

# UNIVERSIDAD TÉCNICA DE COTOPAXI UNIDAD ACADÉMICA DE CIENCIAS DE LA INGENIERÍA Y APLICADAS

# CARRERA DE INGENIERÍA ELÉCTRICA EN SISTEMAS DE POTENCIA.

#### **TESIS DE GRADO**

#### **TEMA:**

"ANÁLISIS TÉCNICO DE LA CALIDAD DE PRODUCTO DE ACUERDO A LA REGULACIÓN 004/01 POR LA INCORPORACIÓN DE COCINAS DE INDUCCIÓN EN EL ALIMENTADOR MULALÓ – JOSEGUANGO BAJO DE LA S/E MULALÓ, PERTENECIENTE A ELEPCO S.A. EN EL AÑO 2014"

Tesis de grado previo a la obtención de del título de Ingeniero Eléctrico en Sistemas Eléctricos de Potencia.

#### **Autores:**

Alomoto Jami Edwin Santiago

Álvarez Suárez Fernando Vinicio

Director de tesis:

Ing. Carlos Saavedra

Asesor Metodológico:

Ing. Susana Pallasco

DICIEMBRE 2015

### AVAL DEL TRIBUNAL

#### **AUTORIA**

Yo, Alomoto Jami Edwin Santiago y Álvarez Suárez Fernando Vinicio, declaramos bajo juramento que el presente trabajo de investigación aquí descrito es de nuestra autoría; y que se han citado las fuentes bibliográficas que se incluyen en este documento.

A través de la presente declaramos conceder los derechos de propiedad intelectual correspondiente a este trabajo, a la Universidad Técnica de Cotopaxi, según lo establecido en la Normativa Institucional Vigente.

| Alomoto Jami Edwin Santiago | Álvarez Suárez Fernando Vinicio |
|-----------------------------|---------------------------------|

## **AVAL DEL DIRECTOR DE TESIS**

## AVAL DEL ASESOR METODOLÓGICO

## CERTIFICADO DE IMPLEMENTACIÓN

#### **AGRADECIMIENTO**

Ante todo a Dios por darnos la vida y las facultades necesarias para la culminación de nuestros estudios

A la Universidad Técnica de Cotopaxi por brindarnos la apertura de obtener un título profesional, a docentes quienes con paciencia y entusiasmo brindaron su conocimiento

Al nuestro director de tesis el Ing. Carlos Saavedra, quien con paciencia y conocimiento supo guiarnos para la realización de este proyecto

A la empresa eléctrica Cotopaxi S.A. por darnos la apertura de realizar el presente trabajo, facilitando información indispensable que inicia y complementa el estudio

Un gracias al personal del Departamento de Planificación y Dirección Técnica por la ayuda desinteresada.

Finalmente un agradecimiento a todas las personas que de una u otra forma contribuyeron en el desarrollo del presente trabajo investigativo.

Santiago y Fernando

#### **DEDICATORIA**

El presente trabajo investigativo les dedico a mis seres queridos, familia y amigos quienes estuvieron apoyando día a día con un granito de arena, en especial a mi madre que fue un soporte fundamental y fuente de inspiración para alcanzar la meta propuesta.

#### Santiago Alomoto

A Dios por darme salud y vida para seguir adelante cumpliendo mis metas.

Hoy que eh cumplido con una meta más en mi vida le dedico a cada una de las personas que de una u otra manera estuvieron apoyándome.

A mis padres por el gran esfuerzo y sacrificio que hicieron, para despertar en mí el anhelo de superación y así conseguir el título de ingeniero eléctrico.

A mis amigos quienes me apoyaron dándome ánimo para no desfallecer en el transcurso de este arduo camino.

#### Fernando Álvarez

## ÍNDICE GENERAL

| CONTENIDO     | PÁG                                           |
|---------------|-----------------------------------------------|
| AVAL DEL TRII | BUNALii                                       |
| AUTORIA       | iii                                           |
| AVAL DEL DIR  | ECTOR DE TESISiv                              |
| AVAL DEL ASE  | SOR METODOLÓGICOv                             |
| CERTIFICADO   | DE IMPLEMENTACIÓN vi                          |
| AGRADECIMII   | ENTOvii                                       |
| DEDICATORIA   | viii                                          |
|               | ALix                                          |
|               | ÁFICOSxiii                                    |
|               | BLASxv                                        |
|               | xviii                                         |
|               | xix                                           |
|               | DUCCIÓNxx                                     |
|               | Nxxi                                          |
|               |                                               |
|               | CIÓN TEÓRICA                                  |
|               | s Eléctricos de Distribución                  |
|               | finición de un Sistema de Distribución        |
|               | sificación de las redes de distribución       |
| 1.1.2.1.      | De acuerdo a la forma en que se construyen: 1 |
| 1.1.2.2.      | De acuerdo al tipo de cargas                  |
| 1.1.3. Pri    | ncipales elementos constitutivos              |
| 1.1.3.1.      | Líneas primarias de distribución              |
| 1.1.3.2.      | Transformadores de distribución               |
| 1.1.3.3.      | Redes secundarias de distribución             |
| 1.1.3.4.      | Acometidas                                    |
| 1.1.3.5.      | Alumbrado público                             |
| 1.1.4. Est    | ructura principal5                            |
| 1.1.4.1.      | Red radial                                    |

| 1.1.5.               | Fuentes armónicas                                                                                         | 6  |
|----------------------|-----------------------------------------------------------------------------------------------------------|----|
| 1.1.5                | .1. Origen de los armónicos                                                                               | 7  |
| 1.1.5                | .2. Perturbaciones causadas por los Armónicos                                                             | 8  |
| 1.1.5                | .3. El impacto económico de las perturbaciones                                                            | 8  |
| 1.1.5                | .4. Indicadores esenciales de la distorsión armónica                                                      | 9  |
| 1.1.6.               | Regulación CONELEC 004/01                                                                                 | 9  |
| 1.1.7.               | Mejoras de la calidad de producto en redes distribución                                                   | 11 |
| 1.2. Co              | cinas de Inducción                                                                                        | 13 |
| 1.2.1.               | Fundamentos del calentamiento por inducción                                                               | 13 |
| 1.2.2.               | Funcionamiento de una cocina eléctrica de inducción                                                       | 14 |
| 1.2.3.               | Características principales                                                                               | 15 |
| 1.2.4.               | Ventajas y Desventajas                                                                                    | 16 |
|                      | todología propuesta por el MEER, para la proyección de la dema<br>corporación de las cocinas de inducción |    |
| 1.4. Pro             | yección de la demanda                                                                                     | 18 |
| 1.5. Eq.             | uipos y Software                                                                                          | 19 |
| 1.5.1.               | Analizador de calidad eléctrica PQ-Box 100 (4U/4I)                                                        | 19 |
| 1.5.2.               | CYMDIST – Análisis de sistemas de distribución                                                            | 20 |
| 1.5.3.               | Software ArcGIS                                                                                           |    |
| CAPÍTULO             | II                                                                                                        | 24 |
| PRESENTA             | CIÓN, INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS                                                             | 24 |
| 2.1. As <sub>1</sub> | pectos generales de la Empresa Eléctrica Cotopaxi S.A                                                     | 24 |
| 2.1.1.               | Antecedentes históricos                                                                                   | 24 |
| 2.1.2.               | Misión                                                                                                    | 25 |
| 2.1.3.               | Visión                                                                                                    | 25 |
| 2.1.4.               | Dedicación                                                                                                | 25 |
| 2.1.5.               | Objetivos Institucionales                                                                                 | 26 |
| 2.2. Dis             | seño Metodológico                                                                                         | 26 |
| 2.2.1.               | Métodos de Investigación                                                                                  | 26 |
| 2.2.1                | .1. Método Deductivo                                                                                      | 26 |
| 2.2.1                | .2. Método Científico                                                                                     | 27 |
| 2.2.2.               | Tipos de Investigación                                                                                    | 27 |

| 2.2.2     | .1. Aplicada                                                     | . 27 |
|-----------|------------------------------------------------------------------|------|
| 2.2.2     | .2. Descriptiva                                                  | . 27 |
| 2.2.2     | .3. Campo                                                        | . 28 |
| 2.3. Cál  | culo de la población y muestra                                   | . 28 |
| 2.3.1.    | Técnicas de Investigación                                        | . 28 |
| 2.3.1     | .1. Observación                                                  | . 28 |
| 2.3.1     | .2. Encuesta                                                     | . 29 |
| 2.4. Ana  | álisis de los resultados de la encuesta                          | . 29 |
| 2.5. Des  | scripción del sistema de distribución de la ELEPCO S.A           | . 40 |
| 2.5.1.    | Sistema de subtransmisión                                        | . 40 |
| 2.5.2.    | Sistema de generación                                            | . 41 |
| 2.6. Des  | scripción actual del alimentador Mulaló Joseguango bajo          | . 43 |
| 2.6.1.    | Curva de carga diaria                                            | . 44 |
| 2.6.2.    | Consumo promedio mensual                                         | . 45 |
| 2.6.3.    | Pruebas y mediciones de la cocina de inducción                   | . 45 |
| 2.6.3     | .1. Resultados de las pruebas                                    | . 46 |
| 2.6.3     | .2. Análisis de la distorsión armónica en la cocina de inducción | . 46 |
| 2.6.3     | .3. Mediciones en la cabecera del Alim-MLS1                      | . 50 |
| 2.7. Mo   | delación del sistema actual                                      | . 52 |
| 2.7.1.    | Flujos de potencia                                               | . 52 |
| 2.7.2.    | Cargabilidad de los transformadores                              | . 55 |
| 2.7.3.    | Cargabilidad de las líneas                                       | . 57 |
| 2.7.4.    | Tramos con bajo nivel de voltaje                                 | . 57 |
| 2.7.5.    | Perfiles de voltaje                                              | . 58 |
| 2.8. Ver  | ificación de la hipótesis                                        | . 60 |
| CAPÍTULO  | III                                                              | . 61 |
| PROPUEST  | A                                                                | . 61 |
| 3.1. Intr | oducción                                                         | . 61 |
| 3.2. Obj  | ietivos de la propuesta                                          | . 62 |
| 3.2.1.    | Objetivo general                                                 | . 62 |
| 3.2.2.    | Objetivos específicos.                                           | . 62 |

| 3.3 | . An              | álisis | de la factibilidad de la propuesta                            | 63  |
|-----|-------------------|--------|---------------------------------------------------------------|-----|
| •   | 3.3.1.            | Fac    | tibilidad Administrativa                                      | 63  |
|     | 3.3.2.            | Fac    | tibilidad Técnica                                             | 63  |
| 3.4 | . Des             | sarro  | llo de la propuesta                                           | 64  |
| •   | 3.4.1.            | Pro    | yección de la demanda                                         | 64  |
|     | 3.4.1             | .1.    | Análisis de la situación actual                               | 64  |
|     | 3.4.1             | .2.    | Crecimiento de la demanda                                     | 65  |
|     | 3.4.2.            | Dis    | tribución de cocinas de inducción 2015-2022                   | 66  |
|     | 3.4.3.<br>aliment | _      | pacto de la incorporación de cocinas de inducción en el MLS1. | 68  |
|     | 3.4.3             |        | Curva de carga proyectada                                     |     |
|     | 3.4.3             | .2.    | Curva de energía proyectada usuario residencial               | 71  |
|     | 3.4.4.            | Flu    | jos de potencia                                               | 72  |
|     | 3.4.4             | .1.    | Comportamiento del alimentador                                | 72  |
|     | 3.4.4             | .2.    | Cargabilidad de transformadores                               | 74  |
|     | 3.4.4             | .3.    | Cargabilidad de líneas                                        | 75  |
|     | 3.4.4             | .4.    | Niveles y perfiles de voltaje                                 | 76  |
|     | 3.4.5.            | Pro    | puestas de mejora                                             | 77  |
|     | 3.4.5             | .1.    | Alternativa 1                                                 | 78  |
|     | 3.4.5             | .2.    | Alternativa 2                                                 | 83  |
|     | 3.4.5             | .3.    | Alternativa 3                                                 | 87  |
|     | 3.4.6.            | Fac    | tibilidad técnica                                             | 91  |
|     | 3.4.7.            | Fac    | tibilidad Económica                                           | 93  |
|     | 3.4.7             | .1.    | Análisis económico                                            | 97  |
|     | 3.4.7             | .2.    | Ingresos operacionales                                        | 97  |
|     | 3.4.7             | .3.    | Relación costo beneficio                                      | 98  |
| 3.5 | . Coı             | nclus  | iones                                                         | 99  |
| 3.6 | . Rec             | come   | ndaciones                                                     | 100 |
| 3.7 | . Glo             | sario  | de términos y siglas                                          | 101 |
| 3 8 | Ref               | feren  | cias bibliográficas                                           | 104 |

## ÍNDICE DE GRÁFICOS

| CONTENIDOPA                                              | ÁG   |
|----------------------------------------------------------|------|
| GRÁFICO Nº 1 FUNDAMENTOS DE INDUCCIÓN                    | . 13 |
| GRÁFICO N° 2 FUNCIONAMIENTO DE UNA COCINA DE INDUCCIÓN   | . 15 |
| GRÁFICO N° 3 ANALIZADOR DE CALIDAD ELÉCTRICA PQ-BOX 100  | . 20 |
| GRÁFICO Nº 4 VENTANA DE COMANDOS Y APLICACIONES CYMDIST  | Γ21  |
| GRÁFICO N° 5 VENTANA DE SIMULACIONES CYMDIST             | . 22 |
| GRÁFICO Nº 6 HOJA DE TRABAJO "WORKSPACE"                 | . 23 |
| GRÁFICO Nº 7 LÍNEA HISTÓRICA INSTITUCIONAL ELEPCO S.A    | . 25 |
| GRÁFICO N° 8 OPCIONES EN PORCENTAJE, PREGUNTA #1         | . 30 |
| GRÁFICO N° 9 OPCIONES EN PORCENTAJE, PREGUNTA #2         | . 31 |
| GRÁFICO N° 10 OPCIONES EN PORCENTAJE, PREGUNTA #3        | . 32 |
| GRÁFICO N° 11 OPCIONES EN PORCENTAJE, PREGUNTA #4        | . 33 |
| GRÁFICO N° 12 OPCIONES EN PORCENTAJE, PREGUNTA #5        | . 34 |
| GRÁFICO N° 13 OPCIONES EN PORCENTAJE, PREGUNTA #6        | . 35 |
| GRÁFICO N° 14 OPCIONES EN PORCENTAJE, PREGUNTA #7        | . 36 |
| GRÁFICO N° 15 OPCIONES EN PORCENTAJE, PREGUNTA #8        | . 37 |
| GRÁFICO N° 16 OPCIONES EN PORCENTAJE, PREGUNTA #9        | . 38 |
| GRÁFICO N° 17 OPCIONES EN PORCENTAJE, PREGUNTA #10       | . 39 |
| GRÁFICO N° 18 CLIENTES DE ELEPCO S.A.                    | . 42 |
| GRÁFICO N° 19 CURVA DIARIA ALIM-MLS1                     |      |
| GRÁFICO N° 20 COCINA DE INDUCCIÓN                        | . 45 |
| GRÁFICO N° 21 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE      |      |
| VOLTAJE                                                  | . 46 |
| GRÁFICO 22 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE VOLTAJE | 47   |
| GRÁFICO N° 23 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE      |      |
| CORRIENTE                                                | . 48 |
| GRÁFICO N° 24 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE      |      |
| CORRIENTE                                                | . 49 |
| GRÁFICO 25 MÁXIMA DISTORSIÓN DE CORRIENTE ARMÓNICA       | . 50 |
| GRÁFICO N° 26 GRAFICO ESPECTRO DE LA DISTORSIÓN ARMÓNICA | L    |
| DE VOLTAJE                                               | . 51 |

| GRÁFICO N° 27 DISTRIBUCIÓN DE CARGA                     | 52       |
|---------------------------------------------------------|----------|
| GRÁFICO N° 28 ANÁLISIS DE FLUJO DE POTENCIA             | 53       |
| GRÁFICO N° 29 ALIM-MLS1 EN CONDICIONES NORMALES DE      |          |
| OPERACIÓN                                               | 54       |
| GRÁFICO N° 30 PERFIL DE VOLTAJE EN LA CABECERA          | 59       |
| GRÁFICO N° 31 PERFIL DE VOLTAJE EXTREMO NORTE TRAMO     |          |
| 38285_MTA                                               | 59       |
| GRÁFICO N° 32 PERFIL DE VOLTAJE EXTREMOS SUR, TRAMO     |          |
| 43705_MTA                                               | 60       |
| GRÁFICO N° 33 GRUPO DE CONSUMIDORES                     | 65       |
| GRÁFICO N° 34 CRECIMIENTO DE DEMANDA                    | 66       |
| GRÁFICO Nº 35 CURVA DE INCLUSIÓN DE COCINAS DE INDUCCIÓ | )N EN    |
| EL ALIMENTADOR MLS1                                     | 68       |
| GRÁFICO N° 36 CURVA DE CARGA PROYECTADA                 | 71       |
| GRÁFICO Nº 37 PROYECCIÓN VS COCINAS DE INDUCCIÓN (USUA  | RIOS     |
| RESIDENCIALES)                                          | 71       |
| GRÁFICO N° 38 PÉRDIDAS TOTALES PERIODO 2014-2030        | 73       |
| GRÁFICO N° 39 CARGABILIDAD DE TRANSFORMADORES EN        |          |
| PORCENTAJE EN EL PERIODO 2016-2030                      | 75       |
| GRÁFICO N° 40 PORCENTAJE ANUAL DE DISTORSIÓN POR CARGA  | AS NO    |
| LINEALES                                                | 78       |
| GRÁFICO Nº 41 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130  |          |
| ALTERNATIVA 1                                           | 82       |
| GRÁFICO Nº 42 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130  |          |
| ALTERNATIVA 2                                           | 87       |
| GRÁFICO N° 43 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130  |          |
| ALTERNATIVA 3                                           | 91       |
| GRÁFICO Nº 44 PERDIDAS MEDIANTE ALTERNATIVAS PLANTEAC   | ) A S 93 |

