45792	0,45377	0,44538	0,43732	0,41738	0,40905	0,40008	0,39156	0,36949	0,35558	0,34596
874						0,46197								0,41764				0,36992		
875	0,45860	0.45704	0,45694	0.45866	0.45973	0,46205	0.46225	0.46303	0,45986	0.45806	0.45404	0.44576	0.43781	0,41794	0.40975	0.40085	0,39235	0,37041	0,35653	0.34703
876			0,45709			0,46212	, i	,	0,46001		0,45417			0,41829				0,37096	0,35711	
877	0,45864	0,45710	0,45704	0,45876	0,45986		0,46230	0,46313		-				0,41858		-	0,39329	0,37153	0,35768	0,34826
878	0,45863	0,45711	0,45701	0,45875	0,45981	0,46216	-			-						-	0,39373	0,37210		0,34886
879	,				-	0,46214	-			-						-		0,37266		0.34949
880						0,46220												0,37324	,	ŕ
881	,				-	0,46217	-			-				0,41984		-				,
882		0.45717		0,45881		0,46224	0,46238	, i	0,46023					0,42025			0,39578	0,37450	0,36083	0,35147
883	0,45870	0,45719	,		-	0,46229	-			-				0,42062		-				
884	0,45872		0,45711			,		,	0,46032	0,45871	,			0,42094			0,39688	0,37582		0,35303
885	,	,	,	,	,	0,46237	,	,	,	,	,	,	,	0,42143			0,39757	,	0,36315	
886	.,	,	0,45714	,		,											,	,	,	ŕ
887	,		0,45715			0,46228	,			-				0,42221		-	0,39869	0,37807	0,36462	0,35553
888				,	,	0,46234	,										,	,	,	
	0,43070	0,43713	0,43/1/	0,43000	0,40000	0,40234	0,40237	0,40331	0,40031	0,43032	0,43330	0,44031	0,77123	0,42204	0,41321	0,40036	0,33333	0,37001	0,30340	0,33033

889	0,45872	0,45724	0,45712	0,45879	0,45993	0,46233	0,46245	0,46322	0,46046	0,45892	0,45561	0,44858	0,44147	0,42305	0,41567	0,40745	0,39996	0,37955	0,36628	0,35726
890	0,45874	0,45725	0,45712	0,45884	0,45997	0,46234	0,46246	0,46329	0,46055	0,45897	0,45577	0,44883	0,44176	0,42348	0,41620	0,40803	0,40066	0,38041	0,36717	0,35818
891	0,45881	0,45728	0,45717	0,45891	0,46003	0,46238	0,46253	0,46337	0,46064	0,45910	0,45595	0,44915	0,44210	0,42396	0,41676	0,40868	0,40142	0,38132	0,36811	0,35914
892	0,45885	0,45733	0,45721	0,45887	0,46001	0,46240	0,46253	0,46335	0,46062	0,45924	0,45609	0,44937	0,44244	0,42448	0,41728	0,40931	0,40216	0,38217	0,36905	0,36018
893	0,45876	0,45720	0,45710	0,45882	0,45994	0,46235	0,46248	0,46327	0,46058	0,45921	0,45613	0,44954	0,44268	0,42490	0,41780	0,40987	0,40278	0,38300	0,36993	0,36117
894	0,45873	0,45721	0,45712	0,45883	0,45993	0,46231	0,46248	0,46326	0,46057	0,45922	0,45623	0,44973	0,44300	0,42530	0,41833	0,41039	0,40344	0,38386	0,37085	0,36212
895	0,45877	0,45727	0,45719	0,45886	0,46000	0,46234	0,46254	0,46333	0,46062	0,45931	0,45636	0,45000	0,44335	0,42575	0,41888	0,41100	0,40416	0,38476	0,37183	0,36313
896	0,45882	0,45727	0,45725	0,45890	0,46008	0,46242	0,46261	0,46340	0,46072	0,45944	0,45651	0,45030	0,44367	0,42625	0,41946	0,41172	0,40492	0,38570	0,37286	0,36424
897	0,45882	0,45733	0,45727	0,45899	0,46005	0,46242	0,46255	0,46341	0,46083	0,45954	0,45671	0,45058	0,44406	0,42676	0,42008	0,41237	0,40570	0,38665	0,37394	0,36528
898	0,45883	0,45731	0,45722	0,45896	0,46001	0,46243	0,46256	0,46342	0,46085	0,45959	0,45676	0,45081	0,44432	0,42724	0,42063	0,41299	0,40645	0,38760	0,37493	0,36636
899	0,45884	0,45731	0,45722	0,45892	0,46003	0,46246	0,46262	0,46343	0,46086	0,45961	0,45686	0,45102	0,44460	0,42773	0,42121	0,41363	0,40723	0,38860	0,37596	0,36751
900	0,45885	0,45738	0,45730	0,45895	0,46008	0,46250	0,46265	0,46342	0,46090								0,40805	0,38964	0,37709	0,36870
901	0.45884	0.45736	0.45724	0.45897	0.46006	0,46251	0.46262	0.46344	0.46097	0.45974	0.45722	0.45154	0.44538	0.42877	0.42241	0.41506	0.40885	0.39060	0,37817	0.36984
902			0,45724			,	·	·		,		,				,		0.39160	0.37931	0.37104
903		,		,		0,46256													0,38047	
904						0,46264												,	0,38161	
905	0.45904	,		,		0,46267	,	,		-				0,43087	-	-	0,41220	0,39477	0,38277	
906	-,	,		,	,	0,46262	,			-					-	0,41849	,			0,37598
907	ŕ	,				0,46261	,	,			,	,		,	,	,	,		,	
908	0.45901		,	,		0,46264							,					,		,
909	-,	, , , , , , , , , , , , , , , , , , ,	,	· ·		0,46256	,	,	,		,		· ·	,	<u> </u>	0,42059	, , , , , , , , , , , , , , , , , , ,	,		ŕ
910	0.45896	-	0,45728		-	0,46254	-		0,46125					0,43335			0,41631	0,40008	0,38858	
911	0.45903	,	0,45735	,	,	0,46261	,	,			,	,	,	0,43386	,	,	0,41720	,	0,38982	
912	0.45921	,	0,45753	,	,		0,46291	,	,	,				0,43441	-	-	0,41720	0,40122	0,39107	0,38369
913	-,	,		,	,	0,46283	-	-		-					-	0,42358	,		,	
914	,		,	,									,					,		0,38497
214	0,45927	0,45772	0,45760	0,45929	0,40043	0,46280	0,46300	0,40384	0,40156	0,46069	0,45892	0,454/3	0,44970	0,43542	0,43058	0,42430	0,41986	0,40455	0,39353	0,38025