## ÍNDICE DE TABLAS

| CONTENIDOI                                               | PÁG  |
|----------------------------------------------------------|------|
| TABLA N° 1 CARACTERÍSTICAS GENERALES DE UNA COCINA DE    |      |
| INDUCCIÓN.                                               | 15   |
| TABLA N° 2 CARACTERÍSTICAS TÉCNICAS PQ-BOX 100           | 19   |
| TABLA N° 3 PREGUNTA #1; VALORACIÓN DE OPCIONES           | 30   |
| TABLA N° 4 PREGUNTA #2; VALORACIÓN DE OPCIONES           | 31   |
| TABLA N° 5 PREGUNTA #3; VALORACIÓN DE OPCIONES           | 32   |
| TABLA N° 6 PREGUNTA #4; VALORACIÓN DE OPCIONES           | 33   |
| TABLA N° 7 PREGUNTA #5; VALORACIÓN DE OPCIONES           | 34   |
| TABLA N° 8 PREGUNTA #6; VALORACIÓN DE OPCIONES           | 35   |
| TABLA N° 9 PREGUNTA #7; VALORACIÓN DE OPCIONES           | 36   |
| TABLA N° 10 PREGUNTA #8; VALORACIÓN DE OPCIONES          | 37   |
| TABLA N° 11 PREGUNTA #9; VALORACIÓN DE OPCIONES          | 38   |
| TABLA N° 12 PREGUNTA #10; VALORACIÓN DE OPCIONES         | 39   |
| TABLA N° 13 SUBESTACIONES ELEPCO S.A.                    | 40   |
| TABLA N° 14 LÍNEAS DE SUBTRANSMISIÓN ELEPCO S.A          | 41   |
| TABLA N° 15 CANTIDAD DE TRANSFORMADORES POR CAPACIDAD    | )    |
| INSTALADA                                                | 43   |
| TABLA N° 16 DEMANDA ACTUAL ALIM-MLS1                     | 44   |
| TABLA N° 17 CONSUMO PROMEDIO MENSUAL POR TARIFAS         | 45   |
| TABLA N° 18 DISTORSIÓN ARMÓNICA DE VOLTAJES PARES        | 46   |
| TABLA N° 19 DISTORSIÓN ARMÓNICA DE VOLTAJE IMPAR         | 47   |
| TABLA N° 20 TASA DE DISTORSIÓN ARMÓNICA DE CORRIENTE PAR | 1.48 |
| TABLA N° 21 TASA DE DISTORSIÓN ARMÓNICA DE CORRIENTE IMP | ΆR   |
|                                                          | 49   |
| TABLA 22 ARMÓNICAS INDIVIDUALES EN AMPERIOS              | 50   |
| TABLA N° 23 DATOS PORCENTUALES DE LAS PRUEBAS Y          |      |
| MEDICIONES DEL ANALIZADOR DE MEDIO VOLTAJE               | 51   |
| TABLA N° 24 RESUMEN DE DATOS                             | 55   |
| TABLA N° 25 COSTO ANUAL DE LAS PÉRDIDAS DEL SISTEMA      | 55   |
| TABLA N° 26 TRANSFORMADORES SOBRECARGADOS                | 56   |

| TABLA N° 27 TRAMOS SOBRECARGADOS                           | 57 |
|------------------------------------------------------------|----|
| TABLA N° 28 TRAMOS CON BAJO NIVEL DE VOLTAJE               | 58 |
| TABLA N° 29 CONSUMO PROMEDIO DE ENERGÍA MENSUAL POR        |    |
| GRUPO DE CONSUMO                                           | 64 |
| TABLA N° 30 DISTRIBUCIÓN ANUAL DE COCINA DE INDUCCIÓN      | 67 |
| TABLA N° 31 POTENCIA A INCREMENTARSE POR EL PROGRAMA PEC   |    |
| POR CADA TRANSFORMADOR                                     | 69 |
| TABLA N° 32 POTENCIA DE LA CABECERA DEL ALIM-MLS1 [KW/AÑO  |    |
| 2014-2022                                                  | 70 |
| TABLA N° 33 CORRIENTES DE CABECERA AÑOS 2014-2030          | 72 |
| TABLA N° 34 PÉRDIDAS DE POTENCIA [KW] DURANTE EL PERIODO   |    |
| 2014-2030                                                  | 73 |
| TABLA N° 35 COSTO DE PÉRDIDAS DURANTE EL PERIODO 2014-2030 | 74 |
| TABLA N° 36 CARGABILIDAD DE TRANSFORMADORES PERIODO 201    | 6- |
| 2030                                                       | 74 |
| TABLA N° 37 CARGABILIDAD DE LÍNEAS PERIODO 2016-2030       | 76 |
| TABLA N° 38 NIVELES DE VOLTAJE PERIODO 2016-2030           | 77 |
| TABLA N° 39 BALANCE DE CARGA                               | 79 |
| TABLA N° 40 TRANSFORMADORES A CAMBIAR AÑO 2016             |    |
| ALTERNATIVA 1                                              | 79 |
| TABLA N° 41 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030   |    |
| ALTERNATIVA 1                                              | 81 |
| TABLA N° 42 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA | 1  |
|                                                            | 82 |
| TABLA N° 43 BALANCE DE CARGA                               | 83 |
| TABLA N° 44 TRANSFORMADORES A CAMBIAR AÑO 2016             |    |
| ALTERNATIVA 2                                              | 83 |
| TABLA N° 45 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030   |    |
| ALTERNATIVA 2                                              | 85 |
| TABLA N° 46 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA | 2  |
|                                                            | 86 |
|                                                            | ۷7 |

| TABLA N° 48 TRANSFORMADORES A CAMBIAR AÑO 2016               |
|--------------------------------------------------------------|
| ALTERNATIVA 3 88                                             |
| TABLA N° 49 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030     |
| ALTERNATIVA 2 89                                             |
| TABLA N° 50 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA 3 |
| 90                                                           |
| TABLA N° 51 RESUMEN DE ALTERNATIVAS PLANTEADAS 92            |
| TABLA N° 52 PÉRDIDAS POR ALTERNATIVA EN [KW]92               |
| TABLA N° 53 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 1   |
| 93                                                           |
| TABLA Nº 54 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 2   |
| 95                                                           |
| TABLA Nº 55 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 3   |
| 96                                                           |
| TABLA N° 56 COSTOS DE ALTERNATIVAS PLANTEADAS97              |
| TABLA N° 57 TOTAL DE INGRESOS OPERACIONALES98                |
| TABLA N° 58 ANÁLISIS COSTO BENEFICIO98                       |

#### RESUMEN

El desarrollo del sector eléctrico es fundamental para el normal desenvolvimiento de las crecientes actividades productivas del Ecuador. En efecto, en los próximos años se ha previsto el abastecimiento eficiente de la futura demanda de energía eléctrica, a través de una importante participación de generación hidroeléctrica., trayendo como consecuencia la disminución de la tarifa eléctrica, lo que se reflejará en un mayor consumo de energía, fundamentalmente por la disminución o traslado del uso de gas de uso doméstico hacia el uso de cocinas de inducción.

Con estos antecedentes se planteó el presente trabajo investigativo, el cual consta de los siguientes pasos: En primera instancia se realiza un estudio documental y de campo de la demanda histórica, conjuntamente aplicando encuestas a los usuarios que abarca el alimentador Mulaló Joseguango bajo, de esta manera se establece la demanda actual y las costumbres de cocción. Con los datos obtenidos incluyendo la demanda por las cocinas de inducción, se proyecta la demanda en el periodo 2015 – 2030, utilizando el método geométrico.

Una vez determinado el incremento de la demanda utilizando el software CYMDIST se evalúa la infraestructura actual, incrementando la demanda en periodos de 2 años hasta el 2030, los cuales determinan los puntos críticos en el alimentador. Para solucionar los problemas determinados se plantean 3 alternativas de solución, encontrando técnica y económicamente más viable a la alternativa 2 con un monto de inversión presupuestado de \$374887,44 logrando reducir en cuanto a pérdidas equivalente a \$ 66414 dólares al año de energía recuperada, estas pérdidas comprenden 3,9%. El estudio es factible para su ejecución cumpliendo así los estándares exigidos de la regulación CONELEC 004/01.

#### **ABSTRACT**

The energy sector development is fundamental for the normal growing productive activities in Ecuador. In fact, in the coming years it is planned the efficient supply of future electricity demand, through a significant of hydroelectric generation participation, resulting in the reduction of the electricity tariff which will be reflected in higher consumption energy, mainly due to the decrease or transfer the domestic gas use towards using induction cookers. With those backgrounds this proposed research, follow these steps: In the first instance a documentary and historical demand study area is conducted jointly applying user surveys covering the Mulaló - Joseguango Bajo supply, so current demand and customs set cooking. With the data and the demand for induction cookers from the period 2015 - 2030, the geometric method is projected. Once determined the increase in demand using the CYMDIST software the current infrastructure is evaluated, the increasing demand in periods of two years until 2030, which find out the critical points in the supply. To resolve certain problems arise three alternative solutions, finding technical and economically more viable alternative 2 with a total investment budget of \$ 374.887,44 as to successfully reducing to \$ 66,414 US dollars per year the recovered energy, these losses comprise 3.9%. The study is feasible for implementation and also comply with the required standards by CONELEC regulation 004/01.

## AVAL DE TRADUCCIÓN

#### INTRODUCCIÓN

Con el cambio de la Matriz Energética, el Gobierno Nacional construye grandes proyectos emblemáticos de generación hidroeléctrica, que cubrirá futuras demandas como, el metro de quito, la refinería del pacifico, la sustitución masiva de las cocinas convencionales a gas por cocinas de inducción, entre otras. Reflejando un aumento considerable de consumo de energía eléctrica en nuestro país.

La empresa eléctrica provincial Cotopaxi ELEPCO S.A., consecuente con el plan del gobierno se encuentra desarrollando el reforzamiento de redes de distribución con el objeto de brindar una buena calidad de servicio y producto, mismos que deben ser efectuados para que el sistema sea eficiente, cumpliendo así con la regulación CONELEC 004/01.

El trabajo de investigación se encuentra desarrollado por tres capítulos:

El Primer Capítulo establece la FUNDAMENTACIÓN TEÓRICA que describe todos los argumentos teóricos, explicando definiciones básicas así como también la metodología adoptada por el MEER y equipos y software los cuales ayudarán al desarrollo del proyecto.

El segundo Capítulo se tiene la, PRESENTACIÓN, INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS, para el desarrollo del proyecto de investigación, considerado como aplicado, descriptivo y de campo y mediante la técnica de la encuesta para recopilar datos e información y simular un estado actual en el software CYMDITS.

El tercer Capítulo se analiza la PROPUESTA, una vez establecidos los parámetros eléctrico se proyecta la demanda durante el periodo 2015-2030, para conjuntamente con la distribución de cocinas obtener un total de demanda por transformador que posteriormente se evalúa cada dos años mediante el software CYMDITS, planteando así alternativas de solución.

Finalmente se elaboran conclusiones y recomendaciones.

## CAPÍTULO I FUNDAMENTACIÓN TEÓRICA

#### 1.1. Sistemas Eléctricos de Distribución

#### 1.1.1. Definición de un Sistema de Distribución

Según (YEBRA, 2009) dice: "Un sistema de distribución de energía eléctrica es el conjunto de elementos encargados de conducir la energía desde una subestación de potencia hasta el usuario" Pág. 2

Según (SAADAT\_E-BOOK) dice: "El sistema de distribución es la parte que conecta la subestación de distribución para el equipo de servicio de los consumidores-entrada. Las líneas de distribución principales son por lo general en el intervalo de 4 a 34,5 kV alimentar la carga en un geográfica bien definida". Pág. 6

El sistema de distribución es el enlace que existe entre la red de medio y bajo voltaje, básicamente comprendido con líneas primarias, transformadores, líneas secundarias de distribución, acometidas y medidores, hasta llegar al usuario final.

#### 1.1.2. Clasificación de las redes de distribución

Según (YEBRA, 2009) y (RAMIREZ)

#### 1.1.2.1. De acuerdo a la forma en que se construyen:

- 1. Sistemas aéreos
- 2. Sistemas subterráneos
- 3. Sistemas mixtos

Los sistemas aéreos tienen la característica que los conductores de la red primaria y secundaria, así como los transformadores y demás elementos que conforman un sistema de distribución, están suspendidos en postes de concreto, acero o fibra de

vidrio. Los sistemas subterráneos son aquellos que las instalaciones se ocultan bajo la tierra con sus respectivas cajas de revisión, en la mayoría de las ocasiones las subestaciones MV-BV (De media a bajo voltaje) se instalan a nivel del suelo en locales o gabinetes. En los sistemas mixtos la red primaria o la red secundaria está soportada en postes, o a su vez ocultas bajo el suelo, dependiendo de la topología de la zona y el lugar a instalarse dicha red.

#### 1.1.2.2. De acuerdo al tipo de cargas.

La finalidad a la cual el usuario destina la energía eléctrica también sirve de criterio para clasificar las cargas.

#### Redes de distribución para cargas residenciales.

Que comprende básicamente los edificios de apartamentos, multifamiliares, condominios, urbanizaciones, etc. Estas cargas se caracterizan por ser eminentemente resistivas (alumbrado y calefacción) y aparatos electrodomésticos de pequeñas características reactivas. De acuerdo al nivel de vida y a los hábitos de los consumidores residenciales

#### Redes de distribución para cargas comerciales.

Caracterizadas por ser resistivas y se localizan en áreas céntricas de las ciudades donde se realizan actividades comerciales, centros comerciales y edificios de oficinas.

#### Redes de distribución para cargas industriales.

Que tienen un componente importante de energía reactiva debido a la gran cantidad de motores instalados. Con frecuencia se hace necesario corregir el factor de potencia.

#### Redes de distribución para cargas mixtas

En este tipo de redes se tienen varias de estas cargas en una misma red de distribución. No muy deseables pues se dificulta el control de pérdidas.

Las redes de distribución se clasifican mediante sistemas aéreos, subterráneos y mixtos, los cuales están presentes en toda red eléctrica de acuerdo a cada topología que abarca el área de concesión de la empresa distribuidora, también se clasifica de

acuerdo al tipo de carga como pueden ser: residenciales, comerciales industriales y mixtas. Constituyendo con principales elementos que enlaza desde la red de medio voltaje hasta el equipo de medición.

#### 1.1.3. Principales elementos constitutivos

Los principales elementos constitutivos de un sistema de distribución son:

- 1. Líneas primarias.
- 2. Transformadores de distribución.
- 3. Líneas secundarias.
- 4. Acometidas.
- 5. Equipo de medición.
- 6. Alumbrado público

#### 1.1.3.1. Líneas primarias de distribución

Según (YEBRA, 2009) y (SAADAT\_E-BOOK) dice: "Las líneas primarias de distribución son los cables encargados de conducir la energía desde las subestaciones de potencia hasta los transformadores de distribución". Pág. 16

La estructura de una línea primaria de distribución se forma con: troncales y ramales. Los troncales de la red primaria son los cables de mayor capacidad que transmiten la energía desde la subestación hasta los ramales existentes. Están formados por conductores de gruesos calibres, siendo común emplear conductores de calibres 3/0, 4/0 hasta 266 MCM en cables de aluminio. Los ramales son los cables que se derivan de los troncales hasta llegar a los trasformadores de distribución. Normalmente los ramales son de calibre menor al de los troncales, empleándose calibres de 1/0, No. 2, AWG de acuerdo a la densidad de carga.

La estructura de los alimentadores primarios son de forma radial, viendo una analogía se asemeja a un árbol en el que el tronco es la troncal del alimentador que lleva la mayor cantidad de energía para luego ser distribuida por medio de los ramales.

Las redes primarias se clasifica, por el número de fases e hilos, de la siguiente manera:

- 1. Trifásicas tres hilos.
- 2. Trifásicas cuatro hilos.
- 3. Monofásicas dos hilos.

#### 1.1.3.2. Transformadores de distribución

Según (YEBRA, 2009) y (ESPINOSA Y LARA), "Los transformadores de distribución son los equipos encargados de cambiar el voltaje primario a un valor menor de tal manera que el usuario puede utilizarla sin necesidad de equipos e instalaciones costosas y peligrosas. En si el transformador de distribución es el enlace entre la red primaria y la red secundaria". Pág. 22

La capacidad del transformador se selecciona en función de la magnitud de la carga, considerando factores muy importantes que influye en el dimensionamiento de la misma como factor de demanda y factor de coincidencia, ya que sin utilizar los mencionados factores se puede sobredimensionar o subdimensionar al transformador trayendo consigo problemas futuros.

La conexión del lado primario del trasformador es en delta y en el lado secundario se encuentra conectado en estrella a cuatro hilos con el neutro aterrado a tierra teniendo así la posibilidad de alimentar cargas de fuerza y de alumbrado, esta conexión es favorable ya que permite evacuar las corrientes parasitas al neutro teniendo un sistema más confiable.

En los transformadores monofásicos se utiliza la conexión de tres hilos, dos fases y un neutro alimentando en su mayoría a cargas residenciales y de alumbrado público.

#### 1.1.3.3. Redes secundarias de distribución

Según (ESPINOSA Y LARA) y (YEBRA, 2009) "Las redes secundarias conducen la energía desde los transformadores de distribución hasta las acometidas de los usuarios. En la mayoría de los casos los circuitos secundarios son de operación radial". Pág. 23

Los sistemas secundarios de distribución, por el número de hilos, se clasifican en.

- 1. Monofásico dos hilos
- 2. Monofásico tres hilos
- 3. Trifásico tres hilos
- 4. Trifásico cuatro hilos

#### 1.1.3.4. Acometidas

Son elementos que unen el sistema de medición con la red de distribución que dependiendo de la magnitud de la carga que el cliente posee, puede ser en medio o bajo voltaje para suministrar energía al usuario final; la medición se lo puede realizar en medio o bajo voltaje dependiendo del tipo de acometida, que a su vez la medición puede ser directa o indirecta.

#### 1.1.3.5. Alumbrado público

Es un servicio de iluminación pública que permite mejorar la circulación vehicular y peatonal con seguridad, esta normalizado en luminaria de sodio de 100, 150 y 250 vatios a doble potencia.

#### 1.1.4. Estructura principal

Según (ESPINOSA Y LARA) y (YEBRA, 2009)

Las redes de distribución normalmente se construyen de acuerdo a estructuras bien definidas. Cada tipo de estructura se adapta a un cierto tipo de condiciones y necesidades marcadas por el tipo de carga, la forma geográfica de la zona, la confiabilidad requerida por el tipo de usuarios, las necesidades futuras, etc.

#### 1.1.4.1. Red radial

Esta estructura está formada por cables troncales y cables ramales en los que la energía sigue un sólo camino de la fuente a la carga. Puede tener ligas de amarre con otras redes cercanas, o puede no tenerlas. Este tipo de estructura es la más comúnmente utilizada en líneas de construcción aérea, y en redes subterráneas también se utiliza frecuentemente.

En las redes radiales en operación normal, cada alimentador suministra una cierta carga enmarcada por la zona de influencia del alimentador. En este arreglo los elementos de seccionamiento, que unen a dos alimentadores diferentes, están abiertos. En caso de emergencia, los elementos de seccionamiento se cierran y abren en forma estratégica para hacer movimientos de carga, y aislar el tramo donde se localiza la falla.

Un estructura principal está adaptada de acuerdo a la topología geográfica de la zona y de acuerdo las necesidades de confiabilidad que le sistema lo requiera, como pueden ser una estructura en anillo donde la confiabilidad es superior o una estructura radial que permite tener diversas ramificaciones de la red siendo la más utilizada en diseño de redes de distribución.

#### 1.1.5. Fuentes armónicas

Según (HARPER) y (SCHNEIDER ELECTRIC, 2004): "Los armónicos son corrientes y voltajes senoidal con frecuencias que son múltiplos enteros de la frecuencia fundamental de la línea eléctrica, que es 60 Hz". Pág. 75

Los armónicos distorsionan la forma de onda del voltaje y corriente entregadas en forma senoidal normalmente. Cada armónico tiene su respectivo orden; al incrementar el orden, la frecuencia de los armónicos y su magnitud disminuye. Por eso, los armónicos de orden inferior, usualmente el quinto y el séptimo, tienen el mayor efecto en el sistema de potencia por el incremento en las perdidas en el núcleo o y en el cobre debido al efecto piel.

Según (RAMIREZ)"Generalmente cuando la carga no lineal representa menos del 20% de la carga total la distorsión armónica en corriente estará dentro de los límites establecidos en la IEEE 519, sin que exista la necesidad de efectuar algún tipo de filtrado". Pág. 18

Los armónicos se definen habitualmente con los datos más importantes que lo caracterizan, y son:

Según (SCHNEIDER ELECTRIC, 2004):

**Amplitud:** Hace referencia al valor del voltaje o de la intensidad del armónico, la amplitud de un armónico es generalmente un pequeño porcentaje de la fundamental.

**Fase:** Hace referencia al valor del ángulo entre el armónico y la fundamental.

**Orden:** Hace referencia al valor de su frecuencia referida a la fundamental. Así un armónico de orden 3 tiene una frecuencia tres veces superior a la fundamental, es decir, 3 x 60 Hz es igual a 180 Hz. El espectro es la distribución de la amplitud de varios armónicos como una función del número del armónico.

Las características principales de los armónicos son las mencionadas, donde se idéntica el nivel de contaminación que presenta en la red eléctrica provocadas por cargas no lineales.

#### 1.1.5.1. Origen de los armónicos

Según (SCHNEIDER ELECTRIC, 2004) y (HARPER)

Los equipos generadores de armónicos están presentes en todas las instalaciones industriales, comerciales y residenciales Los armónicos son provocados por las cargas no lineales.

#### Definición de carga no lineal

Una carga es considerada no lineal cuando la intensidad que circula por ella no tiene la misma forma sinusoidal que el voltaje que la alimenta.

Las fuentes de cargas no lineales más comunes son:

- Los equipos que contienen circuitos con electrónica de potencia
- Equipos industriales (máquinas de soldar, hornos por arco, hornos de inducción y rectificadores).
- Variadores de velocidad para motores en C.C. y asíncronos.
- Equipos de informática (PC's, fotocopiadoras, faxes, etc.).
- Aplicaciones domésticas (equipos de televisión, hornos microondas, cocinas de inducción, iluminación, fluorescente, etc.)

En un sistema eléctrico las cargas no lineales son consideradas las que mayor contaminación producen debido que los equipos contiene circuitos electrónicos que distorsiona la onda fundamental.

#### 1.1.5.2. Perturbaciones causadas por los Armónicos

Según (SCHNEIDER ELECTRIC, 2004)

El flujo de armónicos en una instalación reduce la calidad de la energía y origina numerosos problemas como son sobrecargas de:

- La red por el incremento de la corriente eficaz,
- Los conductores del neutro debido a la suma de los armónicos de rango 3 generados por las cargas monofásicas,
- Vibraciones y envejecimiento prematuro de los alternadores, transformadores y motores; zumbido de los transformadores,
- Envejecimiento prematuro de los condensadores de compensación de energía reactiva,
- Deformación del voltaje de alimentación pudiendo perturbar a los receptores sensibles,
- Perturbación de las redes de comunicación o de las líneas telefónicas.

Las perturbaciones son molestias o daños causados por la presencia de armónicos, trayendo consigo diversos tipos de problemas que afecta el normal funcionamiento de los equipos conectados a la misma red.

#### 1.1.5.3. El impacto económico de las perturbaciones

Según (SCHNEIDER ELECTRIC, 2004)

Los armónicos tienen un impacto económico importante. En efecto:

- El envejecimiento prematuro de los equipos supone que deben reemplazarse con anterioridad, a menos que se hayan sobredimensionado inicialmente,
- Las sobrecargas de la instalación obligan a aumentar la potencia contratada,
   e implican, si no existe un sobredimensionamiento de la instalación,
   pérdidas suplementarias,
- Las perturbaciones en intensidad producen disparos intempestivos y el paro de los equipos de producción.

Estos costos de material, pérdidas energéticas y de productividad contribuyen a la pérdida de competitividad de las empresas.

La presencia de armónicos produce disparos intempestivos, obligando al manteniendo correctivo generando pérdidas significativas para la industria ya sea por paro de producción o reposición de equipos eléctricos afectados.

#### 1.1.5.4. Indicadores esenciales de la distorsión armónica

Según (SCHNEIDER ELECTRIC, 2004) y (HARPER)

La THD de voltaje indica la distorsión de la onda de voltaje.

La THD de corriente indica la distorsión de la onda de corriente.

Para identificar la carga que causa la distorsión, la THD de corriente se debe medir a la entrada y en cada una de las salidas de los diferentes circuitos.

El factor de cresta se utiliza para caracterizar la amplitud de un generador para proporcionar corrientes instantáneas de valor elevado. El material informático por ejemplo, absorbe intensidades muy distorsionadas donde el factor de cresta puede ser 3 o incluso 5.

**El espectro** (descomposición en frecuencia de la señal) da una representación diferente de las señales eléctricas, y permite evaluar la distorsión.

Los principales indicadores de distorsión armónica son el THD de corriente, THD de voltaje, El factor de cresta y el espectro, que permite diagnosticar el nivel de distorsión total.

#### 1.1.6. Regulación CONELEC 004/01

Esta regulación establece los niveles de calidad de la prestación del servicio eléctrico de distribución y los procedimientos de evaluación a ser observados por parte de las Empresas Distribuidoras, las mismas con responsabilidad de prestar el servicio eléctrico a los Consumidores ubicados en su zona de Concesión, dentro de los niveles de calidad establecidos, en virtud de lo que señala la Ley de Régimen del Sector Eléctrico

Nivel de Voltaje

Índice de Calidad

$$\Delta V_{k}$$
 (%) =  $\frac{V_{k} - V_{n}}{V_{n}} * 100$ 

Ec. (1) 1.2.5

#### Donde:

 $\Delta V_k$ : variación de voltaje, en el punto de medición, en el intervalo k de 10 minutos.

 $V_k$ : voltaje eficaz (rms) medido en cada intervalo de medición k de 10 minutos.

V<sub>n</sub>: voltaje nominal en el punto de medición.

#### Límites

El Distribuidor no cumple con el nivel de voltaje en el punto de medición respectivo, cuando durante un 5% o más del período de medición de 7 días continuos, en cada mes, el servicio lo suministra incumpliendo los límites de voltaje.

Las variaciones de voltaje admitidas con respecto al valor del voltaje nominal se señalan a continuación:

|                       | Subetapa 1 | Subetapa 2 |
|-----------------------|------------|------------|
| Alto Voltaje          | ± 7,0 %    | ± 5,0 %    |
| Medio Voltaje         | ± 10,0 %   | ± 8,0 %    |
| Bajo Voltaje. Urbanas | ± 10,0 %   | ± 8,0 %    |
| Bajo Voltaje. Rurales | ± 13,0 %   | ± 10,0 %   |

#### Armónicos

#### Índices de Calidad

$$\mathbf{V}_{\mathbf{i}}' = \left(\frac{\mathbf{V}_{\mathbf{i}}}{\mathbf{V}_{\mathbf{n}}}\right) * 100$$

Ec.(2) 1.2.5

$$THD = \left(\frac{\sqrt{\sum_{i=2}^{40} (V_i)^2}}{V_n}\right) * 100$$

Ec.(3) 1.2.5

#### Donde:

V<sub>i</sub>': factor de distorsión armónica individual de voltaje.

THD:factor de distorsión total por armónicos, expresado en porcentaje

 $V_i$ : valor eficaz (rms) del voltaje armónico "i" (para i = 2... 40) expresado en voltios.

V<sub>n</sub>: voltaje nominal del punto de medición expresado en voltios.

#### Límites

Los valores eficaces (rms) de los voltajes armónicos individuales  $(V_i)$  y los THD, expresados como porcentaje del voltaje nominal del punto de medición respectivo, no deben superar los valores límite  $(V_i)$  y THD' señalados en esta regulación CONELEC 004/01

#### 1.1.7. Mejoras de la calidad de producto en redes distribución

En redes de distribución existen algunas mejoras óptimas que se pueden implementar, con esto se logra un adecuado funcionamiento del sistema eléctrico, como son las siguientes:

#### Táp de un transformador

Los táps son derivaciones que poseen los transformadores trifásicos, los cuales tienen la posibilidad de cambiar el nivel de voltaje en la salida del transformador.

#### Regulador de voltaje

Un regulador de voltaje es básicamente un autotransformador con táps en uno de sus devanados, que permite variar el voltaje entregado, y que puede ser operado bajo carga. El dispositivo común es un regulador monofásico.

#### Banco de capacitores

Los bancos de capacitores de potencia son agrupamientos de unidades montadas sobre bastidores metálicos, que se instalan en un punto de la red de MV (en subestaciones o en alimentadores de distribución) con el objeto de suministrar potencia reactiva y regula el voltaje del sistema.

#### Balance de carga

Es el referente a la adjudicación de la carga en los distintos nudos del sistema a ser conectados en las fases del sistema, haciendo que la decisión sea tomada en la relación a cual fase será conectada la carga ubicada en cada n-ésimo nudo.

#### Transferencia de carga

Es la acción en la cual se libera carga de un lugar a otro según convenga, para proteger posibles averías en los elementos de un circuito eléctrico.

#### Cambio de calibres de conductores

Entre las mejoras técnicas se encuentran el cambio de calibre de los conductores que en muchas ocasiones es efectiva desde el punto de vista técnico y económico si se realiza con los calibres adecuados y se escoge los tramos del circuito para hacer el cambio de calibre de mayor efectividad. Es necesario realizar la evaluación de la demanda con la mayor incertidumbre posible y utilizar métodos de evaluación correctos.

#### Reconfiguración del alimentador

La reconfiguración de circuitos de distribución consiste básicamente en la transferencia de carga desde alimentadores muy cargados hacia alimentadores con cargas relativamente menores, con lo cual no solo se busca controlar el nivel de carga en los alimentadores involucrados en la operación, sino también mejorar los perfiles de voltaje a lo largo de ellos y reducir las pérdidas de potencia totales. El objetivo de la reconfiguración es obtener las mínimas pérdidas posibles en las redes de distribución.

#### Las posibles soluciones para atenuar los efectos de los armónicos.

#### Adaptaciones de la instalación

- Posicionar las cargas perturbadoras aguas arriba en la red
- Reagrupar las cargas perturbadoras
- Separar las fuentes

## Utilización de dispositivos particulares en la alimentación (inductancias, transformadores especiales)

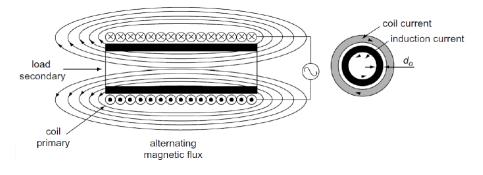
- Utilización de transformadores en conexiones particulares.
- Instalación de inductancias.

#### Filtrado.

En el caso en que las acciones preventivas presentadas anteriormente no sean suficientes, la instalación debe ser equipada con filtros.

Se distinguen tres tipos de filtros:

- Filtro pasivo.
- Filtro activo.
- Filtro híbrido.


#### 1.2. Cocinas de Inducción

#### 1.2.1. Fundamentos del calentamiento por inducción

Según (FAIRCHILD, semiconductor, 2000) y (ESTEVE, 1999) menciona: "Todo calentamiento por inducción es desarrollado utilizando la inducción electromagnética, primero descubierto por Michael Faraday en 1831, que se refiere al fenómeno por el que se genera corriente eléctrica en un circuito cerrado por la fluctuación de la corriente en otro circuito a lado de él". Pág. 1

En el gráfico N°1 se puede apreciar el principio de inducción magnética que comúnmente se utiliza para el funcionamiento de trasformadores, motores, generadores, entre otras.

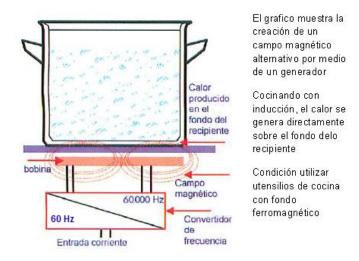
#### GRÁFICO Nº 1 FUNDAMENTOS DE INDUCCIÓN



FUENTE: Imagen tomada de (FAIRCHILD, semiconductor, 2000)

Dentro de la inducción magnética se produce las pérdidas de energía en forma de calor puede convertir en energía térmica productiva en sistemas de calefacción eléctrica, con la aplicación de esta ley se ha desarrollado diversos productos como forja, horneado, temple, soldadura, entre otras.

#### 1.2.2. Funcionamiento de una cocina eléctrica de inducción


Según (Cocinas de Inducción vs Cocina a Gas (GLP), 2013) y (CUSHICÓNDOR, y otros, 2009) "La cocina de inducción es un tipo de cocina vitrocerámica, cuyo elemento principal, ubicado debajo de la zona de cocción, es una bobina plana de cobre y con forma de espiral, por la que se hace pasar una corriente eléctrica I de frecuencia variable (20 – 100 kHz), la misma que genera una densidad de flujo magnético alterno, con la misma frecuencia con la que varía la corriente en la bobina". Pág. 9

El campo magnético atraviesa la vitrocerámica sin ninguna obstrucción y penetra el material ferromagnético (cacerola) colocado encima de la zona de cocción, creando así corrientes circulares de alta frecuencia alrededor de la misma; Por la presencia de estas corrientes inducidas y debido a la frecuencia de trabajo que se está utilizando, está energía se disipa en forma de calor, debido al efecto joule calentando el material ferromagnético de manera elevada y rápida.

De igual manera debido a la corriente senoidal, genera un campo magnético alterno dentro del recipiente, que magnetiza y desmagnetiza repetidamente de acuerdo a la frecuencia de trabajo, provocando que moléculas de hierro vibren entre 20000 y 50000 veces por segundo, generando calor adicional por la fricción que ocurre entre ellas, denominada también como perdida por histéresis magnética, que en materiales magnéticos son más fáciles de calentar; cuanto mayor es la frecuencia, mayor es el flujo de calor, manipulando este parámetro por medio de los niveles que posea la cocina de inducción.

El calor liberado por el efecto joule aumentado el calor liberado por histéresis magnética y por el efecto peculiar es la que se emplea para la cocción de alimentos como se muestra en el gráfico N°2, notando que a mayor frecuencia mayor es el flujo de calor y mayor va ser el consumo de energía.

#### GRÁFICO Nº 2 FUNCIONAMIENTO DE UNA COCINA DE INDUCCIÓN



**FUENTE:** Imagen tomada de (INDUCS)

Estas corrientes inducidas en el material ferromagnético generan una gran cantidad de calor solo en la base del recipiente, ya que el material vitrocerámico no es conductor y los campos magnéticos no provoca ninguna reacción en la misma, al calentar el recipiente hay una posibilidad que la vitrocerámica se caliente en bajas proporciones debido al contacto directo que mantiene con el material ferromagnético (cacerola).

#### 1.2.3. Características principales

Las características relevantes en una cocina de inducción son las que se muestran en la tabla  $N^{\circ}$  1

Según (INDUCS) y (ECOGAS)

TABLA Nº 1 CARACTERÍSTICAS GENERALES DE UNA COCINA DE INDUCCIÓN.

| CARACTERÍSTICAS           |           |             |  |
|---------------------------|-----------|-------------|--|
|                           | INDUCS    | ECOGAS      |  |
| Voltaje de Funcionamiento | 220 VAC   | 208-240 VAC |  |
| Frecuencia de entrada     | 50/60 Hz  | 50/60 Hz    |  |
| Frecuencia de trabajo     | 20-60 kHz | 20-50 kHz   |  |

FUENTE: Catálogo (INDUCS) y (ECOGAS)

# 1.2.4. Ventajas y Desventajas

Según (INDUCS) y (RECREAC)

### Las Ventajas son;

**Rapidez.** Calor inmediato. Un litro de agua se calienta un 60% más rápido que con una cocina a gas. Es el único sistema que aprovecha casi un 100% de la energía.

**Eficiencia.** Para producirse el calentamiento no es necesario el contacto físico con el recipiente, únicamente se da mediante el acoplamiento magnético; por lo tanto no hay prácticamente nada de calor desperdiciado.

**Seguridad.** La seguridad es un punto importante. Con la cocina de inducción, los quemadores permanecen fríos (temperatura ambiente), lo que elimina la preocupación de quemarse las manos.

### Las Desventajas son;

**Costo.** Típicamente, utensilios de cocina de inducción y la misma cocina es más caro debido a sus componentes y materiales utilizados.

**Utensilios de cocina especial.** La inducción puede calentar la comida sólo a través de las cacerolas hechas de acero o de hierro. Se puede probar utensilios de cocina para ver si es compatible pasando un imán a través de la cacerola. Si el imán se pega a la sartén, la sartén funcionará. No todos los utensilios de cocina de acero inoxidable son compatible con la inducción.

**Interrupción de la electricidad.** Al igual que con una estufa eléctrica, las de inducción perderán la capacidad de funcionar si se queda sin energía.

La utilización de cocinas de inducción trae consigo ventajas como: rapidez eficiencia y seguridad optimizando recursos al momento de cocción y desventajas como el costo de inversión y la posible interrupción de la energía eléctrica que el usuario no podrá hacer uso de la cocina.

# 1.3.Metodología propuesta por el MEER, para la proyección de la demanda con la incorporación de las cocinas de inducción

Según (CONELEC, 2004):

Esta metodología contiene procedimientos los cuales están sujetos a revisión y actualización con el fin de garantizar las condiciones de calidad, seguridad y confiabilidad del servicio eléctrico en todas las empresas distribuidoras del país.

Dentro de la metodología existen varios puntos fundamentales para el desarrollo del estudio del impacto que implica la incorporación de las cocinas de inducción tales como:

Diagnóstico del estado actual del sistema eléctrico.- este proceso se iniciará con el análisis de los registros de carga en la cabecera del alimentador. Empleando como variable de distribución la energía facturada promedio por lo menos de los últimos tres meses, en cada transformador de distribución. Solo si no se dispone de los registros de la energía facturada, se usará la potencia instalada como variable de distribución.

Las demandas asignadas se analizaran en condiciones de operación de todos los alimentadores primarios del sistema mediante el software CYMDIST.

Para obtener los factores de coincidencia se utilizara el procedimiento ampliamente aceptado a nivel internacional, basado en la metodología desarrollada y aprobada por la empresa Westinghouse.

Cabe destacar que la aplicación de la distribución de la demanda por kVA instalados que entrega el CYMDIST, no es la más apropiada cuando el número de usuarios en menos a 5; en este caso se utilizará el método REA.

# Evaluación de la nueva carga por incorporación masiva de cocinas de inducción

Según la National Electrical Code establece que una cocina encimera de inducción de 3,5kW o menos tiene un factor de demanda de 80%, por lo que para el caso de la cocina de 3kW resulta en una demanda individual de 2,4 KW, valor que se deberá utilizar para el cálculo de reforzamiento de la acometida por lo que se trata de la demanda individual del equipo.

En los alimentadores primarios se deberá valorar la coincidencia al pico del medio día con el valor de la demanda máxima diversificada, mientras que para el pico de la noche se valorará con el 60% de la demanda máxima diversificada.

Para analizar la incidencia de la cocción en los trasformadores de distribución, el valor de demanda debe ser afectado por el factor de coincidencia correspondiente al número de usuarios o de equipos, dependiendo del nivel donde se requiera obtener la demanda máxima coincidente.