915	0,45927	0,45771	0,45759	0,45931	0,46040	0,46275	0,46296	0,46380	0,46150	0,46076	0,45897	0,45493	0,44997	0,43594	0,43115	0,42496	0,42065	0,40566	0,39473	0,38756
916	0,45920	0,45767	0,45755	0,45932	0,46041	0,46274	0,46295	0,46372	0,46148	0,46082	0,45901	0,45506	0,45021	0,43645	0,43171	0,42559	0,42149	0,40675	0,39591	0,38887
917	0,45909	0,45761	0,45756	0,45919	0,46033	0,46270	0,46286	0,46364	0,46144	0,46072	0,45905	0,45528	0,45041	0,43680	0,43233	0,42619	0,42228	0,40775	0,39707	0,39014
918	0,45912	0,45759	0,45750	0,45916	0,46031	0,46272	0,46283	0,46367	0,46146	0,46077	0,45917	0,45548	0,45071	0,43729	0,43295	0,42683	0,42305	0,40884	0,39828	0,39142
919	0,45912	0,45753	0,45744	0,45919	0,46026	0,46269	0,46286	0,46367	0,46147	0,46082	0,45922	0,45565	0,45107	0,43782	0,43346	0,42750	0,42389	0,40992	0,39946	0,39271
920	0,45907	0,45748	0,45743	0,45920	0,46022	0,46261	0,46287	0,46361	0,46146	0,46083	0,45924	0,45580	0,45137	0,43825	0,43389	0,42816	0,42470	0,41097	0,40060	0,39399
921	0,45909	0,45753	0,45741	0,45915	0,46028	0,46260	0,46280	0,46359	0,46148	0,46091	0,45943	0,45598	0,45149	0,43856	0,43444	0,42878	0,42532	0,41201	0,40178	0,39528
922	0,45916	0,45751	0,45741	0,45911	0,46029	0,46268	0,46283	0,46366	0,46158	0,46092	0,45953	0,45617	0,45180	0,43906	0,43505	0,42944	0,42616	0,41304	0,40303	0,39659
923	0,45916	0,45750	0,45737	0,45908	0,46024	0,46266	0,46284	0,46362	0,46158	0,46088	0,45955	0,45631	0,45207	0,43954	0,43561	0,43005	0,42705	0,41408	0,40419	0,39786
924	0,45906	0,45750	0,45732	0,45903	0,46017	0,46256	0,46276	0,46348	0,46149	0,46083	0,45955	0,45641	0,45221	0,43989	0,43610	0,43061	0,42784	0,41511	0,40527	0,39908
925	0,45894	0,45740	0,45727	0,45893	0,46012	0,46252	0,46268	0,46344	0,46140	0,46080	0,45960	0,45648	0,45230	0,44019	0,43661	0,43120	0,42847	0,41613	0,40636	0,40028
926	0,45889	0,45739	0,45730	0,45888	0,46002	0,46245	0,46262	0,46338	0,46137	0,46080	0,45959	0,45654	0,45256	0,44061	0,43705	0,43176	0,42913	0,41710	0,40748	0,40152
927	0,45880	0,45728	0,45716	0,45883	0,45998	0,46234	0,46253	0,46330	0,46129	0,46074	0,45953	0,45661	0,45273	0,44099	0,43747	0,43232	0,42979	0,41798	0,40859	0,40266
928	0,45872	0,45716	0,45697	0,45878	0,45993	0,46225	0,46244	0,46324	0,46120	0,46066	0,45951	0,45675	0,45285	0,44132	0,43795	0,43290	0,43049	0,41891	0,40968	0,40379
929	0,45878	0,45722	0,45701	0,45873	0,45980	0,46224	0,46244	0,46323	0,46122	0,46069	0,45955	0,45698	0,45314	0,44169	0,43851	0,43351	0,43131	0,42000	0,41076	0,40511
930	0,45878	0,45717	0,45692	0,45866	0,45982	0,46219	0,46233	0,46320	0,46114	0,46060	0,45952	0,45693	0,45322	0,44197	0,43885	0,43396	0,43196	0,42085	0,41180	0,40622
931	0,45860	0,45699	0,45677	0,45854		0,46206										0,43442	0,43254	0,42167	0,41279	0,40729
932	0,45835	0,45683	0,45666	0,45840	0,45948	0,46189	0,46203	0,46287	-						-	0,43492	-	0,42256	0,41375	0,40838
933	0,45825	0,45677	0,45662	0,45827	0,45937	0,46176	0,46193	0,46271	0,46075	0,46031	0,45934	0,45699	0,45354	0,44283	0,44003	0,43539	0,43366	0,42345	0,41472	0,40948
934	0,45814	0,45658	0,45641	0,45802	0,45920	0,46162	0,46182									0,43567				
935	0,45800	0,45639	0,45622	0,45786	0,45900	0,46137	0,46157	0,46239	0,46037	0,45992	0,45911	0,45694	0,45354	0,44318	0,44060	0,43603	0,43480	0,42488	0,41663	0,41161
936	0,45787	-	0,45612						0,46023	0,45981			0,45360				0,43534		0,41753	
937	0,45776	0,45621	0,45602	0,45764	-	,	-		0,46024	0,45981	0,45885	,	,	,	,	,	0,43581	0,42659	0,41847	0,41355
938	0,45757	0,45604	0,45576	0,45747	-	0,46101	-		-						-	-	0,43638	0,42731	0,41928	0,41462
939	0,45735	-			-	0,46075	-		-						-	-	-		0,42009	
940	,		,	,		0,46051					,							,		
						·	•				· · · · · · · · · · · · · · · · · · ·			·						