La incidencia de la cocción sobre la demanda existente se determinará multiplicando 2,4kW (FP= 0,95) por el número de cocinas y por el factor de coincidencia correspondiente al número de cocinas que se incorporan en ese trasformador, para la condición de la demanda existente al medio día. Por otra parte, para la demanda existente de la noche se añadirá el 60% del valor calculado para el medio día. Para ampliar la información se puede observar en el anexo N° 1

# 1.4. Proyección de la demanda

La proyección de la demanda futura consiste un principio básico fundamental para conocer las acciones a tomar en el progresivo crecimiento de la demanda, encontrando posibles alternativas de mejoras tanto en infraestructura eléctrica como en calidad, permitiendo la elaboración de presupuestos, estudios de perdidas e inversiones que se realizara para afrontar cualquier tipo de anomalía que se presente en la red de energía eléctrica.

Para la proyección se utiliza el método estadístico tendenciales confiables con el fin de obtener una tasa de crecimiento promedio como se muestra a continuación.

Según (RAMIREZ) la tasa de crecimiento de la demanda está dada por:

$$r = \sqrt[n]{\frac{D_n}{D_0}} - 1$$
 Ec. (4) 1.5

Denominada tasa de crecimiento geométrico, o por

$$r = \frac{\frac{D_n}{D_0} - 1}{n}$$
 Ec. (5) 1.5

Denominada tasa de crecimiento aritmético, donde:

 $D_0$  = Demanda actual

D<sub>n</sub> = Demanda para el periodo de proyección

n = Período de proyección

# 1.5. Equipos y Software

# 1.5.1. Analizador de calidad eléctrica PQ-Box 100 (4U/4I)

Es ideal para el análisis de redes de baja, media y alta tensión y cumple todos los requerimientos de la norma IEC 61000-4-30 sobre los equipos de la categoría A.

#### **Funciones**

- Medición de calidad te voltaje en redes de baja y medio voltaje.
- Función de registro de fallas
- Análisis de carga, medición de energía

La tabla N° 2 muestra las características técnicas del equipo.

TABLA Nº 2 CARACTERÍSTICAS TÉCNICAS PQ-BOX 100

| PARÁMETRO                                                     | DETALLE                                |
|---------------------------------------------------------------|----------------------------------------|
| 4 entradas de tensión:                                        | L1, L2, L3, N, E                       |
| Tensión de medida máxima:                                     | Consulte la Sección 1.4                |
| Entradas de corriente:                                        | 4 con un máximo de 700 mV rms,         |
| Almacenamiento de datos:                                      | 1 GByte Interfaces: USB 2.0 Pantalla:  |
| Clima rango de resistencia / temperatura:<br>Función:         | -20 ° C a 70 ° C                       |
| Almacenamiento:                                               | -30 ° C a 80 ° C                       |
| Fuente de alimentación:                                       | 100 V a 420 V CA o 140 V a 220 V<br>DC |
| Fuente de alimentación de emergencia (fallo de alimentación): | Batería NiMH (20 segundos)             |
| Categoría de instalación:                                     | 300 V CAT IV o 600 V CAT III           |
| La exactitud de las entradas de tensión:                      | <0,1% del 10% al 150% de               |

FUENTE: Catálogo Equipo ELEPCO SA

El gráfico N° 3 se apreciar la forma física del equipo a utilizar.

### GRÁFICO Nº 3 ANALIZADOR DE CALIDAD ELÉCTRICA PQ-BOX 100



FUENTE: Imagen tomada ELEPCO S.A.

### 1.5.2. CYMDIST – Análisis de sistemas de distribución

Para realizar la simulación del comportamiento del alimentador Mulaló Joseguango Bajo se utilizará el software CYMDIST versión 5.07

Según (COOPER, 2014):

El programa CYMDYST permite realizar varios tipos de estudios en sistemas equilibrados o desequilibrados, monofásicos, bifásicos o trifásicos, con configuración radial, en anillo o mallada. El programa CYMDIST incluye un editor completo de redes y las funciones siguientes:

- Flujo de potencia desbalanceado
- Balance de cargas
- Distribución y evaluación de cargas

El programa de análisis de redes de distribución CYMDIST es una serie de aplicaciones que consta de un editor de red, de módulos de análisis y de bibliotecas de modelos personalizables desde las cuales se puede obtener la solución más eficiente.

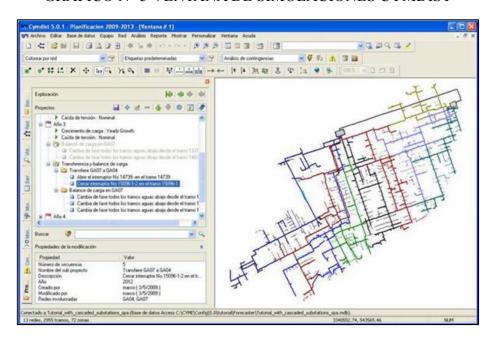
El programa de análisis de redes de distribución CYMDIST puede realizar estudios de planeamiento y simular el comportamiento de las redes de distribución en distintas condiciones de funcionamiento y distintos escenarios. Además incluye varias funciones necesarias para el planeamiento, la explotación y el análisis de las redes de distribución.

Las funciones de análisis de flujo de carga, cortocircuito y optimización de la configuración eléctrica pueden ejecutarse en sistemas de distribución equilibrados o desequilibrados, con diferentes combinaciones de fases y configuraciones.

El espacio de trabajo del programa es totalmente personalizable. La representación gráfica de los componentes de la red, los resultados y los reportes puede crearse y modificarse como se observa en el gráfico N° 4.

# Set CAME SOL AGE CAMEST. Names : (Principal) Set CAMEST SOL AGE CAMEST SOL AGE CAMEST SOL AGE CAMEST. Names : (Principal) Set CAMEST SOL AGE CAME

### GRÁFICO Nº 4 VENTANA DE COMANDOS Y APLICACIONES CYMDIST


FUENTE: Imagen tomada (COOPER, 2014)

Los módulos adicionales del programa CYMDIST permiten realizar estudios más especializados como el análisis de la confiabilidad, de contingencias, de armónicos, de configuración óptima, etc.

El programa CYMDIST es una herramienta muy adecuada para crear estudios predictivos por simulación y además evaluar el impacto de los cambios efectuados en la red.

Todos los datos están almacenados en tablas SQL y archivos XML que pueden consultarse fácilmente desde terceras aplicaciones. Se puede interconectar el programa CYMDIST o integrarse con otras aplicaciones como los sistemas AM/FM/GIS, DMS, NMS, OMS y SCADA.

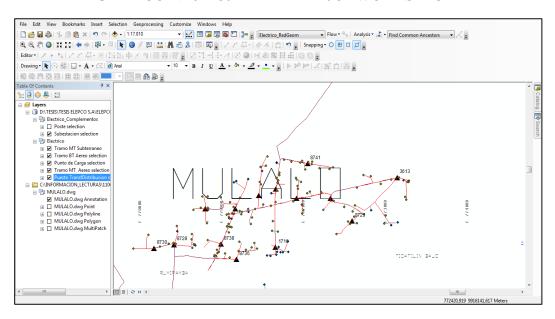
### GRÁFICO Nº 5 VENTANA DE SIMULACIONES CYMDIST



FUNTE: Imagen tomada de (COOPER, 2014)

El gráfico N° 5 muestra las principales aplicaciones de análisis entre las cuales se tiene:

- Flujo de carga y caída de voltaje
- Balance, distribución y evaluación de cargas
- Modelación de la generación distribuida


# 1.5.3. Software ArcGIS

El software ArcGIS, sirve para la validación de información, el cual permite trabajar de mejor manera con la base de datos.

Según (ESRI, España, 2010): "ArcGIS es una plataforma de información que permite crear, analizar, almacenar y difundir datos, modelos, mapas en 3D".

En el gráfico N° 6 se muestra la hoja de trabajo en la cual se realizará el desarrollo de la validación de datos.

# GRÁFICO Nº 6 HOJA DE TRABAJO "WORKSPACE"



FUENTE: Imagen tomada ArcGIS 10.2

### ArcMap

ArcMap es la aplicación de ArcGIS Desktop se puede visualizar y editar datos geográficos (geoprocesos), así como crear mapas. Esta es la aplicación de GIS que se usa para todas la tareas relacionadas con los mapas, incluyendo análisis y edición de cartografía. Los mapas pueden tener una serie de elementos de salida tales como la escala gráfica, del norte gráfico, leyendas que describen cada elemento participante, etc. ArcMap ofrece arreglo final listo para ser impreso o exportado, en las cuales se puede desarrollar una serie de tareas basadas en el GIS.

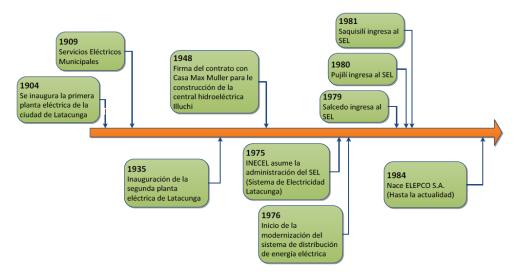
# CAPÍTULO II

# PRESENTACIÓN, INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS

# 2.1. Aspectos generales de la Empresa Eléctrica Cotopaxi S.A.

### 2.1.1. Antecedentes históricos

Según la revista ELEPCO 2013. El 11 de abril de 1909 se inauguró en forma oficial el servicio de Alumbrado Eléctrico de la ciudad de Latacunga, conformándose lo que se llamó los Servicios Eléctricos Municipales, entidad que desde aquella fecha fue la encargada de administrar la energía eléctrica producida por una pequeña planta hidráulica de 30 kW, localizada en el barrio Miraflores; el servicio que se brindaba era exclusivamente de alumbrado a los domicilios y a las calles céntricas de la ciudad.


El 2 de mayo de 1975 el Instituto Ecuatoriano de Electrificación INECEL se hace cargo de la administración de la energía eléctrica de Cotopaxi y funda el Sistema Eléctrico Latacunga (S.E.L.).

En el mes de mayo de 1977 el S.E.L. se interconecta al Sistema Nacional mediante la S/E San Rafael y una línea de 69 kV. Hasta la ciudad de Ambato.

Constituye en Compañía anónima El 25 de noviembre de 1983 denominada "EMPRESA ELÉCTRICA PROVINCIAL DE COTOPAXI S.A., ELEPCO S.A." mediante escritura pública.

En la gráfica N° 7 se muestra la línea Histórica institucional de cómo se fue fundando hasta consolidarse como ELEPCO S.A.

### GRÁFICO Nº 7 LÍNEA HISTÓRICA INSTITUCIONAL ELEPCO S.A.



FUENTE: Imagen tomada de (ELEPCO S.A.)

#### 2.1.2. Misión

"Proveer el servicio público de electricidad, para las ciudadanas y ciudadanos en su área de concesión, con eficiencia, calidez y responsabilidad socio ambiental, para alcanzar el buen vivir"

### 2.1.3. Visión

"En los próximos tres años, seremos la empresa del sector eléctrico del país reconocida, distinguida y renombrada por su excelencia, que garantiza un servicio público con calidad y eficiencia sostenibles"

# 2.1.4. Dedicación

La Empresa Eléctrica Provincial Cotopaxi acorde con su objeto social, tiene como finalidad la prestación del servicio público de electricidad en su área de concesión, mediante la generación, distribución y comercialización de energía eléctrica; enmarcada en este contexto su fin es brindar el suministro de energía eléctrica a sus clientes con parámetros de calidad, ofreciendo un servicio continuo y confiable, convirtiéndose en una empresa innovadora que impulsa el desarrollo socio-económico de la Provincia de Cotopaxi.

# 2.1.5. Objetivos Institucionales

Ampliar la cobertura del servicio de energía eléctrica dentro de su área de concesión, que a su vez permitirá mejorar el desarrollo socio económico de la población.

Mejorar los indicadores de gestión referentes para alcanzar las metas, implementando reformas en los procesos de priorización y utilización de los recursos para que estos garanticen la ejecución presupuestaria.

Mejorar el rendimiento energético usando eficientemente la energía a través de medidas de ahorro con el fin de reducir y dar un uso más eficaz de la energía.

Impulsar proyectos de generación basados en fuentes alternativas, con el fin de diversificar la matriz energética.

Mejorar la productividad en el desarrollo permanente de la organización. La administración no sólo se ocupa de determinar las actividades y cumplir con las metas de la organización (eficacia), sino también de hacerlo de la manera más eficiente (organización exitosa).

Promover el desarrollo personal y profesional de los empleados, su motivación y adhesión hacia los fines organizacionales mediante la ejecución de planes y programas que mejoren la gestión del talento humano.

### 2.2.Diseño Metodológico

# 2.2.1. Métodos de Investigación

Es el camino que el grupo de investigación escoge para realizar su investigación de manera lógica, este trabajo utiliza los siguientes métodos:

#### 2.2.1.1. Método Deductivo

Es un proceso sintético-analítico, es decir contrario al método inductivo; se presentan conceptos, principios, definiciones, leyes o normas generales de las cuales se extrae conclusiones o consecuencias en las que se aplican; o se examinan casos particulares sobre las bases de las afirmaciones generales presentadas.

Este método se lo utiliza durante el estudio recogiendo principios de funcionamiento de una cocina de inducción y las normas establecidas en el país para luego introducirlas al sistema y conocer su condición y solucionar problemas si así lo requiera, todo esto se lo va hacer mediante el software de simulación descrito.

### 2.2.1.2. Método Científico

El método científico es un procedimiento para describir las condiciones en que se presentan sucesos específicos, caracterizado generalmente por ser tentativo, verificable, de razonamiento riguroso y observación empírica.

Se refiere a la serie de etapas que hay que recorrer para obtener un conocimiento valido desde el punto de vista científico.

# 2.2.2. Tipos de Investigación

Para realizar este trabajo se utilizará los siguientes tipos de investigación.

### 2.2.2.1. *Aplicada*

Es la que tiende a modificar una realidad presente con alguna finalidad práctica. La mayor parte de las investigaciones que se realiza son aplicadas.

Se utiliza esta investigación porque permite modificar parámetros con la finalidad de ver el comportamiento del sistema eléctrico en varios escenarios de trabajo.

#### 2.2.2.2. Descriptiva

Es la que se refiere a lo que será, es decir a una realidad que no existe en el momento pero que existirá después del experimento.

Esta investigación permite conocer las posibles anomalías que se puede presentar al momento que las cocinas de inducción entren a la red en estudio ya que estas consumen una cantidad considerable de energía y la red debe estar en buenas condiciones para transportar dicha energía sin que ocurra anomalías en la red.

### 2.2.2.3. Campo

Es la que se realiza en lugares no determinados específicamente para ello, sino que corresponde al medio en donde se encuentran los sujetos o el objeto de investigación, donde ocurren los hechos o fenómenos investigados.

El estudio se lo realiza en un determinado lugar, conociendo así costumbres y formas de cocción de alimentos, que son datos muy importantes para el desarrollo del presente trabajo investigativo.

# 2.3. Cálculo de la población y muestra

Para el desarrollo de la presente investigación se tiene como universo a 2324 abonados conectados a la red de distribución del alimentador Mulaló Joseguango Bajo correspondiente a una zona rural-marginal perteneciente a la Empresa Eléctrica Cotopaxi S.A. donde se calcula con un margen de error del 5% para aplicar en la siguiente ecuación.

$$n = \frac{N.P.Q}{(N-1)\frac{E^2}{K^2} + P.Q}$$

$$n = \frac{2324 * 0.25}{(2324 - 1)\left(\frac{0.05^2}{2^2}\right) + 0.25}$$

n = 341 Personas

Donde:

n= Tamaño de la muestra

N= Población Universo (2324 abonados)

P.Q= constante de varianza poblacional

(0.25)

E= Error máximo admisible

K= Coeficiente de corrección de error (2)

Como resultado se obtiene una muestra de 341 clientes, lo cual se aplica a usuarios residenciales conectados a dicho alimentador.

# 2.3.1. Técnicas de Investigación

#### 2.3.1.1. Observación

Es una técnica que consiste en observar atentamente el fenómeno, hecho o caso, tomar información y registrarla para su posterior análisis.

Es la acción que depende principalmente de la vista y consiste en observar atentamente los hechos y fenómenos que tiene lugar a realizar el estudio y su naturaleza.

#### 2.3.1.2. Encuesta

La encuesta es una técnica destinada a obtener datos de varias personas cuyas opiniones personales interesan al investigador. Para ello, a diferencia de la entrevista, se utiliza un listado de preguntas escritas que se entregan a los sujetos, a fin de que las contesten igualmente por escrito. Ese listado se denomina cuestionario.

Este técnica se lo utiliza para conocer las costumbres y tiempos de cocción de alimentos, para luego el posterior análisis interpretación de resultados, que son datos indispensables como variables de entrada en el software.

### 2.4. Análisis de los resultados de la encuesta

Aquí se describe el análisis del resultado de la encuesta realizada a los usuarios conectados al alimentador Mulaló Joseguango bajo de la S/E Mulaló.

### Análisis de los resultados de las encuestas

Después de haber formulado los instrumentos de recolección de datos, a los usuarios del alimentador Mulaló Joseguango Bajo, se realizó la tabulación de la misma, analizando las preguntas contestadas para posteriormente presentarlos en gráficos con su respectivo análisis.

# 1. ¿Conoce acerca del plan de cocción eficiente que impulsa el gobierno nacional?

TABLA N° 3 PREGUNTA #1; VALORACIÓN DE OPCIONES

| PREGUNTA 1          |     |       |  |  |
|---------------------|-----|-------|--|--|
| Opción Frecuencia % |     |       |  |  |
| Mucho               | 3   | 0,86  |  |  |
| Poco                | 219 | 62,57 |  |  |
| Nada                | 128 | 36,57 |  |  |
| Total               | 350 | 100   |  |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 8 OPCIONES EN PORCENTAJE, PREGUNTA #1.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Un alto porcentaje (62 %) de la población conoce de las ventajas que presenta el plan de cocción eficiente, mientras que un pequeño porcentaje está debidamente mal informado y el (1%) desconoce del plan de cocción eficiente

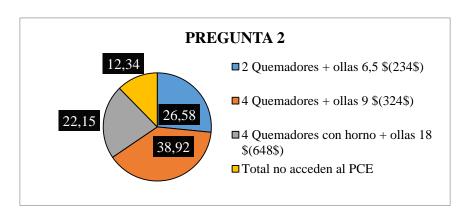

2. Dentro del plan de gobierno está a la venta cocinas de inducción que es financiado para tres a años de pago mensual en la planilla eléctrica, ¿Cuál de estas estaría dispuesta adquirir?

TABLA N° 4 PREGUNTA #2; VALORACIÓN DE OPCIONES.

| PREGUNTA 2                                  |     |       |  |  |
|---------------------------------------------|-----|-------|--|--|
| Opción (precios) Frecuencia %               |     |       |  |  |
| 2 Quemadores + ollas 6,5 \$(234\$)          | 84  | 26,58 |  |  |
| 4 Quemadores + ollas 9 \$(324\$)            | 123 | 38,92 |  |  |
| 4 Quemadores con horno + ollas 18 \$(648\$) | 70  | 22,15 |  |  |
| Total no acceden al PCE                     | 39  | 12,34 |  |  |
| Total                                       | 316 | 100   |  |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 9 OPCIONES EN PORCENTAJE, PREGUNTA #2.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Mediante esta pregunta se determinó que un bajo porcentaje (12,34 %), no acceden al PEC, mientras que el (38,92 %) optan por adquirir la cocina de 4 quemadores más ollas; existen usuarios con el (26,58 %), que manifiestan adquirir la cocina de 2 quemadores más ollas, y el 22,15% optaran por la cocina de 4 quemadores con horno y ollas, concluyendo así que el plan PEC tiene una buena acogida dentro de los clientes residenciales.