_																				
941	0,45688	0,45529	0,45504	0,45677	0,45784	0,46028	0,46048	0,46122	0,45936	0,45889	0,45828	0,45661	0,45358	0,44414	0,44206	0,43807	0,43756	0,42932	0,42159	0,41723
942	0,45680	0,45510	0,45497	0,45669	0,45772	0,46009	0,46028	0,46103	0,45927	0,45876	0,45818	0,45657	0,45368	0,44430	0,44235	0,43849	0,43809	0,42995	0,42249	0,41809
943	0,45653	0,45483	0,45471	0,45637	0,45749	0,45979	0,46000	0,46080	0,45903	0,45854	0,45799	0,45635	0,45357	0,44443	0,44255	0,43875	0,43842	0,43048	0,42323	0,41902
944	0,45628	0,45463	0,45442	0,45605	0,45720	0,45953	0,45975	0,46054	0,45874	0,45831	0,45774	0,45619	0,45345	0,44451	0,44271	0,43894	0,43871	0,43104	0,42390	0,41982
945	0,45614	0,45456	0,45429	0,45592	0,45695	0,45939	0,45959	0,46031	0,45851	0,45818	0,45755	0,45620	0,45348	0,44455	0,44294	0,43921	0,43910	0,43171	0,42459	0,42045
946	0,45580	0,45429	0,45398	0,45564	0,45675	0,45921	0,45932	0,46015	0,45821	0,45793	0,45753	0,45602	0,45334	0,44455	0,44307	0,43942	0,43944	0,43224	0,42520	0,42125
947	0,45546	0,45394	0,45368	0,45540	0,45644	0,45884	0,45906	0,45985	0,45792	0,45761	0,45722	0,45578	0,45313	0,44457	0,44314	0,43957	0,43972	0,43271	0,42574	0,42197
948	0,45523	0,45359	0,45337	0,45505	0,45608	0,45849	0,45872	0,45945	0,45762	0,45729	0,45680	0,45553	0,45290	0,44452	0,44310	0,43964	0,43994	0,43313	0,42628	0,42257
949	0,45502	0,45322	0,45302	0,45456	0,45573	0,45819	0,45828	0,45903	0,45730	0,45699	0,45645	0,45529	0,45269	0,44442	0,44300	0,43965	0,44010	0,43350	0,42683	0,42311
950	0,45455	0,45271	0,45266	0,45413	0,45535	0,45767	0,45786	0,45868	0,45689	0,45663	0,45616	0,45496	0,45253	0,44434	0,44307	0,43969	0,44019	0,43388	0,42724	0,42372
951	0,45405	0,45235	0,45228	0,45379	0,45489	0,45719	0,45741	0,45819	0,45639	0,45618	0,45574	0,45462	0,45224	0,44411	0,44299	0,43968	0,44022	0,43403	0,42761	0,42414
952	,					0,45681										0,43963		0,43425	0,42799	0,42455
953	0,45332	0.45160	0.45138	0.45302	0.45403	0,45643	0.45662	0.45733	0.45551	0.45535	0.45497	0.45386	0.45153	0.44387	0.44272	0,43954	0.44038	0,43457	0,42832	0.42501
954		,	,	0,45240				0,45682						0,44355			0,44034			0,42539
955	0.45244	·		0,45213												0,43943	,			
956	0,45221	,	,	,	,	,										0,43950	-	0,43542		
957	,	·														0,43956	-		0,42971	
958	0.45169	,		,		,					,	,	,	,		0,43964	,		0,43025	
959	,	·				0,45439										0,43964	-		0,43057	
960				0,45067		0,45419							0,45012		0,44254		0,44113	0,43654	0,43098	
961	-,	·														0,43994	,			
962	,	0,44924		0,45045		,								0,44310		-	,	0,43736		
963	,	,	,	,	,	0,45370	,							0,44318		-	0,44187	0,43775	,	
964	-,	,	,	· ·		,	,									0,44042	, , , , , , , , , , , , , , , , , , ,	,	,	ŕ
965	,	0.44891		0,45025					0,45292		0,45260	,		,		-	0,44257	0,43858	0,43336	
966	,	-,		,	,	,	,	,	,	,	,	,				0,44085	,		,	,
	5,75001	0,44037	5,77001	5,45015	5,75175	5,45507	0,73702	0,73733	0,73233	5,75200	0,73277	0,43213	0,73020	5,44500	0,44342	5,44003	0,77232	0,73033	0,73311	5,75150

_																				
967	0,45056	0,44898	0,44858	0,45028	0,45125	0,45351	0,45384	0,45458	0,45291	0,45270	0,45260	0,45210	0,45025	0,44367	0,44353	0,44111	0,44304	0,43949	0,43433	0,43217
968	0,45060	0,44897	0,44860	0,45027	0,45127	0,45350	0,45381	0,45461	0,45299	0,45274	0,45254	0,45224	0,45034	0,44396	0,44372	0,44144	0,44338	0,43998	0,43492	0,43270
969	0,45075	0,44901	0,44876	0,45024	0,45138	0,45366	0,45393	0,45471	0,45310	0,45289	0,45268	0,45241	0,45052	0,44431	0,44401	0,44173	0,44378	0,44041	0,43544	0,43329
970	0,45074	0,44911	0,44881	0,45028	0,45137	0,45384	0,45403	0,45482	0,45308	0,45298	0,45290	0,45238	0,45067	0,44447	0,44435	0,44191	0,44403	0,44079	0,43588	0,43398
971	0,45071	0,44906	0,44880	0,45033	0,45131	0,45383	0,45392	0,45478	0,45302	0,45305	0,45285	0,45241	0,45077	0,44450	0,44460	0,44211	0,44433	0,44118	0,43650	0,43447
972	0,45073	0,44904	0,44885	0,45039	0,45143	0,45383	0,45399	0,45482	0,45317	0,45317	0,45292	0,45252	0,45090	0,44475	0,44492	0,44245	0,44474	0,44177	0,43712	0,43508
973	0,45089	0,44928	0,44901	0,45057	0,45163	0,45402	0,45426	0,45505	0,45343	0,45333	0,45328	0,45280	0,45117	0,44513	0,44522	0,44285	0,44522	0,44237	0,43769	0,43576
974	0,45110	0,44964	0,44920	0,45079	0,45179	0,45436	0,45456	0,45534	0,45366	0,45351	0,45368	0,45316	0,45147	0,44546	0,44541	0,44321	0,44565	0,44284	0,43818	0,43635
975	0,45113					0,45444							0,45151				0,44586	0,44321	0,43853	0,43681
976	0,45125	0,44953	0,44929	0,45083	0,45190	0,45449	0,45459	0,45543	0,45375	0,45384	0,45351	0,45347	0,45176	0,44568	0,44591	0,44383	0,44637	0,44367	0,43907	0,43743
977	0,45142	0,44973	0,44954	0,45106	0,45216	0,45470	0,45485	0,45569	0,45393	0,45400	0,45385	0,45367	0,45213	0,44601	0,44641	0,44421	0,44692	0,44431	0,43970	0,43799
978				,		,	,	0,45602			,	,	,	,		,	0,44734	0,44496	0,44029	0,43850
979	0,45170	0.45032	0.44995	0.45160	0.45268	0.45516	0.45525	0,45629	0.45462	0.45452	0.45444	0.45425	0.45266	0.44678	0.44709	0.44496	0,44763	0,44538	0.44080	0.43919
980			0,45004				0,45541	0,45633					0,45272	, i			0,44794		0,44139	
981	ŕ	,	0,45034	,	,		0,45566									-	0,44849	0,44621	0,44199	
982	ŕ	,	0,45067	,	,		-	0,45680		-					-	-	-	0,44693		
983	,				-		-	0,45685		-						-	-			
984	0.45280			,		,	,	0,45725			,	,	,	,		,	,			
985	,				-		-	0,45745		-						-	-		0,44405	
986			0,45119			0,45657		0,45755			0,45609		0,45442				0,45047	0,44872	0,44453	
987	ŕ				-	,	,	0,45779								-	,			
988		0,45200		0,45332		,	,	,	0,45663		,	,	0,45508	,		,	,			0,44435
989	,	,	,	,	,	0,45737	,	,	,	,	,	,	0,45545	,		,	,			
990	-,							0,45878												
991	,	0,45257		0,45412		,	0,45795	,	0,45718	-			0,45568			-	0,45229	0.45095	0,44728	
992	-,	,	,	,	,	,	,	0,45933	,								,	,	,	
	5,75770	5,75505	5,75500	5,75752	0,73304	0,73032	0,43033	0,7000	0,70777	0,73700	0,73777	5,75770	0,73022	0,43037	0,75170	5,77500	0,73233	5,43133	5,77,33	0,77070

993	0,45489	0,45335	0,45331	0,45476	0,45601	0,45858	0,45882	0,45965	0,45811	0,45812	0,45824	0,45808	0,45656	0,45135	0,45205	0,45031	0,45341	0,45214	0,44811	0,44697
994	0,45523	0,45360	0,45351	0,45499	0,45625	0,45882	0,45922	0,45995	0,45847	0,45838	0,45856	0,45842	0,45703	0,45169	0,45245	0,45052	0,45377	0,45262	0,44875	0,44758
995	0,45552	0,45383	0,45380	0,45529	0,45642	0,45923	0,45947	0,46029	0,45875	0,45856	0,45873	0,45875	0,45754	0,45205	0,45267	0,45076	0,45411	0,45301	0,44934	0,44814
996	0,45573	0,45395	0,45400	0,45562	0,45668	0,45951	0,45964	0,46043	0,45875	0,45881	0,45882	0,45876	0,45766	0,45232	0,45300	0,45124	0,45454	0,45324	0,44979	0,44849
997	0,45602	0,45441	0,45437	0,45590	0,45710	0,45993	0,46017	0,46071	0,45921	0,45921	0,45921	0,45929	0,45791	0,45282	0,45352	0,45175	0,45511	0,45387	0,45027	0,44906
998	0,45616	0,45464	0,45450	0,45616	0,45735	0,46013	0,46039	0,46111	0,45960	0,45941	0,45955	0,45970	0,45816	0,45305	0,45383	0,45207	0,45553	0,45434	0,45055	0,44951
999	0,45629	0,45471	0,45458	0,45638	0,45750	0,46014	0,46036	0,46139	0,45977	0,45954	0,45978	0,45987	0,45836	0,45319	0,45398	0,45228	0,45575	0,45468	0,45086	0,44990
1000	0,45666	0,45501	0,45493	0,45657	0,45775	0,46028	0,46052	0,46141	0,45989	0,45990	0,46000	0,46006	0,45858	0,45363	0,45423	0,45256	0,45591	0,45517	0,45149	0,45044

Tabulación de Datos de la Firma Espectral de la Jícama (Smallanthus sonchifolius)

LONGITUD DE			
ONDA	PROMEDIO	DESVIACIÓN	COEFICIENTE
400	0,06628	0,00499	7,52235
401	0,06617	0,00506	7,65211
402	0,06594	0,00508	7,70921
403	0,06601	0,00488	7,39466
404	0,06617	0,00500	7,55684
405	0,06605	0,00503	7,61870
406	0,06578	0,00483	7,33960
407	0,06635	0,00476	7,17191
408	0,06612	0,00476	7,20469
409	0,06589	0,00474	7,20090
410	0,06637	0,00465	7,01166
411	0,06602	0,00462	6,99979
412	0,06647	0,00475	7,15040
413	0,06729	0,00492	7,31355
414	0,06726	0,00496	7,36878
415	0,06772	0,00510	7,52700
416	0,06802	0,00508	7,46598
417	0,06803	0,00494	7,25762
418	0,06835	0,00500	7,32029
419	0,06876	0,00498	7,24530
420	0,06931	0,00499	7,20339
421	0,06993	0,00508	7,26574
422	0,07014	0,00497	7,08185
423	0,07029	0,00492	6,99517
424	0,07056	0,00493	6,99095
425	0,07098	0,00494	6,96494
426	0,07093	0,00490	6,90615
427	0,07126	0,00491	6,89611
428	0,07191	0,00493	6,86109
429	0,07219	0,00479	6,63640
430	0,07239	0,00482	6,65673
431	0,07275	0,00485	6,66813
432	0,07318	0,00481	6,57865
433	0,07313	0,00490	6,69944

434	0,07332	0,00486	6,62705
435	0,07366	0,00481	6,52477
436	0,07390	0,00488	6,60415
437	0,07408	0,00493	6,65802
438	0,07428	0,00490	6,59522
439	0,07444	0,00483	6,49049
440	0,07443	0,00482	6,47301
441	0,07466	0,00483	6,46830
442	0,07481	0,00481	6,43069
443	0,07484	0,00478	6,38938
444	0,07520	0,00487	6,47359
445	0,07556	0,00487	6,44252
446	0,07579	0,00481	6,35015
447	0,07584	0,00478	6,30015
448	0,07581	0,00481	6,33926
449	0,07595	0,00481	6,33205
450	0,07620	0,00479	6,28465
451	0,07640	0,00479	6,26715
452	0,07646	0,00481	6,29099
453	0,07664	0,00487	6,35448
454	0,07690	0,00493	6,41380
455	0,07690	0,00491	6,38882
456	0,07691	0,00491	6,37863
457	0,07707	0,00492	6,38367
458	0,07734	0,00494	6,38957
459	0,07744	0,00495	6,39534
460	0,07757	0,00495	6,37541
461	0,07770	0,00495	6,37288
462	0,07771	0,00499	6,42593
463	0,07775	0,00499	6,41250
464	0,07788	0,00497	6,38663
465	0,07802	0,00497	6,37506
466	0,07807	0,00498	6,38164
467	0,07824	0,00498	6,36406
468	0,07835	0,00500	6,38271
469	0,07833	0,00504	6,42877
470	0,07850	0,00497	6,33409
471	0,07856	0,00496	6,31802
472	0,07860	0,00500	6,36066
473	0,07878	0,00502	6,37375