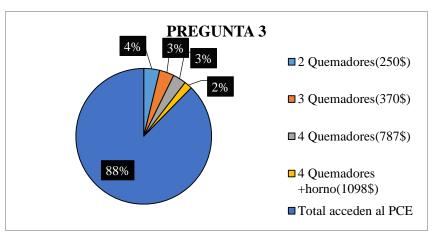

# 3. ¿Cuál de estas Cocinas de inducción existentes en el mercado estaría dispuesto adquirir?

TABLA Nº 5 PREGUNTA #3; VALORACIÓN DE OPCIONES.

| PREGUNTA 3                    |     |       |  |  |  |
|-------------------------------|-----|-------|--|--|--|
| Opción (precios) Frecuencia % |     |       |  |  |  |
| 2 Quemadores(250\$)           | 12  | 3,80  |  |  |  |
| 3 Quemadores(370\$)           | 11  | 3,48  |  |  |  |
| 4 Quemadores(787\$)           | 10  | 3,16  |  |  |  |
| 4 Quemadores +horno(1098\$)   | 6   | 1,90  |  |  |  |
| Total acceden al PCE          | 277 | 87,66 |  |  |  |
| Total                         | 316 | 100   |  |  |  |

**ELABORADO POR:** Investigadores.

GRÁFICO Nº 10 OPCIONES EN PORCENTAJE, PREGUNTA #3.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Como resultado de la pregunta N° 3 se tiene un porcentaje (88 %) de los usuarios, manifiestan que accederán al PEC, sin embargo; existe el (4%) de usuarios que accederán a la compra de la cocina de dos quemadores; El (3%) de los usuarios indican que adquirirán la cocina de tres y cuatro quemadores y solo el (2%) menciona que optarán por la cocina de 4 quemadores más horno.

# 4. ¿Describa el tipo de cocina que utiliza para la cocción de alimentos?

TABLA Nº 6 PREGUNTA #4; VALORACIÓN DE OPCIONES.

| PREGUNTA 4          |     |       |  |
|---------------------|-----|-------|--|
| Opción Frecuencia % |     |       |  |
| Gas                 | 316 | 90,29 |  |
| Eléctrica           | 0   | 0,00  |  |
| Leña                | 34  | 9,71  |  |
| Total               | 350 | 100   |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 11 OPCIONES EN PORCENTAJE, PREGUNTA #4.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

En el sector que comprende el alimentador MLS1 se determina que mayoritariamente (90%) los usuarios utilizan el gas como medio principal para preparar los alimentos diarios, en este sector no utilizan cocina eléctrica. Por lo que únicamente el (10%) de los usuarios utiliza leña para preparar los alimentos, esto es comprensible siendo el alimentador MLS1 eminentemente residencial y con clientes ubicados en el área rural y de estrato económico bajo.

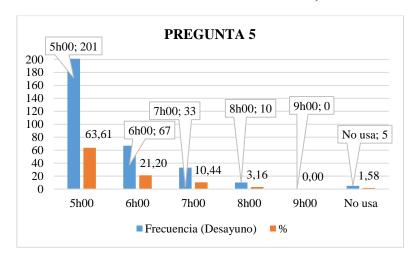

### 5. ¿A qué hora enciende la cocina para preparar el desayuno?

TABLA Nº 7 PREGUNTA #5; VALORACIÓN DE OPCIONES.

| PREGUNTA 5       |            |       |  |
|------------------|------------|-------|--|
| Opción (horario) | Frecuencia | %     |  |
| 5h00             | 201        | 63,61 |  |
| 6h00             | 67         | 21,20 |  |
| 7h00             | 33         | 10,44 |  |
| 8h00             | 10         | 3,16  |  |
| 9h00             | 0          | 0,00  |  |
| No usa           | 5          | 1,58  |  |
| Total            | 316        | 100   |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 12 OPCIONES EN PORCENTAJE, PREGUNTA #5.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Un alto porcentaje de la encuesta a los usuarios del alimentador MLS1 (63,61%) de la población prepara el desayuno a partir de las 05h00 am, esto se debe a que es un sector rural marginal donde deben madrugan las familias para enviar a sus hijos a estudiar y para indicar los fines agrícolas el (21,20%) de la población prepara el desayuno a las 06h00 am siendo el segundo valor obtenido de las encuestas. El 10,44% de los encuestados respondieron que preparan el desayuno a las 07h00 am, el 3,16% a las 08h00, y el 1,58% no desayuna en su hogar.

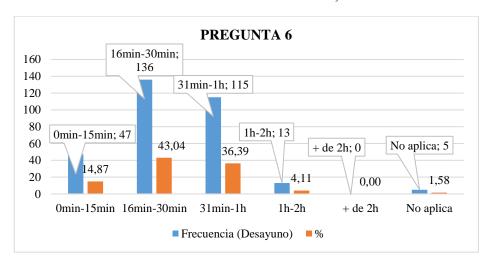

# 6. ¿Cuánto tiempo permanece encendida la cocina para preparar el desayuno?

TABLA Nº 8 PREGUNTA #6; VALORACIÓN DE OPCIONES.

| PREGUNTA 6                        |     |       |  |  |  |
|-----------------------------------|-----|-------|--|--|--|
| Opción (tiempos)   Frecuencia   % |     |       |  |  |  |
| 0min-15min                        | 47  | 14,87 |  |  |  |
| 16min-30min                       | 136 | 43,04 |  |  |  |
| 31min-1h                          | 115 | 36,39 |  |  |  |
| 1h-2h                             | 13  | 4,11  |  |  |  |
| + de 2h                           | 0   | 0,00  |  |  |  |
| No aplica                         | 5   | 1,58  |  |  |  |
| Total                             | 316 | 100   |  |  |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 13 OPCIONES EN PORCENTAJE, PREGUNTA #6.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Un porcentaje reducido (14,87%), indica que se demora de 0min a 15min en preparar el desayuno, el 43,04% de 16min a 30min, el 36,39% se demora de 31min a 1h, por motivos que en el campo se alimentan bien ante de salir a realizar sus actividades diarias. El 4,11 % de 1h – 2h, más de 2h en adelante no se obtuvo registro alguno y el 1,58% no aplica para esta pregunta ya que no desayunan en sus hogares.

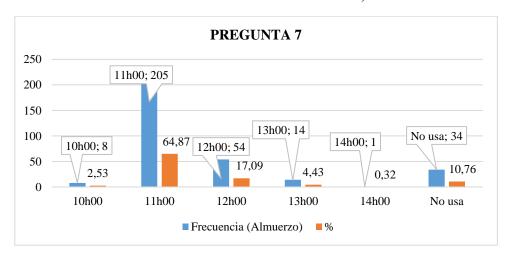

### 7. ¿A qué hora enciende la cocina para preparar el almuerzo?

TABLA Nº 9 PREGUNTA #7; VALORACIÓN DE OPCIONES.

| PREGUNTA 7       |            |       |  |
|------------------|------------|-------|--|
| Opción (horario) | Frecuencia | %     |  |
| 10h00            | 8          | 2,53  |  |
| 11h00            | 205        | 64,87 |  |
| 12h00            | 54         | 17,09 |  |
| 13h00            | 14         | 4,43  |  |
| 14h00            | 1          | 0,32  |  |
| No usa           | 34         | 10,76 |  |
| Total            | 316        | 100   |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 14 OPCIONES EN PORCENTAJE, PREGUNTA #7.



**ELABORADO POR:** Investigadores.

### Análisis e Interpretación:

Esta pregunta permitió determinar el horario de uso de la cocina al medio día resultando el (2,53%) de los encuestados preparar el almuerzo a partir de las 10h00, el 64,87% indican que preparan el almuerzo a partir de las 11h00 siendo este el mayor dato registrado por los usuarios del Alimentador MLS1, el 17,09% menciona que preparan el almuerzo a las 12h00, el 4,43% indica preparar el almuerzo a las 13h00, con el 0,32% mencionan preparar el almuerzo a las 14h00 y el 10,76% no preparan el almuerzo esto se debe a que los usuarios trabajan en las aledañas del sector.

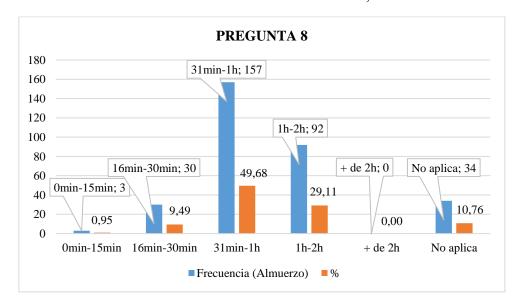

# 8. ¿Cuánto tiempo permanece encendida la cocina para preparar el almuerzo?

TABLA Nº 10 PREGUNTA #8; VALORACIÓN DE OPCIONES.

| PREGUNTA 8       |            |       |  |
|------------------|------------|-------|--|
| Opción (tiempos) | Frecuencia | %     |  |
| 0min-15min       | 3          | 0,95  |  |
| 16min-30min      | 30         | 9,49  |  |
| 31min-1h         | 157        | 49,68 |  |
| 1h-2h            | 92         | 29,11 |  |
| + de 2h          | 0          | 0,00  |  |
| No aplica        | 34         | 10,76 |  |
| Total            | 316        | 100   |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 15 OPCIONES EN PORCENTAJE, PREGUNTA #8.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

El tiempo de cocción de los alimentos a la hora del almuerzo en el alimentador en estudio se tiene que el 0,95% tardan de 0min-15min, el 9,49% se tardan entre 16min-30min, el 49,68% se demora entre 31min-1h, el 29,11% de tardan entre 1h-2h, más de 2h no se obtuvo registro alguno y el 10,76% no aplica para esta pregunta debido a que no preparan el almuerzo en casa. Por lo que el mayor porcentaje es de 31min-1h.

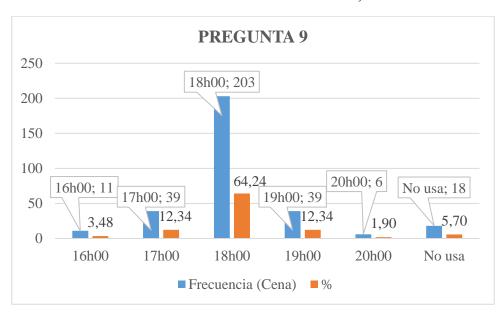

### 9. ¿A qué hora enciende la cocina para preparar la merienda/cena?

TABLA Nº 11 PREGUNTA #9; VALORACIÓN DE OPCIONES.

| PREGUNTA 9       |            |       |  |
|------------------|------------|-------|--|
| Opción (horario) | Frecuencia | %     |  |
| 16h00            | 11         | 3,48  |  |
| 17h00            | 39         | 12,34 |  |
| 18h00            | 203        | 64,24 |  |
| 19h00            | 39         | 12,34 |  |
| 20h00            | 6          | 1,90  |  |
| No usa           | 18         | 5,70  |  |
| Total            | 316        | 100   |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 16 OPCIONES EN PORCENTAJE, PREGUNTA #9.



ELABORADO POR: Investigadores.

### Análisis e Interpretación:

Sea podido determinar los hábitos de cocción en los hogares conectados al alimentador siendo un porcentaje bajo (3,48%), empieza a preparar la cena a las 16h00, el 12,34% a las 17h00, el 64,24% a las 18h00, es decir que en este horario se toma el mayor número de hogares que empiezan a preparar los alimentos de la cena, el 12,34% a las 19h00, el 1,90% a las 20h00 y el 5,70% no preparan la cena/merienda.

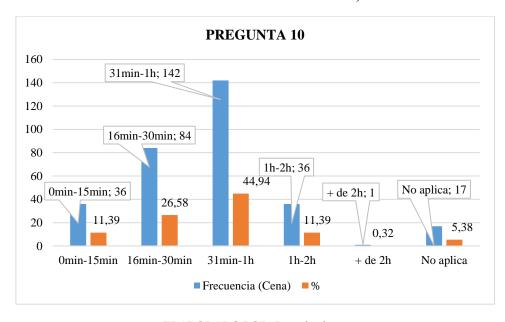

# 10. ¿Cuánto tiempo permanece encendida la cocina para preparar la merienda/cena?

TABLA Nº 12 PREGUNTA #10; VALORACIÓN DE OPCIONES.

| PREGUNTA 10      |            |       |  |  |
|------------------|------------|-------|--|--|
| Opción (tiempos) | Frecuencia | %     |  |  |
| 0min-15min       | 36         | 11,39 |  |  |
| 16min-30min      | 84         | 26,58 |  |  |
| 31min-1h         | 142        | 44,94 |  |  |
| 1h-2h            | 36         | 11,39 |  |  |
| + de 2h          | 1          | 0,32  |  |  |
| No aplica        | 17         | 5,38  |  |  |
| Total            | 316        | 100   |  |  |

ELABORADO POR: Investigadores.

GRÁFICO Nº 17 OPCIONES EN PORCENTAJE, PREGUNTA #10.



**ELABORADO POR:** Investigadores.

### Análisis e Interpretación:

El tiempo de cocción de los alimentos a la hora de la cena en el alimentador en estudio, se tiene que el 11,39% tardan de 0min-15min, el 26,58% tardan entre 16min-30min, el 44,94% siendo el mayor tiempo en preparar la cena/merienda tardan de 31min-1h, con el 11,39% tardar entre 1h-2h, el 0,32% tardan más de 2h y el 5,38% no prepara la cena/merienda.

# 2.5.Descripción del sistema de distribución de la ELEPCO S.A.

La Empresa Eléctrica Provincial Cotopaxi dentro del área de concesión (5645,35 km²), tiene como finalidad dotar de servicio eléctrico, mediante la generación, distribución y comercialización de energía eléctrica.

### 2.5.1. Sistema de subtransmisión

La ELEPCO S.A., cuenta con 10 S/E cuyas características principales se muestran en la tabla N° 13.

TABLA N° 13 SUBESTACIONES ELEPCO S.A.

| Cantón    | SUBTIPO      | Nombre<br>S/E | Número<br>S/E | Código Estructura           | VPrimario | VSecundario |
|-----------|--------------|---------------|---------------|-----------------------------|-----------|-------------|
| LATACUNGA | S/E Exterior | El calvario   | S/E 01        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| LATACUNGA | S/E Exterior | San Rafael    | S/E 02        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| LATACUNGA | S/E Exterior | La Cocha      | S/E 06        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| LATACUNGA | S/E Exterior | Mulaló        | S/E 04        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| SALCEDO   | S/E Exterior | Salcedo       | S/E 03        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| SIGCHOS   | S/E Exterior | Sigchos       | S/E 08        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| LATACUNGA | S/E Exterior | Lasso         | S/E 05        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| LA MANA   | S/E Exterior | La Maná       | S/E 09        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| PUJILI    | S/E Exterior | El Estado     | S/E 07        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |
| PUJILI    | S/E Exterior | Pujilí        | S/E 10        | Exterior 69/13,8 kV a nivel | 69kV      | 13,8kV      |

**FUENTE:** ELEPCO S.A. **ELABORADO POR:** Investigadores.

El sistema de subtransmisión es de tipo radial con dos puntos de alimentación que se interconecta del SNI. El uno ubicado en Ambato con la S/E Ambato el cual provee de energía a la S/E Fairis, Salcedo y Holcim y el otro ubicado en la S/E Mulaló como se puede observar en el anexo N° 2

La tabla N° 14 muestra la información relevante de las líneas de subtransmisión de la ELEPCO S.A.

TABLA Nº 14 LÍNEAS DE SUBTRANSMISIÓN ELEPCO S.A.

| Salida         | Llegada         | Distancia<br>(km) | Calibre | Voltaje<br>(kV) | Cargabilidad<br>% | AV %   | Perdidas<br>(MW) |
|----------------|-----------------|-------------------|---------|-----------------|-------------------|--------|------------------|
| S/E Ambato     | S/E Salcedo     | 22,86             | 300     | 69              | 20,9151           | 2,1568 | 0,1396           |
| S/E Salcedo    | Derv San Juan   | 9,66              | 300     | 69              | 8,5316            | 0,3646 | 0,0103           |
| Deriv San Juan | S/E Holcim      | 0,7               | 300     | 69              | 9,1187            | 0,0263 | 0,0007           |
| Deriv San Juan | S/E San Rafael  | 1,45              | 300     | 69              | -                 | -      | -                |
| S/E San Rafael | S/E Pujilí      | 6,98              | 266,8   | 69              | 5,8384            | 0,1876 | 0,0034           |
| S/E San Rafael | Deriv Laygua    | 10,44             | 266,8   | 69              | 18,0812           | 0,9228 | 0,0475           |
| Deriv Laygua   | S/E La Cocha    | 6,34              | 266,8   | 69              | 7,9899            | 0,2351 | 0,0056           |
| Deriv Laygua   | S/E Mulaló      | 7,87              | 266,8   | 69              | 26,3179           | 0,9825 | 0,0744           |
| S/E Mulaló     | S/E Lasso       | 4,24              | 266,8   | 69              | 40,7869           | 0,7744 | 0,0961           |
| S/E Lasso      | S/E Sigchos     | 33,8              | 266,8   | 69              | 1,7855            | 0,2154 | 0,0015           |
| S/E Calope     | S/E La Maná     | 5,5               | 266,8   | 69              | 5,805             | 0,1452 | 0,0028           |
| S/E Quevedo    | S/E Calope      | 4,61              | 3/0     | 13,8            | 5,8399            | 0,5981 | 0,0094           |
| S/E La Cocha   | S/E El Calvario | 2,32              | 3/0     | 13,8            | 9,0304            | 0,3747 | 0,0015           |
| Illuchi 2      | El Calvario     | 7,49              | 3/0     | 13,8            | 16,815            | 2,657  | 0,0344           |
| Illuchi 1      | El Calvario     | 9,45              | 2       | 22              | 36,1793           | 9,8665 | 0,1704           |

FUENTE: ELEPCO S.A. ELABORADO POR: Investigadores.

### 2.5.2. Sistema de generación

La ELEPCO S.A. también posee generación local con la cual está conformada por cinco Centrales Hidroeléctricas: Illuchi 1 e Illuchi 2, ubicadas en el Cantón Latacunga, Catazacón ubicado en el Cantón Pangua, El Estado en la parroquia el Tingo y Angamarca situado en el sector del Shuyo, estas dos últimas pertenecen al Cantón Pujilí.

Las centrales que mayor aportan son las Illuchi 1 e Illuchi 2 con capacidades de 5,24 MVA y 6,5 MVA respectivamente, mientras que las centrales con menor aporte se encuentran en el sector occidental de la Provincia, cada una con las siguientes capacidades: central El Estado con 2,125 MVA, central Catazacón con 1,0 MVA y la central Angamarca con 0,375 MVA.

Los usuarios que sirve ELEPCO S.A. de energía eléctrica se los categoriza en Tarifa Residencial, Comercial, Industrial y Otros. De los cuales el sector residencial constituye el mayor estrato con un 86,82% de los usuarios tal y como se lo puede apreciar en el gráfico N° 18.

### GRÁFICO Nº 18 CLIENTES DE ELEPCO S.A.



**FUENTE:** ELEPCO S.A.

ELABORADO POR: Departamento de Planificación ELEPCO S.A.