in the second se			
474	0,07893	0,00499	6,31660
475	0,07895	0,00501	6,34011
476	0,07897	0,00506	6,40291
477	0,07924	0,00503	6,35183
478	0,07927	0,00501	6,31884
479	0,07927	0,00502	6,33173
480	0,07938	0,00505	6,36285
481	0,07952	0,00503	6,32716
482	0,07968	0,00505	6,33158
483	0,07985	0,00507	6,34815
484	0,08002	0,00507	6,33705
485	0,08016	0,00509	6,34986
486	0,08031	0,00510	6,34846
487	0,08049	0,00510	6,33977
488	0,08070	0,00512	6,35002
489	0,08093	0,00514	6,34989
490	0,08115	0,00514	6,33611
491	0,08137	0,00513	6,30868
492	0,08164	0,00512	6,27300
493	0,08179	0,00514	6,29039
494	0,08195	0,00518	6,32178
495	0,08227	0,00520	6,31880
496	0,08267	0,00520	6,28528
497	0,08300	0,00520	6,25913
498	0,08334	0,00520	6,24473
499	0,08383	0,00522	6,23244
500	0,08421	0,00525	6,23299
501	0,08472	0,00528	6,23276
502	0,08535	0,00532	6,22919
503	0,08592	0,00535	6,23162
504	0,08655	0,00541	6,25029
505	0,08727	0,00546	6,25145
506	0,08809	0,00547	6,21388
507	0,08899	0,00549	6,16710
508	0,09001	0,00548	6,09314
509	0,09113	0,00549	6,02055
510	0,09230	0,00551	5,97243
511	0,09356	0,00549	5,87204
512	0,09501	0,00547	5,75307
513	0,09663	0,00544	5,62573
			*

514	0,09830	0,00539	5,47935
515	0,10012	0,00538	5,37150
516	0,10211	0,00534	5,22575
517	0,10423	0,00522	5,01282
518	0,10638	0,00512	4,81752
519	0,10873	0,00499	4,59182
520	0,11117	0,00485	4,36018
521	0,11355	0,00472	4,15354
522	0,11607	0,00460	3,96233
523	0,11863	0,00446	3,76013
524	0,12114	0,00430	3,54599
525	0,12357	0,00413	3,33973
526	0,12592	0,00402	3,18866
527	0,12823	0,00393	3,06257
528	0,13047	0,00383	2,93863
529	0,13254	0,00372	2,80717
530	0,13445	0,00361	2,68765
531	0,13627	0,00356	2,60929
532	0,13803	0,00356	2,57641
533	0,13957	0,00352	2,52044
534	0,14098	0,00345	2,45052
535	0,14228	0,00341	2,39586
536	0,14344	0,00343	2,38853
537	0,14459	0,00345	2,38653
538	0,14564	0,00345	2,36680
539	0,14656	0,00342	2,33048
540	0,14739	0,00340	2,30681
541	0,14821	0,00344	2,32149
542	0,14900	0,00347	2,33182
543	0,14975	0,00345	2,30515
544	0,15042	0,00344	2,28412
545	0,15108	0,00346	2,28746
546	0,15172	0,00349	2,29768
547	0,15228	0,00348	2,28382
548	0,15277	0,00345	2,26027
549	0,15318	0,00343	2,23914
550	0,15349	0,00342	2,22606
551	0,15368	0,00341	2,21835
552	0,15379	0,00339	2,20753
553	0,15379	0,00337	2,18948

554	0,15368	0,00332	2,16288
555	0,15340	0,00327	2,13258
556	0,15298	0,00320	2,09496
557	0,15243	0,00314	2,05717
558	0,15174	0,00308	2,02742
559	0,15096	0,00301	1,99156
560	0,15011	0,00294	1,95764
561	0,14919	0,00287	1,92376
562	0,14818	0,00279	1,88020
563	0,14706	0,00270	1,83908
564	0,14578	0,00262	1,79995
565	0,14437	0,00254	1,76284
566	0,14293	0,00248	1,73447
567	0,14146	0,00243	1,71500
568	0,13998	0,00239	1,70496
569	0,13850	0,00236	1,70205
570	0,13692	0,00233	1,70100
571	0,13534	0,00232	1,71543
572	0,13382	0,00234	1,74715
573	0,13240	0,00236	1,78104
574	0,13109	0,00240	1,82799
575	0,12988	0,00245	1,88291
576	0,12876	0,00250	1,94320
577	0,12779	0,00257	2,01306
578	0,12688	0,00264	2,07709
579	0,12601	0,00270	2,14486
580	0,12521	0,00278	2,22264
581	0,12450	0,00284	2,28222
582	0,12380	0,00290	2,33917
583	0,12310	0,00295	2,39403
584	0,12245	0,00299	2,44066
585	0,12186	0,00304	2,49761
586	0,12136	0,00310	2,55341
587	0,12088	0,00315	2,60281
588	0,12036	0,00319	2,65363
589	0,11988	0,00325	2,71082
590	0,11942	0,00329	2,75589
591	0,11897	0,00330	2,77739
592	0,11855	0,00332	2,80264
593	0,11819	0,00335	2,83276
•	•		•

594	0,11788	0,00337	2,85935
595	0,11758	0,00338	2,87188
596	0,11734	0,00338	2,88483
597	0,11710	0,00338	2,89005
598	0,11684	0,00337	2,88633
599	0,11659	0,00336	2,88172
600	0,11634	0,00335	2,88130
601	0,11603	0,00334	2,87970
602	0,11563	0,00333	2,87605
603	0,11521	0,00332	2,88541
604	0,11477	0,00332	2,89637
605	0,11426	0,00333	2,91449
606	0,11368	0,00335	2,94859
607	0,11307	0,00338	2,98822
608	0,11245	0,00342	3,03757
609	0,11181	0,00346	3,09292
610	0,11112	0,00349	3,14507
611	0,11039	0,00355	3,21430
612	0,10970	0,00361	3,28784
613	0,10909	0,00366	3,35438
614	0,10847	0,00371	3,41602
615	0,10786	0,00375	3,47978
616	0,10728	0,00380	3,54513
617	0,10677	0,00385	3,60728
618	0,10631	0,00389	3,65706
619	0,10590	0,00393	3,71339
620	0,10554	0,00398	3,77157
621	0,10523	0,00401	3,81336
622	0,10496	0,00404	3,84749
623	0,10474	0,00406	3,87616
624	0,10456	0,00408	3,90143
625	0,10445	0,00410	3,92569
626	0,10436	0,00411	3,93923
627	0,10428	0,00412	3,94899
628	0,10422	0,00413	3,96178
629	0,10423	0,00414	3,97134
630	0,10419	0,00415	3,98665
631	0,10411	0,00417	4,00640
632	0,10404	0,00419	4,02586
633	0,10393	0,00421	4,04904
	•		

634	0,10379	0,00424	4,08396
635	0,10359	0,00428	4,12821
636	0,10331	0,00431	4,17044
637	0,10295	0,00435	4,22806
638	0,10251	0,00440	4,28869
639	0,10202	0,00443	4,34324
640	0,10147	0,00446	4,39976
641	0,10090	0,00449	4,45458
642	0,10031	0,00452	4,50416
643	0,09970	0,00453	4,54865
644	0,09908	0,00456	4,60407
645	0,09848	0,00458	4,64674
646	0,09791	0,00458	4,67891
647	0,09741	0,00459	4,71551
648	0,09695	0,00458	4,72418
649	0,09652	0,00458	4,74336
650	0,09612	0,00459	4,77465
651	0,09584	0,00457	4,76561
652	0,09551	0,00455	4,76110
653	0,09521	0,00453	4,75735
654	0,09497	0,00451	4,75036
655	0,09462	0,00451	4,76360
656	0,09431	0,00451	4,77907
657	0,09400	0,00451	4,79739
658	0,09364	0,00452	4,82669
659	0,09331	0,00455	4,87501
660	0,09296	0,00458	4,92933
661	0,09262	0,00461	4,97781
662	0,09235	0,00463	5,01334
663	0,09212	0,00466	5,05759
664	0,09192	0,00469	5,10137
665	0,09176	0,00471	5,13652
666	0,09164	0,00473	5,16373
667	0,09157	0,00474	5,17921
668	0,09154	0,00476	5,19964
669	0,09156	0,00479	5,23293
670	0,09163	0,00481	5,24479
671	0,09172	0,00482	5,25375
672	0,09182	0,00483	5,26169
673	0,09194	0,00484	5,26499

674	0,09212	0,00486	5,27676
675	0,09231	0,00487	5,28062
676	0,09250	0,00488	5,27613
677	0,09271	0,00489	5,27836
678	0,09298	0,00490	5,27226
679	0,09330	0,00491	5,26508
680	0,09365	0,00492	5,25913
681	0,09400	0,00493	5,24176
682	0,09442	0,00494	5,22956
683	0,09491	0,00496	5,22662
684	0,09547	0,00499	5,22843
685	0,09613	0,00501	5,21705
686	0,09694	0,00504	5,20396
687	0,09797	0,00507	5,17509
688	0,09925	0,00507	5,10912
689	0,10088	0,00507	5,02654
690	0,10293	0,00504	4,90003
691	0,10547	0,00496	4,70722
692	0,10861	0,00482	4,43972
693	0,11237	0,00463	4,11987
694	0,11681	0,00438	3,74724
695	0,12196	0,00407	3,33934
696	0,12781	0,00376	2,93985
697	0,13432	0,00348	2,59150
698	0,14145	0,00332	2,34561
699	0,14915	0,00336	2,25152
700	0,15730	0,00366	2,32969
701	0,16579	0,00423	2,55085
702	0,17456	0,00501	2,86767
703	0,18352	0,00593	3,23278
704	0,19253	0,00697	3,61922
705	0,20153	0,00807	4,00403
706	0,21051	0,00922	4,37803
707	0,21947	0,01040	4,73934
708	0,22829	0,01161	5,08514
709	0,23693	0,01284	5,41738
710	0,24538	0,01408	5,73654
711	0,25370	0,01532	6,04042
712	0,26185	0,01659	6,33682
713	0,26982	0,01786	6,61784
-	•		

714	0,27761	0,01910	6,87972
715	0,28511	0,02035	7,13934
716	0,29239	0,02160	7,38660
717	0,29945	0,02283	7,62466
718	0,30626	0,02407	7,85846
719	0,31279	0,02526	8,07494
720	0,31910	0,02643	8,28306
721	0,32516	0,02759	8,48431
722	0,33093	0,02870	8,67392
723	0,33644	0,02976	8,84626
724	0,34169	0,03079	9,01045
725	0,34667	0,03179	9,17086
726	0,35138	0,03276	9,32294
727	0,35583	0,03367	9,46331
728	0,36003	0,03455	9,59709
729	0,36397	0,03539	9,72442
730	0,36765	0,03614	9,82986
731	0,37115	0,03688	9,93547
732	0,37445	0,03758	10,03645
733	0,37751	0,03822	10,12370
734	0,38035	0,03882	10,20681
735	0,38298	0,03937	10,28068
736	0,38545	0,03988	10,34597
737	0,38781	0,04036	10,40658
738	0,38997	0,04081	10,46502
739	0,39200	0,04123	10,51789
740	0,39390	0,04161	10,56452
741	0,39565	0,04197	10,60730
742	0,39730	0,04230	10,64684
743	0,39885	0,04260	10,68139
744	0,40030	0,04287	10,71016
745	0,40155	0,04310	10,73413
746	0,40268	0,04331	10,75444
747	0,40375	0,04350	10,77350
748	0,40477	0,04368	10,79235
749	0,40572	0,04385	10,80810
750	0,40658	0,04399	10,82000
751	0,40735	0,04412	10,83169
752	0,40806	0,04426	10,84538
753	0,40874	0,04435	10,85132
-	•		

754	0,40936	0,04443	10,85334
755	0,40993	0,04450	10,85473
756	0,41042	0,04456	10,85731
757	0,41091	0,04461	10,85702
758	0,41136	0,04468	10,86047
759	0,41177	0,04474	10,86529
760	0,41217	0,04477	10,86151
761	0,41251	0,04480	10,85912
762	0,41285	0,04481	10,85352
763	0,41317	0,04481	10,84440
764	0,41339	0,04481	10,83985
765	0,41364	0,04481	10,83217
766	0,41393	0,04480	10,82280
767	0,41421	0,04479	10,81389
768	0,41440	0,04477	10,80475
769	0,41460	0,04475	10,79385
770	0,41480	0,04473	10,78287
771	0,41498	0,04471	10,77370
772	0,41520	0,04470	10,76575
773	0,41543	0,04468	10,75425
774	0,41566	0,04464	10,73918
775	0,41588	0,04460	10,72322
776	0,41599	0,04455	10,70931
777	0,41615	0,04450	10,69371
778	0,41637	0,04444	10,67405
779	0,41652	0,04436	10,65063
780	0,41672	0,04430	10,63185
781	0,41693	0,04427	10,61755
782	0,41712	0,04423	10,60302
783	0,41726	0,04415	10,58129
784	0,41747	0,04410	10,56339
785	0,41771	0,04403	10,54195
786	0,41791	0,04394	10,51479
787	0,41808	0,04386	10,49129
788	0,41830	0,04380	10,46989
789	0,41850	0,04372	10,44601
790	0,41867	0,04362	10,41823
791	0,41886	0,04353	10,39338
792	0,41902	0,04345	10,36943
793	0,41920	0,04336	10,34421
L	•	·	