#### Subestación Mulaló

Ubicada en el sector de Laigua perteneciente a la parroquia Mulaló del cantón Latacunga cuyas coordenadas son E 766439 - N 9'912395 referenciadas en el w684 a una altitud de 2967 msnm.

Esta subestación recibe energía del S.N.I. de la línea de Pisayambo- Mulaó-Santa Rosa a 138kV; mediante un transformador de 138/69kV. De este patio de 69kV de la subestación del mismo nombre perteneciente a Transelectric. Se ha instalado un trasformador de 50/60 MVA tipo (OA/FA) con voltajes de operación 69/13,8kV interconectando con las subestaciones la cocha, Lasso y san Rafael.

La subestación Mulaló tiene 5 alimentadores a 13,8kV que se enumera a continuación.

- Alimentador Industrial Lasso 13.8 kV
- Alimentador Mulaló Joseguango bajo 13.8 kV
- Alimentador Guaytacama Saquisilí 13.8 kV
- Alimentador fuera de servicio
- Alimentador fuera de servicio

### 2.6. Descripción actual del alimentador Mulaló Joseguango bajo

Este alimentador dota de energía eléctrica a los sectores de Joseguango Bajo, Joseguango Alto, Mulaló, Tandalavi, Santa Clara, San Ramón, Laigua, entre otros; Tiene una longitud de 48,19 km red en medio voltaje trifásico con un calibre de conductor ASCR N° 3/0 y 59,53 km de red en medio voltaje monofásicas con un calibre de conductor ASCR N° 2, se encuentran instalados 241 trasformadores los cuales 60 son trifásicos y 181 son monofásicos.

Existe un total de 2324 clientes servidos por este alimentador distribuidos de la siguiente manera; 1909 contempla residenciales, 95 contempla comercial, 91 con la tarifa industrial y 229 se encuentran catalogadas como otros clientes. Un reporte de transformadores, capacidades y el número de clientes conectados a la misma se puede observar en el anexo N° 3.

Se muestra la cantidad de trasformadores con su respectiva capacidad en la tabla N°15 siendo el más utilizado los de 10 kVA dando un total de 65 unidades.

TABLA N° 15 CANTIDAD DE TRANSFORMADORES POR CAPACIDAD INSTALADA

| N°<br>Transformador | Cantidad |
|---------------------|----------|
| 5                   | 28       |
| 10                  | 65       |
| 15                  | 50       |
| 25                  | 27       |
| 30                  | 16       |
| 37,5                | 9        |
| 45                  | 1        |
| 50                  | 15       |
| 60                  | 1        |
| 75                  | 13       |
| 100                 | 10       |
| 112,5               | 3        |
| 200                 | 1        |
| 300                 | 2        |
| Total general       | 241      |

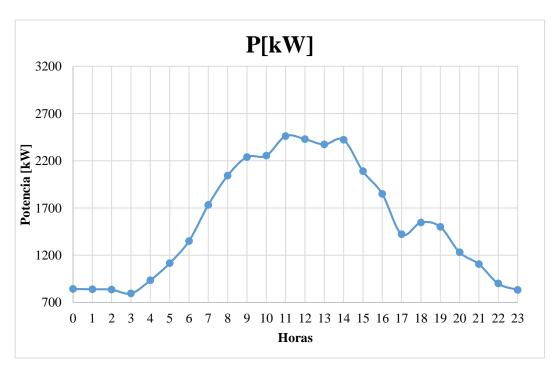
FUENTE: ELEPCO S.A.

**ELABORADO POR:** Investigadores

Mediante las mediciones que realiza ELEPCO S.A., se obtiene la demanda máxima en el año 2014 tomando como referencia el día 31 de julio por lo que se toma una demanda convalidada para su respectiva modelación y análisis, cuyos datos se presentan en la tabla N° 16.

TABLA N° 16 DEMANDA ACTUAL ALIM-MLS1

| P. Activa [kW)      | 2456,05 |               | Fase a   | Fase b   | Fase c   |  |
|---------------------|---------|---------------|----------|----------|----------|--|
| P. Reactiva [kVAr]  | 962,73  | Corriente [A] | 105,24   | 108,39   | 115,84   |  |
| E. Recibida [kWh]   | 403,11  | Corriente [A] | 103,24   | 100,39   | 113,64   |  |
| E. Recibida [kVArh] | 160,49  | Voltaje [V]   | 13519,86 | 13565,04 | 13579,68 |  |
| E. Entregada [kWh]  | 0,00    | voitaje [v]   | 13319,60 | 13303,04 | 13317,00 |  |
| E. Entregada [kWh]  | 0,00    | fn            | 98.47    | 95.64    | 89,46    |  |
| Frecuencia [Hz]     | 60,02   | fp            | 70,47    | 75,04    | 07,40    |  |


FUENTE: ELEPCO S.A.

**ELABORADO POR:** Investigadores

# 2.6.1. Curva de carga diaria

Tal como establece la regulación 04/001 sobre calidad de energía emitidas por el CONELEC, las mediciones de los parámetros eléctricos en la cabecera son registradas cada 10 minutos. Con esta información y mediante histogramas de frecuencia se gráfica la curva diaria del alimentador MLS1, determinándose que tiene una demanda máxima de 2456kW a las 11 horas. El comportamiento de la curva se muestra en el gráfico N° 19.

GRÁFICO Nº 19 CURVA DIARIA ALIM-MLS1



**FUENTE:** ELEPCO S.A.

**ELABORADO POR:** Investigadores

### 2.6.2. Consumo promedio mensual

Mediante el departamento de planificación de la Empresa Eléctrica Cotopaxi, se ha determinado los consumos del tipo de tarifa, esta información es necesaria para fijar el consumo promedio por transformador y por tarifas para posteriormente ingresar al CYMDIST y realizar los flujos de potencia; el anexo N° 4 muestra los trasformador con su respectivo consumo promedio mensual, la tabla N° 17 se observa cómo se encuentran distribuidos los consumos promedios mensuales

TABLA N° 17 CONSUMO PROMEDIO MENSUAL POR TARIFAS

| N° Trafos | Co  | Consumo Promedio mensual por tarifas |      |       |         |  |  |  |  |  |
|-----------|-----|--------------------------------------|------|-------|---------|--|--|--|--|--|
|           | C   | R                                    | I    | otros | total   |  |  |  |  |  |
| 1707      | 161 | 269                                  | 0    | 0,7   | 430,67  |  |  |  |  |  |
| 1709      | 0   | 95,1                                 | 1065 | 0     | 1159,89 |  |  |  |  |  |
| 1721      | 0   | 709                                  | 936  | 18    | 1662,33 |  |  |  |  |  |
| 1722      | 0   | 623                                  | 0    | 0     | 623,22  |  |  |  |  |  |
| 1724      | 0   | 1746                                 | 76,4 | 8,9   | 1831,22 |  |  |  |  |  |

FUENTE: Alim-MLS1 ELEPCO S.A.

**ELABORADO POR:** Investigadores

# 2.6.3. Pruebas y mediciones de la cocina de inducción

Para realizar las pruebas y mediciones de la cocina de inducción la ELEPCO S.A. proporcionó de un analizador carga y una cocina de inducción del programa PEC, con lo que se realizó las mediciones en diferentes escenarios, obteniendo fundamentalmente datos de consumo de la cocina, así como valores de factor de potencia y armónicos.

GRÁFICO Nº 20 COCINA DE INDUCCIÓN



FUENTE: ELEPCO S.A.

**ELABORADO POR:** Investigadores

La cocina de inducción utilizada la cual se muestra en el gráfico N° 20 tiene los siguientes datos de placa:

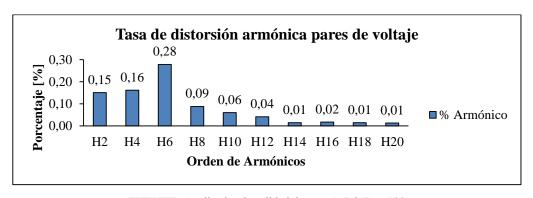
- 4 Zonas de cocción
- Voltaje 220 [V]
- 9 Niveles de potencia
- Potencia total de 4000 [W]
- Frecuencia 50/60 [Hz]

## 2.6.3.1. Resultados de las pruebas

De las mediciones realizadas en la concina de inducción se determinó una potencia máxima de 3124kW y un consumo de energía durante los 7 días de duración de la prueba de 19,56 kWh.

#### 2.6.3.2. Análisis de la distorsión armónica en la cocina de inducción

Una vez obtenidos los datos de las armónicas, la tabla N° 18 muestra la distorsión armónica de voltaje en porcentaje en función al orden de cada armónica.


TABLA Nº 18 DISTORSIÓN ARMÓNICA DE VOLTAJES PARES

| Distorsión armónica de voltaje [%] |                                                                                                             |      |      |      |      |      |      |      |      |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|--|--|
| H2                                 | H2         H4         H6         H8         H10         H12         H14         H16         H18         H20 |      |      |      |      |      |      |      |      |  |  |  |
| 0,15                               | 0,16                                                                                                        | 0,28 | 0,09 | 0,06 | 0,04 | 0,01 | 0,02 | 0,01 | 0,01 |  |  |  |

FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

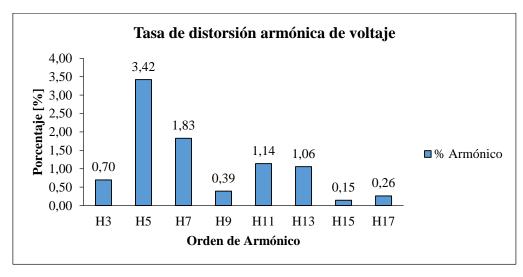
GRÁFICO N° 21 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE VOLTAJE



FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

Mediante las pruebas y mediciones realizadas en la cocina de inducción en el gráfico N° 21 se presenta la distorsión armónica par, desde el orden H2 hasta H20 de voltaje porcentual. Teniendo así; la máxima presencia de la armónica par de orden H6 con el 0,28 %. Observando a menudo que aumenta el orden de armónicos, el porcentaje de distorsión de voltaje disminuye. La misma que se encuentra dentro del margen permitido por la regulación vigente CONELEC 004/01 que admite un máximo de 8%; por lo tanto no superan el límite establecido por la regulación.


TABLA Nº 19 DISTORSIÓN ARMÓNICA DE VOLTAJE IMPAR

|      | Tasa de distorsión armónica de voltaje [%] |      |      |      |      |      |      |  |  |  |  |  |
|------|--------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
| Н3   | H3 H5 H7 H9 H11 H13 H15 H17                |      |      |      |      |      |      |  |  |  |  |  |
| 0,70 | 3,42                                       | 1,83 | 0,39 | 1,14 | 1,06 | 0,15 | 0,26 |  |  |  |  |  |

FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

GRÁFICO 22 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE VOLTAJE

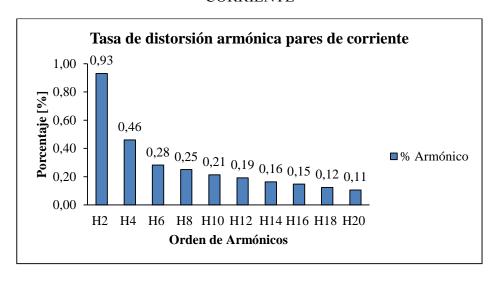


FUENTE: Analizador de calidad de energía PQ-Box 100

ELABORADO POR: Los investigadores

Mediante las pruebas y mediciones realizadas en la cocina de inducción en el gráfico N° 22 se presenta la distorsión armónica impar desde el orden H3 hasta H17 de voltaje porcentual. Se observa que la máxima presencia es la armónica par de orden H5 con el 3,42 %. Teniendo en cuenta a menudo que aumenta el orden de armónicos, el porcentaje de distorsión de voltaje disminuye. La misma que se encuentra dentro del margen permitido por la regulación vigente CONELEC 004/01

que admite un máximo de 8%; por lo tanto no superan el límite establecido por la regulación.


TABLA N° 20 TASA DE DISTORSIÓN ARMÓNICA DE CORRIENTE PAR

| Tasa de distorsión armónica de corriente[%] |                                     |      |      |      |      |      |      |      |      |  |  |
|---------------------------------------------|-------------------------------------|------|------|------|------|------|------|------|------|--|--|
| H2                                          | H2 H4 H6 H8 H10 H12 H14 H16 H18 H20 |      |      |      |      |      |      |      |      |  |  |
| 0,93                                        | 0,46                                | 0,28 | 0,25 | 0,21 | 0,19 | 0,16 | 0,15 | 0,12 | 0,11 |  |  |

FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

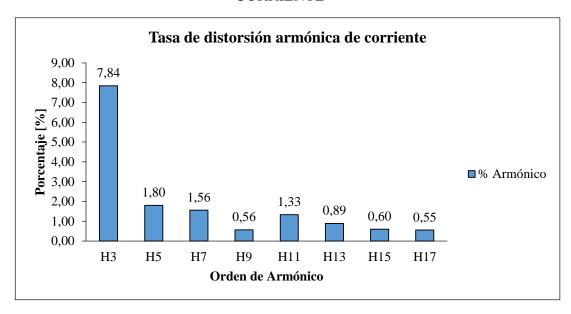
# GRÁFICO N° 23 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE CORRIENTE



FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

Mediante las pruebas y mediciones realizadas en la cocina de inducción en el gráfico N° 23 se presenta la distorsión armónica par desde el orden H2 hasta H20 de corriente porcentual teniendo así; la máxima presencia de la armónica par de orden H2 con el 0,93 %. Observando que a menudo que aumenta el orden de armónicos, el porcentaje de distorsión de corriente disminuye. La misma que se encuentra dentro del margen permitido por la IEEE 519 que admite un máximo de 2,5%; por lo tanto no superan el límite establecido por la norma.


TABLA Nº 21 TASA DE DISTORSIÓN ARMÓNICA DE CORRIENTE IMPAR

|      | Tasa de distorsión armónica de corriente [%] |      |      |      |      |      |      |  |  |  |  |  |
|------|----------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
| Н3   | H5 H7 H9 H11 H13 H15 H17                     |      |      |      |      |      |      |  |  |  |  |  |
| 7,84 | 1,80                                         | 1,56 | 0,56 | 1,33 | 0,89 | 0,60 | 0,55 |  |  |  |  |  |

FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

GRÁFICO N° 24 ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE CORRIENTE



FUENTE: Analizador de calidad de energía PQ-Box 100

**ELABORADO POR:** Los investigadores

Mediante las pruebas y mediciones realizadas en la cocina de inducción se presenta el espectro en el gráfico N° 24, observando la distorsión armónica impar desde el orden H3 hasta H17 de corriente porcentual. Se observa que la máxima presencia es de la armónica impar de orden H3 con el 7,84 %. Teniendo en cuenta a menudo que aumenta el orden de armónicos, el porcentaje de distorsión de corriente disminuye. Mediante la Ec. (3) 1.2.5, se calcula el THDi de la cocina de inducción dando como resultado 3,89% observando que se cumple la norma IEEE 519 que presenta un máximo admisible de 5% en el punto de conexión.

#### 2.6.3.3. Mediciones en la cabecera del Alim-MLS1

Para obtener la relación  $(I_{sc})/(I_L)$  del alimentador Mulaló Joséguango Bajo, tomados los datos de la simulación en estado actual en el año (2014), se toma los promedios de la corriente y se halla la  $(I_L)$  corriente de demanda máxima en el punto de conexión, mientras que para obtener la  $(I_{sc})$  corriente de cortocircuito, se realizó un cortocircuito en el nodo fuente, dándonos como resultado de la relación entre las corrientes de 52,4. Según la norma IEEE 519 el Gráfico N° 25, la máxima distorsión de corriente armónica en porcentaje de la  $(I_L)$ , se encuentra en el rango de 50<100 por lo que el TDD admisible es del 12%.

GRÁFICO 25 MÁXIMA DISTORSIÓN DE CORRIENTE ARMÓNICA.

| Máxima Distorsión de Corriente Armónica en Porcentaje de ${f I}_L$ |        |         |         |         |      |      |  |  |  |  |
|--------------------------------------------------------------------|--------|---------|---------|---------|------|------|--|--|--|--|
| Orden Armónico Individual (Armónicos Impares)                      |        |         |         |         |      |      |  |  |  |  |
| Isc / IL                                                           | h < 11 | 11≤h<17 | 17≤h<23 | 23≤h<35 | 35≤h | TDD  |  |  |  |  |
| <20*                                                               | 4.0    | 2.0     | 1.5     | 0.6     | 0.3  | 5.0  |  |  |  |  |
| 20<50                                                              | 7.0    | 3.5     | 2.5     | 1.0     | 0.5  | 8.0  |  |  |  |  |
| 50<100                                                             | 10.0   | 4.5     | 4.0     | 1.5     | 0.7  | 12.0 |  |  |  |  |

FUENTE: Norma IEEE 519 "Pág. 76".

Para obtener los amperios por presencia del orden de armónicos se multiplica el [%] del orden por la corriente fundamental. La tabla N° 22, presenta los amperios por orden individual.

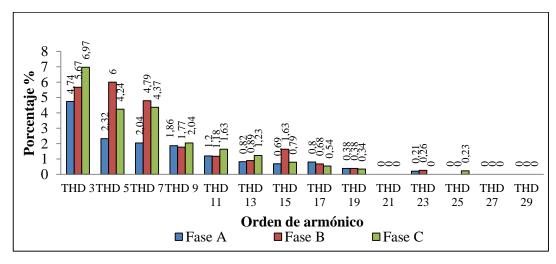
TABLA 22 ARMÓNICAS INDIVIDUALES EN AMPERIOS.

| Armónicas individuales con respecto a la corriente fundamental |                             |      |      |      |      |      |      |  |  |  |
|----------------------------------------------------------------|-----------------------------|------|------|------|------|------|------|--|--|--|
| [A]                                                            |                             |      |      |      |      |      |      |  |  |  |
| Н3                                                             | H3 H5 H7 H9 H11 H13 H15 H17 |      |      |      |      |      |      |  |  |  |
| 9,07                                                           | 2,08                        | 1,80 | 0,65 | 1,54 | 1,03 | 0,69 | 0,64 |  |  |  |

ELABORADO POR: Los investigadores.

Para obtener el THDi de la cabecera se utilizó la Ec. (3) 1.2.5., teniendo como resultado un 90 de relación, observando que esta relación está dentro de lo establecido dentro de la NORMA IEEE 519 en un rango admisible de 50 < 100.