794	0,41943	0,04327	10,31762
795	0,41961	0,04321	10,29670
796	0,41982	0,04313	10,27303
797	0,42004	0,04305	10,24817
798	0,42023	0,04297	10,22556
799	0,42042	0,04287	10,19743
800	0,42061	0,04278	10,17033
801	0,42082	0,04270	10,14637
802	0,42104	0,04263	10,12412
803	0,42120	0,04254	10,09957
804	0,42138	0,04247	10,07947
805	0,42157	0,04241	10,05975
806	0,42169	0,04230	10,03006
807	0,42190	0,04221	10,00415
808	0,42211	0,04214	9,98250
809	0,42227	0,04208	9,96435
810	0,42241	0,04202	9,94872
811	0,42259	0,04195	9,92769
812	0,42278	0,04189	9,90735
813	0,42293	0,04183	9,89158
814	0,42303	0,04179	9,87768
815	0,42322	0,04175	9,86399
816	0,42342	0,04170	9,84947
817	0,42359	0,04165	9,83324
818	0,42376	0,04159	9,81436
819	0,42389	0,04153	9,79743
820	0,42401	0,04149	9,78462
821	0,42413	0,04146	9,77512
822	0,42420	0,04142	9,76354
823	0,42436	0,04137	9,74967
824	0,42454	0,04133	9,73489
825	0,42468	0,04129	9,72192
826	0,42486	0,04128	9,71533
827	0,42498	0,04126	9,70958
828	0,42509	0,04125	9,70357
829	0,42521	0,04124	9,69763
830	0,42525	0,04121	9,69020
831	0,42533	0,04118	9,68175
832	0,42547	0,04116	9,67510
833	0,42562	0,04116	9,67167
L	-	•	

834 0,42577 0,04114 9,66136 835 0,42589 0,04110 9,64846 837 0,42600 0,04112 9,64999 838 0,42625 0,04111 9,64369 839 0,42637 0,04109 9,63629 840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60943 845 0,42700 0,04102 9,60968 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04098 9,595057 849 0,42760 0,04093 9,57296 850 0,42760 0,04093 9,57136 851 0,42780 0,04094				
836 0,42600 0,04110 9,64846 837 0,42613 0,04112 9,64999 838 0,42625 0,04111 9,64369 839 0,42637 0,04109 9,63629 840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 <	834	0,42577	0,04114	9,66136
837 0,42613 0,04112 9,64999 838 0,42625 0,04111 9,64369 839 0,42637 0,04109 9,63629 840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60668 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42805 0,04084 <	835	0,42589	0,04111	9,65208
838 0,42625 0,04111 9,64369 839 0,42637 0,04109 9,63629 840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60968 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 <	836	0,42600	0,04110	9,64846
839 0,42637 0,04109 9,63629 840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04098 9,59057 849 0,42760 0,04098 9,59057 850 0,42770 0,04094 9,57136 851 0,42780 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42805 0,04084 9,51758 856 0,42835 0,04077 <	837	0,42613	0,04112	9,64999
840 0,42649 0,04108 9,63114 841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 <	838	0,42625	0,04111	9,64369
841 0,42663 0,04107 9,62724 842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 <	839	0,42637	0,04109	9,63629
842 0,42674 0,04105 9,61938 843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04100 9,59918 846 0,42713 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42811 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 <	840	0,42649	0,04108	9,63114
843 0,42683 0,04103 9,61282 844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42811 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 <	841	0,42663	0,04107	9,62724
844 0,42691 0,04102 9,60943 845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04068 9,49242 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 <	842	0,42674	0,04105	9,61938
845 0,42700 0,04102 9,60668 846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42835 0,04077 9,51758 856 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04049 9,43827 861 0,42900 0,04049 9,43827 861 0,42945 0,04025 9,37185 864 0,42962 0,04015 <	843	0,42683	0,04103	9,61282
846 0,42713 0,04100 9,59918 847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42945 0,04025 9,37185 864 0,42962 0,04015 <	844	0,42691	0,04102	9,60943
847 0,42731 0,04098 9,59057 848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,43827 861 0,42900 0,04049 9,43827 861 0,42909 0,04049 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 <	845	0,42700	0,04102	9,60668
848 0,42747 0,04096 9,58224 849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04049 9,43827 862 0,42962 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 <	846	0,42713	0,04100	9,59918
849 0,42760 0,04093 9,57296 850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04049 9,43827 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 <	847	0,42731	0,04098	9,59057
850 0,42770 0,04094 9,57136 851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43038 0,03957 <	848	0,42747	0,04096	9,58224
851 0,42780 0,04092 9,56510 852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42900 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 <	849	0,42760	0,04093	9,57296
852 0,42791 0,04087 9,55154 853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43038 0,03957 9,19401 870 0,43069 0,03928 <	850	0,42770	0,04094	9,57136
853 0,42805 0,04084 9,54123 854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 <	851	0,42780	0,04092	9,56510
854 0,42821 0,04080 9,52810 855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 872 0,43087 0,03910 <	852	0,42791	0,04087	9,55154
855 0,42835 0,04077 9,51758 856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 <	853	0,42805	0,04084	9,54123
856 0,42846 0,04074 9,50892 857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 871 0,43069 0,03910 9,07434	854	0,42821	0,04080	9,52810
857 0,42859 0,04068 9,49242 858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 871 0,43069 0,03910 9,07434	855	0,42835	0,04077	9,51758
858 0,42876 0,04061 9,47122 859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 871 0,43069 0,03910 9,07434	856	0,42846	0,04074	9,50892
859 0,42890 0,04054 9,45281 860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	857	0,42859	0,04068	9,49242
860 0,42900 0,04049 9,43827 861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43069 0,03928 9,12103 871 0,43069 0,03910 9,07434	858	0,42876	0,04061	9,47122
861 0,42909 0,04042 9,41900 862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	859	0,42890	0,04054	9,45281
862 0,42926 0,04034 9,39712 863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	860	0,42900	0,04049	9,43827
863 0,42945 0,04025 9,37185 864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	861	0,42909	0,04042	9,41900
864 0,42962 0,04015 9,34530 865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	862	0,42926	0,04034	9,39712
865 0,42968 0,04006 9,32366 866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	863	0,42945	0,04025	9,37185
866 0,42984 0,03994 9,29287 867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	864	0,42962	0,04015	9,34530
867 0,43004 0,03982 9,25896 868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	865	0,42968	0,04006	9,32366
868 0,43023 0,03970 9,22715 869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	866	0,42984	0,03994	9,29287
869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	867	0,43004	0,03982	9,25896
869 0,43038 0,03957 9,19401 870 0,43052 0,03944 9,16087 871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	868	0,43023	0,03970	9,22715
871 0,43069 0,03928 9,12103 872 0,43087 0,03910 9,07434	869	0,43038	0,03957	
872 0,43087 0,03910 9,07434	870	0,43052	0,03944	9,16087
	871	0,43069	0,03928	9,12103
0.00	872	0,43087	0,03910	9,07434
8/3 0,43102 0,03894 9,03401	873	0,43102	0,03894	9,03401

874	0,43121	0,03878	8,99224	
875	0,43144	0,03861	8,94828	
876	0,43168	0,03842	8,90096	
877	0,43187	0,03820	8,84594	
878	0,43206	0,03797	8,78925	
879	0,43226	0,03775	8,73235	
880	0,43248	0,03752	8,67496	
881	0,43268	0,03728	8,61591	
882	0,43294	0,03704	8,55518	
883	0,43320	0,03678	8,49105	
884	0,43342	0,03650	8,42150	
885	0,43375	0,03620	8,34495	
886	0,43398	0,03589	8,27115	
887	0,43420	0,03561	8,20012	
888	0,43449	0,03531	8,12743	
889	0,43470	0,03498	8,04611	
890	0,43500	0,03465	7,96562	
891	0,43534	0,03432	7,88307	
892	0,43565	0,03396	7,79556	
893	0,43587	0,03359	7,70613	
894	0,43615	0,03324	7,62199	
895	0,43647	0,03290	7,53727	
896	0,43683	0,03253	7,44730	
897	0,43717	0,03215	7,35529	
898	0,43746	0,03177	7,26161	
899	0,43778	0,03137	7,16493	
900	0,43815	0,03096	7,06579	
901	0,43848	0,03056	6,96844	
902	0,43881	0,03014	6,86807	
903	0,43919	0,02973	6,76840	
904	0,43959	0,02932	6,67017	
905	0,43994	0,02889	6,56714	
906	0,44027	0,02847	6,46597	
907	0,44063	0,02804	6,36308	
908	0,44099	0,02759	6,25705	
909	0,44127	0,02715	6,15193	
910	0,44160	0,02669	6,04356	
911	0,44201	0,02625	5,93774	
912	0,44247	0,02582	5,83650	
913	0,44286	0,02540	5,73468	
L		*		

914	0,44320	0,02495	5,62912	
915	0,44353	0,02449	5,52161	
916	0,44385	0,02403 5,41414		
917	0,44412	0,02357	5,30770	
918	0,44446	0,02313	5,20364	
919	0,44479	0,02268 5,09928		
920	0,44509	0,02224	4,99586	
921	0,44540	0,02181	4,89736	
922	0,44575	0,02137	4,79486	
923	0,44606	0,02092	4,69091	
924	0,44631	0,02048	4,58826	
925	0,44656	0,02004	4,48835	
926	0,44682	0,01961	4,38981	
927	0,44705	0,01919	4,29244	
928	0,44728	0,01876	4,19438	
929	0,44760	0,01833	4,09473	
930	0,44780	0,01793	4,00405	
931	0,44796	0,01752	3,91140	
932	0,44813	0,01710	3,81592	
933	0,44831	0,01669	3,72262	
934	0,44843	0,01628	3,63037	
935	0,44852	0,01588	3,53954	
936	0,44866	0,01549	3,45279	
937	0,44885	0,01513	3,37043	
938	0,44895	0,01473	3,28057	
939	0,44904	0,01436 3,19766		
940	0,44906	0,01400 3,11754		
941	0,44902	0,01362	3,03371	
942	0,44914	0,01327	2,95398	
943	0,44914	0,01289	2,87097	
944	0,44912	0,01255	2,79350	
945	0,44918	0,01224	2,72585	
946	0,44917	0,01192	2,65340	
947	0,44909	0,01158	2,57966	
948	0,44896	0,01127	2,50955	
949	0,44882	0,01096	2,44297	
950	0,44865	0,01064	2,37209	
951	0,44840	0,01036	2,30948	
952	0,44819	0,01008	2,24934	
953	0,44797	0,00980	2,18685	
•	•		•	

954	0,44762	0,00950	2,12332	
955	0,44749	0,00926	2,06822	
956	0,44738	0,00900 2,01107		
957	0,44725	0,00873	1,95138	
958	0,44721	0,00849	1,89866	
959	0,44708	0,00828 1,85243		
960	0,44702	0,00804	1,79824	
961	0,44702	0,00779	1,74269	
962	0,44700	0,00760	1,69974	
963	0,44708	0,00739	1,65263	
964	0,44715	0,00717	1,60415	
965	0,44726	0,00700	1,56452	
966	0,44744	0,00687	1,53508	
967	0,44747	0,00663	1,48229	
968	0,44763	0,00644	1,43940	
969	0,44785	0,00630	1,40598	
970	0,44802	0,00615	1,37177	
971	0,44813	0,00596	1,33042	
972	0,44833	0,00577	1,28750	
973	0,44865	0,00564	1,25736	
974	0,44897	0,00556	1,23923	
975	0,44908	0,00544	1,21103	
976	0,44928	0,00527	1,17269	
977	0,44961	0,00514	1,14304	
978	0,44999	0,00506	1,12345	
979	0,45026	0,00494	1,09809	
980	0,45041	0,00482	1,06906	
981	0,45077	0,00467	1,03600	
982	0,45117	0,00456	1,01015	
983	0,45133	0,00452	1,00044	
984	0,45172	0,00443	0,97979	
985	0,45198	0,00431	0,95347	
986	0,45221	0,00418	0,92477	
987	0,45257	0,00407	0,89936	
988	0,45285	0,00403	0,88889	
989	0,45322	0,00401	0,88487	
990	0,45350	0,00391	0,86326	
991	0,45370	0,00376	0,82905	
992	0,45424	0,00376	0,82863	
993	0,45464	0,00371	0,81614	
	•			

994	0,45499	0,00365	0,80274	
995	0,45531	0,00360	0,79088	
996	0,45555	0,00351	0,76995	
997	0,45599	0,00346	0,75884	
998	0,45629	0,00345	0,75587	
999	0,45647	0,00340	0,74510	
1000	0,45675	0,00328	0,71853	
		TOTAL	4,12044	

ANEXO 3

COSTOS

COSTOS

Descripción (actividades)	Cantidad	Costo Unitario	Costo total		
Salidas al campo					
Transporte	20	15	300		
Alimentación	20	5	100		
Materiales para recolección de muestras	20	2.5	50		
LABORA' (Depreciación de e		•			
Estereoscopio	1	780	104		
Kit de microscopio	1	25	25		
Microscopio digital	1	579	77.20		
Cámaras de filtro	1	3000	400		
MATERIALES	DE OFICINA				
Libros de referencia para la investigación	2	75	150		
Fichas o libro de campo	1	1,5	1,5		
Impresiones	500	0,10	50		
Flash memory 4G	1	10	10		
Copias	1000	0,03	30		
Internet.	150	0,75	112.50		
Software de Diseño Gráfico	1	50	50		
Anillados	10	5	50		
Empastados	2	30	60		
Otros gastos		200	200		
MATERIALES	DE CAMPO				
Plantas de Jícama (Diferentes Muestras)		100	100		
SUBTO	1870				
Imprevistos (10%)			187		
COSTO TOTAL			2057		

Fuente: El Autor