### Análisis individual de la distorsión armónica de voltaje en la cabecera.


TABLA N° 23 DATOS PORCENTUALES DE LAS PRUEBAS Y MEDICIONES DEL ANALIZADOR DE MEDIO VOLTAJE

|        | THD  | THD | THD  | THD  | THD | THD |
|--------|------|------|------|------|------|------|------|------|------|-----|------|------|-----|-----|
| FASES  | 3    | 5    | 7    | 9    | 11   | 13   | 15   | 17   | 19   | 21  | 23   | 25   | 27  | 29  |
| Fase A | 4,74 | 2,32 | 2,04 | 1,86 | 1,2  | 0,82 | 0,69 | 0,8  | 0,38 | 0   | 0,21 | 0    | 0   | 0   |
| Fase B | 5,67 | 6    | 4,79 | 1,77 | 1,18 | 0,89 | 1,63 | 0,68 | 0,38 | 0   | 0,26 | 0    | 0   | 0   |
| Fase C | 6,97 | 4,24 | 4,37 | 2,04 | 1,63 | 1,23 | 0,79 | 0,54 | 0,34 | 0   | 0    | 0,23 | 0   | 0   |

FUENTE: Analizador de calidad de energía

**ELABORADO POR:** Los investigadores

GRÁFICO N° 26 GRAFICO ESPECTRO DE LA DISTORSIÓN ARMÓNICA DE VOLTAJE



**FUENTE:** Personal

**ELABORADO POR:** Los investigadores

Luego de las mediciones realizadas en la cabecera del alimentador MLS1, se obtiene el gráfico N° 26 donde se muestra la distorsión armónica impar desde el orden H3 hasta H29 de corriente porcentual. Se observa que la máxima presencia es de la armónica impar de orden H3 en la fase C con el 6,97 %. Mientras que a medida el orden de armónicos aumenta, el porcentaje de distorsión de corriente disminuye.

Mediante la Ec. (3) 1.2.5, se calcula el THDv de la cabecera dando como resultado 7,37%, observando así que se cumple la regulación CONELEC 004/01 con un máximo establecido de 8%.

### 2.7. Modelación del sistema actual

Mediante el uso del software Cymdist se modela el sistema de medio voltaje utilizando para ello datos descargados del ArcGIS, donde se ingresan parámetros de las líneas, disposición de conductores en las estructuras y características de transformadores como: potencia y número de fases, con los datos encontrados se ejecuta el análisis que se describe a continuación.

### 2.7.1. Flujos de potencia

Una vez modelado el sistema e ingresado los consumos promedios en kWh por cada transformador, lo cual se presentan en el anexo N° 3 y con datos del alimentador presentados en la tabla N° 16 se procede al ingreso de datos en el software donde se muestra los pasos a seguir, además en el grafico N° 27 se observa la distribución de carga por el método de kWh lo cual permite hacer la simulación con información real y actualizada del sistema.

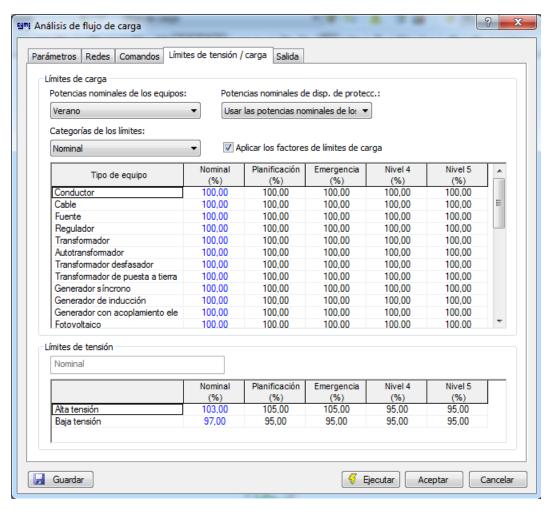
ନ୍ଧ 23 um Análisis de distribución de carga Redes y medidores Método de distribución ⊟...✓ Alimentador Consumo kW-h Parámetros... --V ALIM-ML51 Alimentador: ALIM-MLS1 ▼ Conectado Total A-FP 105,24 98,47 108,39 95,6 115.84 89.46 Factores... Datos aguas abajo Α В С 81025,08 119554,12 43944,09 Consumo kW-h Todos Ninguno 🔛 Guardar Aceptar Cancelar

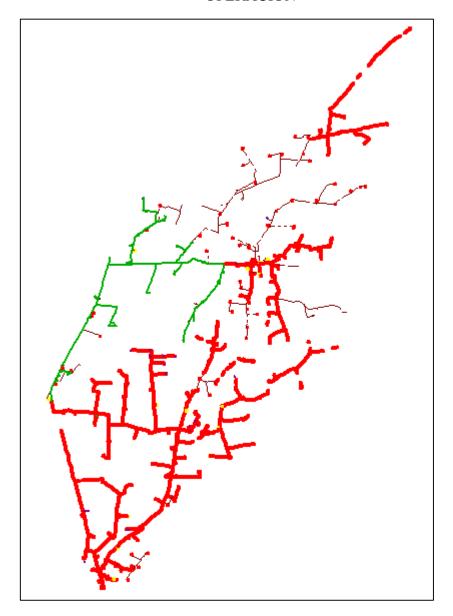
GRÁFICO Nº 27 DISTRIBUCIÓN DE CARGA

**FUENTE:** Cymdist

**ELABORADO POR:** Investigadores

Una vez realizado la distribución de la carga, se realiza el análisis de flujo de carga por el método de caída de voltaje desequilibrada con un límite de caída máxima de  $\pm$  3% según lo establecido en la norma 04/001 CONELEC, las restricciones que se ingresa al flujo de potencia se presenta en el grafico N° 28.





GRÁFICO N° 28 ANÁLISIS DE FLUJO DE POTENCIA

**FUENTE:** CYMDIST

**ELABORADO POR:** Investigadores

La corrida de flujos arroja condiciones normales y anormales de operación, determinando tramos con un bajo nivel de voltaje lo que viene indicado en color rojo, los elementos que presenta sobrecarga se observa de color amarillo, finalmente los elementos que no tiene problemas se presenta de color verde; estos resultados se muestra en el gráfico N°29.

## GRÁFICO N° 29 ALIM-MLS1 EN CONDICIONES NORMALES DE OPERACIÓN



**FUENTE:** Cymdist

**ELABORADO POR:** Investigadores

La tabla N° 24 presenta los valores arrojados de la simulación realizada en estado actual sin incorporación de cocinas de inducción teniendo así potencias totales tanto en activa, reactiva y aparente con su respectivo factor de potencia, además se obtiene las pérdidas totales en potencia.

TABLA N° 24 RESUMEN DE DATOS

| Resumen total                                | $\mathbf{kW}$ | kVAR   | kVA     | FP(%) |
|----------------------------------------------|---------------|--------|---------|-------|
| Fuentes (Potencia de                         |               |        |         |       |
| equilibrio)                                  | 2476,63       | 812,85 | 2606,61 | 95,01 |
| Generadores                                  | 0             | 0      | 0       | 0     |
| Consumo total                                | 2476,63       | 812,85 | 2606,61 | 95,01 |
| Carga leída (no regulada)<br>Carga utilizada | 2350,11       | 646,59 | 2437,44 | 96,42 |
| (regulada)                                   | 2350,11       | 646,59 | 2437,44 | 96,42 |
| Cargas totales                               | 2350,11       | 646,59 | 2437,44 | 96,42 |
| Capacitancia del cable                       | 0             | 0,81   | 0,81    | 0     |
| Capacitancia de la línea                     | 0             | 40,83  | 40,83   | 0     |
| Capacitancia shunt                           |               |        |         |       |
| total                                        | 0             | 41,64  | 41,64   | 0     |
| Pérdidas en las líneas                       | 67,88         | 74,43  | 100,73  | 67,38 |
| Pérdidas en los cables                       | 0,01          | 0      | 0,01    | 85,73 |
| Pérdidas en los                              |               |        |         |       |
| transformadores                              | 58,63         | 133,46 | 145,77  | 40,22 |
| Pérdidas totales                             | 126,51        | 207,9  | 243,36  | 51,98 |

**FUENTE:** CYMDIST

**ELABORADO POR:** Investigadores

La tabla N° 25 presenta las perdidas en kW ocasionadas por la operación del alimentador y el costo que representa las perdidas(MWh/año), tomando en consideración que el kWh tiene un costo de \$ 0,08

TABLA N° 25 COSTO ANUAL DE LAS PÉRDIDAS DEL SISTEMA

| Costo anual de las pérdidas del sistema | kW     | MW-h/año | k\$/año |
|-----------------------------------------|--------|----------|---------|
| Pérdidas en las líneas                  | 67,88  | 594,62   | 47,57   |
| Pérdidas en los cables                  | 0,01   | 0,05     | 0,00    |
| Pérdidas en los transformadores         | 58,63  | 513,56   | 41,08   |
| Pérdidas totales                        | 126,51 | 1108,23  | 88,66   |

FUENTE: CYMDIST

**ELABORADO POR:** Investigadores

## 2.7.2. Cargabilidad de los transformadores

La tabla N° 26 muestra el total de transformadores que presentan sobrecarga, siendo los más críticos 40 trasformadores de diferentes capacidades.

TABLA N° 26 TRANSFORMADORES SOBRECARGADOS

| Nro. Equipo | Nudo origen | Nudo destino | Carga<br>(%) | Tot kVA<br>Requerido | Cap<br>Actual<br>(kVA) |
|-------------|-------------|--------------|--------------|----------------------|------------------------|
| 5142        | MTA_L_43530 | MTA_L_43531  | 158          | 8                    | 5                      |
| 8810        | MTA_S_43566 | MTA_L_43566  | 135,9        | 136                  | 100                    |
| 1756        | MTA_L_43577 | MTA_L_43581  | 163,7        | 25                   | 15                     |
| 8310        | MTA_L_43583 | MTA_L_43584  | 161          | 60                   | 37,5                   |
| 6873        | MTA_L_43771 | MTA_L_43772  | 149,6        | 37                   | 25                     |
| 6495        | MTA_S_43805 | MTA_L_43805  | 166,7        | 25                   | 15                     |
| 9099        | MTA_L_43999 | MTA_L_43797  | 141,1        | 21                   | 15                     |
| 3567        | MTA_L_43638 | MTA_L_43639  | 168,7        | 17                   | 10                     |
| 1773        | MTA_S_43855 | MTA_L_43855  | 140,9        | 7                    | 5                      |
| 5182        | MTA_S_43871 | MTA_L_43871  | 131,7        | 20                   | 15                     |
| 6940        | MTA_L_43886 | MTA_L_43887  | 154,6        | 23                   | 15                     |
| 3593        | MTA_L_43932 | MTA_L_43936  | 160,1        | 40                   | 25                     |
| 1803        | MTA_L_43888 | MTA_L_43895  | 169,6        | 17                   | 10                     |
| 6021        | MTA_L_43906 | MTA_L_43907  | 165,2        | 41                   | 25                     |
| 5447        | MTA_S_43878 | MTA_L_43877  | 172,5        | 17                   | 10                     |
| 1801        | MTA_L_43956 | MTA_L_43870  | 142,9        | 14                   | 10                     |
| 1234        | MTA_L_43829 | MTA_L_43830  | 180          | 9                    | 5                      |
| 3588        | MTA_L_43669 | MTA_L_43670  | 147          | 7                    | 5                      |
| 6917        | MTA_L_43666 | MTA_L_43667  | 159,3        | 24                   | 15                     |
| 5858        | MTA_L_43700 | MTA_L_43701  | 178,6        | 45                   | 25                     |
| 7427        | MTA_L_43574 | MTA_L_43575  | 166,4        | 17                   | 10                     |
| 3693        | MTA_S_43568 | MTA_L_43568  | 152,4        | 15                   | 10                     |
| 8387        | MTA_L_38216 | MTA_L_38217  | 159,4        | 40                   | 25                     |
| 8383        | MTA_L_38237 | MTA_L_38238  | 170,3        | 26                   | 15                     |
| 8391        | MTA_L_38264 | MTA_L_38265  | 167,4        | 42                   | 25                     |
| 6675        | MTA_L_38428 | MTA_L_38429  | 136,6        | 14                   | 10                     |
| 1733        | MTA_L_38432 | MTA_L_38433  | 167,3        | 17                   | 10                     |
| 8733        | MTA_S_38480 | MTA_L_38480  | 174,2        | 9                    | 5                      |
| 9235        | MTA_S_38478 | MTA_L_38478  | 166,9        | 25                   | 15                     |
| 7653        | MTA_S_38477 | MTA_L_38477  | 163,5        | 16                   | 10                     |
| 8735        | MTA_S_38473 | MTA_L_38473  | 165,3        | 8                    | 5                      |
| 8731        | MTA_S_38475 | MTA_L_38475  | 162,8        | 8                    | 5                      |
| 8727        | MTA_S_38470 | MTA_L_38470  | 168          | 8                    | 5                      |
| 8739        | MTA_S_38465 | MTA_L_38465  | 168,8        | 17                   | 10                     |
| 8409        | MTA_L_38369 | MTA_L_38370  | 167,4        | 8                    | 5                      |
| 5204        | MTA_L_38386 | MTA_L_38387  | 170,8        | 17                   | 10                     |
| 3542        | MTA_L_38099 | MTA_L_38100  | 171,7        | 26                   | 15                     |
| 1704        | MTA_L_38114 | MTA_L_38115  | 164,6        | 8                    | 5                      |

### 2.7.3. Cargabilidad de las líneas

La tabla N° 27 muestra la Cargabilidad de los tramos existentes en la red, determinándose que el tramo 5174MTA es el más crítico con un porcentaje de 38,6% de Cargabilidad teniendo como nudo de origen la fuente de la subestación por lo que el resto de tramos presenta una Cargabilidad menor. El detalle de todos los tramos se presenta en el anexo N° 5.

TABLA N° 27 TRAMOS SOBRECARGADOS

| Nro. equipo | Nudo origen  | Nudo destino | Longitud<br>pi | IEquil<br>(Amps) | Carga<br>(%) |
|-------------|--------------|--------------|----------------|------------------|--------------|
| 5174_MTA    | MTA_S_5457   | MTA_L_5174   | 569            | 109,1            | 38,6         |
| 5235_MTA    | MTA_L_5174   | MTA_L_5235   | 3233,8         | 109,1            | 38,6         |
| 5180_MTA    | MTA_L_5235   | MTA_L_5180   | 470,3          | 63,2             | 24,9         |
| 5201_MTA    | MTA_L_5180   | MTA_L_5201   | 828,2          | 63,2             | 24,9         |
| 5190_MTA    | MTA_L_5201   | MTA_L_5190   | 104,8          | 3,4              | 1,9          |
| 5191_MTA    | MTA_L_5190   | MTA_L_5191   | 242,4          | 2,9              | 1,6          |
| 5192_MTA    | MTA_L_5191   | MTA_L_5192   | 188,5          | 1,7              | 0,9          |
| 5238_MTA    | MTA_L_5201   | MTA_S_43523  | 413,8          | 61,8             | 24,8         |
| 43523_MTA   | MTA_S_43523  | MTA_L_43523  | 621,3          | 61,8             | 32,3         |
| 43525_MTA   | MTA_L_43524  | MTA_L_43525  | 1485           | 1,1              | 0,8          |
| 43526_MTA   | MTA_L_43523  | MTA_L_43526  | 3498,8         | 61,5             | 32,3         |
| 43529_MTA   | MTA_L_43526  | MTA_L_43529  | 340,3          | 61,1             | 31,8         |
| 64657_MTA   | MTA_L_43532  | MTA_L_64657  | 416,9          | 1,9              | 1,6          |
| 43535_MTA   | MTA_L_64657  | MTA_L_43535  | 858,9          | 0                | 0            |
| 64658_MTA   | MTA_L_64657  | MTA_S_43594  | 442,5          | 1,9              | 1,6          |
| 43594_MTA   | MTA_S_43594  | MTA_S_43534  | 154,3          | 0,5              | 0,3          |
| 43534_MTA   | MTA_S_43534  | MTA_L_43534  | 1014,4         | 0,5              | 0,4          |
| 43536_MTA   | MTA_L_43529  | MTA_L_43536  | 171,6          | 58,9             | 31,1         |
| 43539_MTA   | MTA_L_43536  | IMTA_L_43541 | 200,4          | 58,8             | 31,1         |
| 43542_MTA   | IMTA_L_43541 | IMTA_L_43544 | 227,2          | 58,7             | 39,6         |

FUENTE: CYMDIST

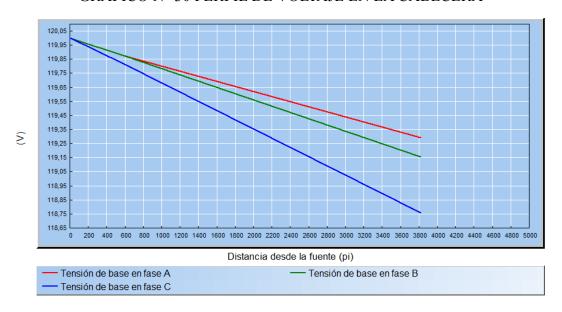
**ELABORADO POR:** Investigadores

## 2.7.4. Tramos con bajo nivel de voltaje

Los tramos críticos de alimentador se presentan en la tabla N° 28 mientras que el detalle de todo el alimentador se presenta en el anexo N° 6 donde se unifica que el 60,45% del recorrido del alimentador presenta bajo voltaje.

TABLA N° 28 TRAMOS CON BAJO NIVEL DE VOLTAJE

| Nro. equipo | Id equipo                        | V     | Longitud<br>pi | IEquil<br>(Amps) | V<br>(kVLL) |
|-------------|----------------------------------|-------|----------------|------------------|-------------|
| 43559_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 117,2 | 1079,7         | 56,3             | 13,5        |
| 43561_MTA   | ACSR.4,ACSR.4,ACSR.4,3CP,        | 117,2 | 68,8           | 6                | 13,5        |
| 43562_MTA   | ACSR.2/0,ACSR.2/0,ACSR.2/0,ACSR. | 117,2 | 96,7           | 50,2             | 13,5        |
| 43560_MTA   | ACSR.2/0,ACSR.2/0,ACSR.2/0,NONE, | 117,2 | 493,3          | 50,2             | 13,5        |
| 43563_MTA   | ACSR.2/0,ACSR.2/0,ACSR.2/0,NONE, | 117,1 | 604,7          | 49,6             | 13,5        |
| 43572_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 117   | 556,3          | 49,6             | 13,5        |
| 43573_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 116,8 | 1514,1         | 48,8             | 13,4        |
| 43577_MTA   | NONE,NONE,ACSR.2,ACSR.2,1CP,C,10 | 115,6 | 1717,8         | 12,2             | 13,3        |
| 43582_MTA   | NONE,NONE,ACSR.2,ACSR.4,1CP,C,10 | 115,6 | 149,5          | 8,8              | 13,3        |
| 43578_MTA   | NONE,NONE,ACSR.4,ACSR.4,1CP,C,10 | 115,5 | 1178,1         | 8,8              | 13,3        |
| 43579_MTA   | NONE,NONE,ACSR.4,ACSR.4,1CP,C,10 | 115,5 | 405,9          | 0,2              | 13,3        |
| 43580_MTA   | NONE,NONE,ACSR.4,ACSR.4,1CP,C,10 | 115,5 | 1246           | 0,2              | 13,3        |
| 43732_MTA   | ACSR.2,ACSR.2,ACSR.4,3CP,        | 116,7 | 230,5          | 44,9             | 13,4        |
| 43734_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 116,5 | 1437           | 44,8             | 13,4        |
| 43979_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 116,5 | 527            | 44,7             | 13,4        |
| 43735_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 116,3 | 1126,1         | 44,6             | 13,4        |
| 43978_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 116,1 | 1329,5         | 43,2             | 13,4        |
| 43743_MTA   | ACSR.4,NONE,NONE,NONE,1CP,A,100, | 115,8 | 722,9          | 0,4              | 13,3        |
| 43977_MTA   | ACSR.1/0,ACSR.1/0,ACSR.1/0,ACSR. | 115,9 | 1524,6         | 43,1             | 13,3        |
| 96327_MTA   | ACSR.2/0,ACSR.2/0,ACSR.2/0,ACSR. | 115,9 | 303            | 43,1             | 13,3        |
| 43738_MTA   | ACSR.2,ACSR.2,ACSR.4,3CP,        | 115,9 | 2173,1         | 1,7              | 13,3        |
| 43741_MTA   | ACSR.4,NONE,NONE,ACSR.4,1CP,A,10 | 115,4 | 74,2           | 5                | 13,3        |
| 43974_MTA   | ACSR.2,ACSR.2,ACSR.4,3CP,        | 115,9 | 1320,6         | 0,1              | 13,3        |
| 43739_MTA   | ACSR.2,ACSR.2,ACSR.2,3CP,        | 115,9 | 30,6           | 0                | 13,3        |
| 43740_MTA   | ACSR.2,ACSR.2,ACSR.4,3CP,        | 115,9 | 1125,2         | 0,1              | 13,3        |
| 47442_MTA   | ACSR.2,ACSR.2,ACSR.2,ACSR.4,3CP, | 115,9 | 163,9          | 0,1              | 13,3        |
| 47443_MTA   | ACSR.2,ACSR.2,ACSR.4,3CP,        | 115,9 | 1191,6         | 0                | 13,3        |

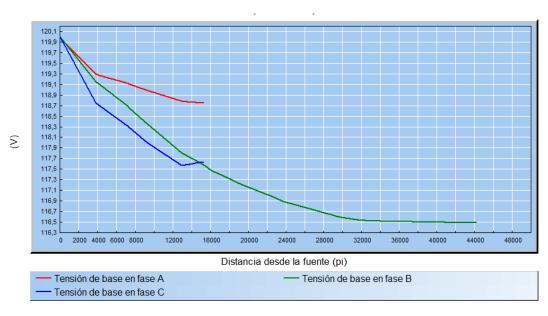

**FUENTE:** Cymdist

**ELABORADO POR:** Investigadores

## 2.7.5. Perfiles de voltaje

El gráfico N° 30 muestra el perfil de voltaje desde la cabecera en el tramo 5235\_MTA, determinando que la fase C tiende a decrecer significativamente con respecto a la fase A y B lo que nos indica que dicha fase tiene mayor carga.

### GRÁFICO Nº 30 PERFIL DE VOLTAJE EN LA CABECERA

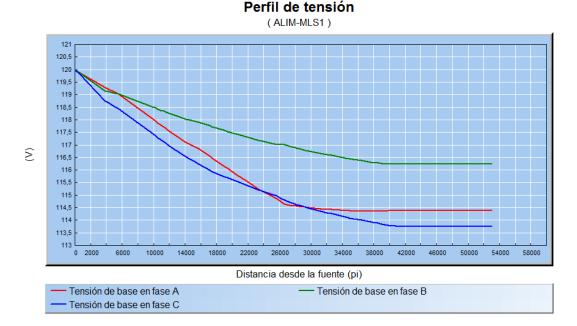



FUENTE: CYMDIST.

ELABORADO POR: Investigadores

El grafico N° 31 muestra el perfil de voltaje del extremo norte del alimentador, en el tramo 38285\_MTA lo cual se encuentra conectado una carga monofásica y donde la distancia de 44 km desde la fuente es el factor incidente para tener caídas de voltajes elevadas.

GRÁFICO N° 31 PERFIL DE VOLTAJE EXTREMO NORTE TRAMO 38285\_MTA




FUENTE: CYMDIST.

ELABORADO POR: Investigadores

El grafico N° 32 se muestra el perfil de voltaje del extremo sur del alimentador, en el tramo 43705MTA, se tiene una red trifásica sin carga, determinando que aguas abajo las fases A y C tiene mayor carga monofásica conectada lo que produce caídas de voltaje alterando dichas fases.

GRÁFICO N° 32 PERFIL DE VOLTAJE EXTREMOS SUR, TRAMO 43705 MTA



FUENTE: Cymdist

**ELABORADO POR:** Investigadores

## 2.8. Verificación de la hipótesis

El 16,18% de los transformadores se encuentran con una sobrecarga máxima del 180% sobrepasando la Cargabilidad ideal del 100%. Con respecto a la Cargabilidad de las líneas, no hay mayor problema ya que la máxima llega a tener el tramo 5174MTA ubicada en la cabecera del alimentador con una Cargabilidad de 38,6% desempeñando un funcionamiento normal de las líneas.

Un 60, 45% de tramos se encuentra con bajo nivel de voltaje con un punto crítico en la red de medio voltaje de 13,2kV violando los límites mencionados anteriormente de calidad de producto teniendo como base 13,8kV.

## **CAPÍTULO III**

### **PROPUESTA**

### 3.1.Introducción

El alimentador Mulaló – Joseguango Bajo correspondiente a la S/E Mulaló la misma que pertenece ELEPCO S.A, está ubicada geográficamente en el sector Laigua, de la parroquia Mulaló, cantón Latacunga, a una altitud de 2967 metros sobre el nivel del mar; posee 2324 usuarios, de los cuales 1909 clientes tiene tarifa residencial con diferentes consumos, a las que se ha considerado que utilicen las cocinas de inducción, lo que incrementa la potencia instalada al igual que la demanda, afectando la calidad de producto en la red eléctrica de distribución.

Este problema se agrava por la gran cantidad de cargas no lineales en el sistema eléctrico, afectando a todos los usuarios conectados, alterando los parámetros eléctricos establecidos por la regulación vigente y norma.

Al determinar las condiciones de operación en estado actual y con el ingreso de las cocinas de inducción se propone alternativas de tal manera que se cumpla con los criterios de calidad (CONELEC 004/01) y con costos de inversión aceptables.

### Justificación de la propuesta

La Secretaria Nacional de Planificación y Desarrollo – SENPLADES en coordinación con diferentes instancias gubernamentales elaboró el Plan Nacional del Buen Vivir (PNBV). Parte de este Plan se refiere al Cambio de la Matriz Energética con el programa de sustitución de cocinas a gas (GLP) por cocinas de inducción que deberá ejecutarse tan pronto como exista la factibilidad de la generación eléctrica.

Este trabajo investigativo analiza aspectos importantes que permite conocer la cantidad de potencia que el sistema necesita cada año para para funcionar en óptimas condiciones, los puntos críticos arrojados mediante la modelación del sistema eléctrico en medio voltaje y las acciones a tomar en cuenta al momento que se viole las restricciones establecidas permitiendo encontrar posibles soluciones de mejora, con el fin de elaborar presupuestos y gestionar financiamiento para cubrir cualquier anomalía que se presente, esto se consigue realizando simulaciones cada dos años incluyendo el incremento de las cocinas de inducción establecidos por el CONELEC y tomando en cuenta el crecimiento de la demanda de energía en los consumidor, residencial, comercial e industrial, todo el procedimiento se realiza mediante la utilización del software "CYMDIST", que permite realizar estudios en sistemas equilibrados o desequilibrados, adicionalmente los datos obtenidos en las pruebas en las cocina de inducción, permitió determinar el porcentaje de distorsión armónica total y la influencia funcionamiento con las condiciones dadas, se corre flujos de potencia y se determina el cumplimiento o no de la norma establecida CONELEC 004/01 de Calidad de Servicio Eléctrico.

## 3.2. Objetivos de la propuesta

### 3.2.1. Objetivo general.

Analizar técnicamente la calidad de producto una vez que se haya implementado las cocinas de inducción, mediante la utilización del software CYMDIST, y determinando el adecuado funcionamiento del sistema cumpliendo la norma CONELEC 004/01, en el alimentador Mulaló – Joseguango Bajo de la S/E Mulaló, perteneciente a la ELEPCO S.A.

## 3.2.2. Objetivos específicos.

- Determinar el crecimiento de la demanda hasta un horizonte de 15 años (2030) de los clientes residenciales, comerciales e industriales servidos por el alimentador, utilizando datos históricos registrados 10 años atrás.
- Proponer alternativas de solución conforme se realice las simulaciones en distintos escenario para corregir las anomalías existentes en la red.

 Evaluar las alternativas que mejor se ajuste a las condiciones de operación del sistema cumpliendo con la norma vigente CONELEC 004/01

### 3.3. Análisis de la factibilidad de la propuesta

La presente propuesta cumple con todas los estándares según la normativa vigente, siendo así el punto de inicio para determinar los índices de calidad de producto que la ELEPCO S.A., brinda como empresa distribuidora de servicio a sus clientes.

### 3.3.1. Factibilidad Administrativa

- La ELEPCO S.A., está consciente que se debe realizar estudios para conocer la calidad de producto que esta brinda a sus clientes.
- Los departamentos Técnico y Planificación, se encuentran trabajando y buscando soluciones técnicas y económicas para mitigar los problemas futuros.
- La ELEPCO S.A., como empresa distribuidora está sujeta al cumplimiento de la normativa vigente que el CONELEC establece como ente regulador de energía eléctrica aplicando la REGULACION 004/01.

### 3.3.2. Factibilidad Técnica

La empresa eléctrica Cotopaxi S.A., ha brindado la oportunidad de desarrollar el presente trabajo, en el alimentador MLS1 para lo cual ha provisto de los elementos e información necesaria para la realización del mismo, tales como: Información técnica referente al alimentador, la cocina de inducción con su respectivo analizador de calidad de energía PQ Box 100, analizadores para la medición en medio voltaje en la cabecera del alimentador, y además de permitir el acceso al software CYMDIST la información y herramientas que manejados por los tesistas permiten determinar las condiciones de funcionamiento del sistema lo que permite proponer soluciones técnica y económicamente viables.

## 3.4.Desarrollo de la propuesta

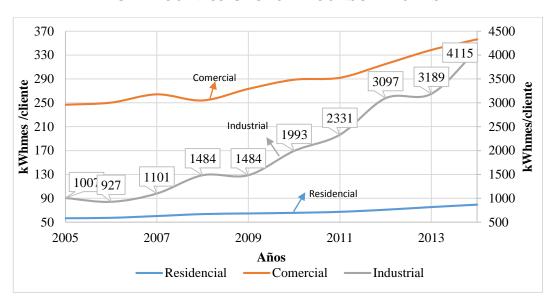
### 3.4.1. Proyección de la demanda

El presente trabajo investigativo se describe la proyección de la demanda de energía eléctrica por grupo de consumidores, con tarifas, residencial, comercial e industrial para el período 2015-2030, utilizando métodos estadísticos tendenciales que son confiables y permiten obtener una tasa de crecimiento como se muestra a continuación.

### 3.4.1.1. Análisis de la situación actual

La tabla N° 29 presenta el consumo promedio mensual de energía (kWh/cliente) histórico por grupos tomados durante el periodo 2005-2014.

TABLA N° 29 CONSUMO PROMEDIO DE ENERGÍA MENSUAL POR GRUPO DE CONSUMO


| CONSUMO PROMEDIO DE ENERGÍA MENSUAL POR EMPRESA Y GRUPO DE CONSUMO DE CLIENTES REGULADOS kWh/cliente ELEPCO SA |         |         |         |         |         |         |         |         |         |        |  |  |
|----------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--|--|
|                                                                                                                | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014   |  |  |
| Residencial                                                                                                    | 56,58   | 57,30   | 60,27   | 63,56   | 64,62   | 65,64   | 67,36   | 70,88   | 75,34   | 79,42  |  |  |
| Comercial                                                                                                      | 246,66  | 250,31  | 264,11  | 253,95  | 273,28  | 288,65  | 291,94  | 314,99  | 338,49  | 356,33 |  |  |
| Industrial                                                                                                     | 1006,57 | 927,14  | 110,51  | 1483,97 | 1484,23 | 1993,00 | 2331,28 | 3097,05 | 3188,96 | 4115,4 |  |  |
| Público                                                                                                        | 16,05   | 17,03   | 17,21   | 17,01   | 16,83   | 15,74   | 16,38   | 17,05   | 17,02   | 16,00  |  |  |
| Otros                                                                                                          | 1062,83 | 1049,16 | 1040,14 | 774,28  | 1821,45 | 1953,89 | 6057,67 | 2093,91 | 1734,63 | 853,3  |  |  |
| Total                                                                                                          | 138,39  | 137,75  | 135,91  | 167,74  | 184,99  | 241,52  | 272,08  | 281,19  | 275,26  | 281,4  |  |  |

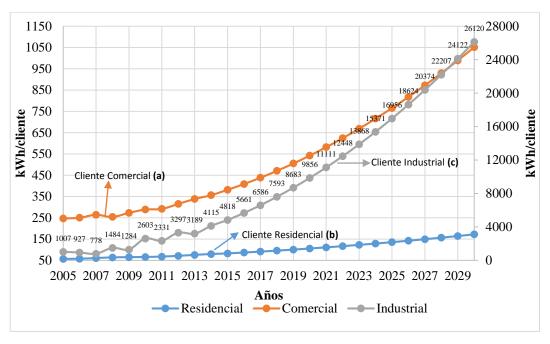
FUENTE: Fuente Multianual Sector Eléctrico Ecuatoriano 2005-2014 CONELEC Pág 83.

ELABORADO POR: Investigadores.

Los grupos de consumidores mantienen una tendencia de crecimiento moderado, en la gráfica N°33 se presenta la curva de comportamiento entre los años 2005 y 2014 con una tasa de crecimiento promedio de 3,95% anual para el consumidor residencial, con el 4,5% para el sector comercial y un 12,39 % para el sector industrial notando el desarrollo acelerado para este grupo de consumidor.

### GRÁFICO Nº 33 GRUPO DE CONSUMIDORES




**ELABORADO POR:** Investigadores

### 3.4.1.2. Crecimiento de la demanda

El alimentador Mulaló Joseguango bajo tiene 1909 clientes residenciales las mismas que consumieron 66 kWh/mes por cada usuario desde el año 2004 hasta el año 2014; utilizando el método de proyección geométrica con ayuda de la ecuación N° 4 se proyectó la demanda desde el año 2015 hasta el año 2030, como se observa en el grafico N° 34 ítem (a) lo cual se obtuvo un crecimiento promedio del 5,02% anual, Además cuenta con 95 clientes comerciales que tiene un consumo promedio de 288 kWh mes/cliente lo cual se utiliza el método descrito anteriormente para la proyección de demanda tal y como se observa en el gráfico N°34 ítem (b), obteniendo un crecimiento promedio del 5,98% anual.

Mediante el análisis de proyección de la demanda como se lo observa en la gráfica N° 34 ítem (c) aplicando el método de proyección geométrica con la ecuación N° 4 se realizó el análisis para el cliente industrial, presentando 91 clientes de esta categoría con un consumo promedio de 2072 kWhmes/cliente, obteniendo un crecimiento promedio 15,65% anual

### GRÁFICO N° 34 CRECIMIENTO DE DEMANDA



**ELABORADO POR:** Investigadores

### 3.4.2. Distribución de cocinas de inducción 2015-2022

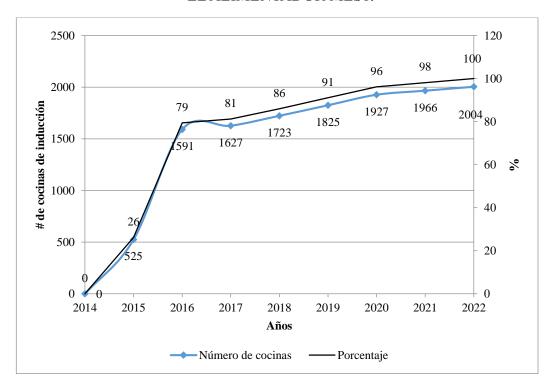
Según el (CONELEC) "el número de cocinas eléctricas a incorporarse en los sistemas de distribución, se ha distribuido en función del índice de total del tiempo de interrupciones, TTik reportado por las distribuidoras durante el año 2011" Pág. 71

Se designa la distribución de cocinas por empresa desde el año 2015 hasta el año 2022 donde se ingresa paulatinamente hasta llegar a la inclusión total del 100% que se da en el año 2022, para el estudio se tomó en consideración el porcentaje de inclusión de cocinas de inducción designada para la Empresa Eléctrica Cotopaxi S.A., aplicándolo al alimentador en estudio, obteniendo la distribución anual por transformador.

El plan de inclusión de cocinas de inducción se aplica para 1909 consumidores residenciales conectados al alimentador MLS1. Considerado el caso de estudio y tomando en cuenta que el alimentador es rural marginal se realizó trabajo de campo, verificando los medidores con tarifa comercial que se encuentra gravado en la

planilla de energía eléctrica.; llegando a la conclusión que los clientes con dicha tarifa no son netamente dedicadas al comercio, habitan en ella, por lo que se tomó en consideración para la inclusión de cocinas a los 95 consumidores comerciales trabajando con un total de 2004 cocinas a ser distribuidas conforme los usuarios estén conectados a cada transformador como se muestra en la tabla N° 30, el total de transformadores con su respectiva distribución anual de cocinas de inducción se presenta en el anexo N° 7

TABLA Nº 30 DISTRIBUCIÓN ANUAL DE COCINA DE INDUCCIÓN.


| N°     | Id*   |               | R/C | R | C | I | 0 | Dist | ribució | n de C | ocinas p | or año | Tarifa | Reside | ncial |
|--------|-------|---------------|-----|---|---|---|---|------|---------|--------|----------|--------|--------|--------|-------|
| Equipo | Id*   | Total cliente | R/C | K | C | I | O | 2015 | 2016    | 2017   | 2018     | 2019   | 2020   | 2021   | 2022  |
| 1651   | 1935  | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1652   | 1936  | 2             | 2   | 2 | 0 | 0 | 0 | 1    | 2       | 2      | 2        | 2      | 2      | 2      | 2     |
| 1653   | 1946  | 1             | 1   | 1 | 0 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 7057   | 1937  | 2             | 0   | 0 | 0 | 2 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1405   | 24655 | 1             | 1   | 0 | 1 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 7929   | 24441 | 3             | 2   | 1 | 1 | 1 | 0 | 1    | 2       | 2      | 2        | 2      | 2      | 2      | 2     |
| 5142   | 24442 | 3             | 2   | 1 | 1 | 0 | 1 | 1    | 2       | 2      | 2        | 2      | 2      | 2      | 2     |
| 1753   | 24762 | 1             | 0   | 0 | 0 | 0 | 1 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1409   | 24651 | 1             | 0   | 0 | 0 | 0 | 1 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1610   | 24654 | 1             | 1   | 1 | 0 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 1408   | 24652 | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 8246   | 24653 | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1749   | 24443 | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 3570   | 24444 | 1             | 1   | 1 | 0 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 1489   | 24445 | 2             | 1   | 1 | 0 | 1 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 1750   | 24446 | 1             | 1   | 1 | 0 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 1488   | 24447 | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1751   | 24448 | 1             | 1   | 1 | 0 | 0 | 0 | 0    | 1       | 1      | 1        | 1      | 1      | 1      | 1     |
| 2479   | 24642 | 1             | 0   | 0 | 0 | 0 | 1 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 8810   | 24643 | 1             | 0   | 0 | 0 | 1 | 0 | 0    | 0       | 0      | 0        | 0      | 0      | 0      | 0     |
| 1756   | 24647 | 11            | 8   | 7 | 1 | 2 | 1 | 3    | 8       | 8      | 8        | 8      | 8      | 8      | 8     |

FUENTE: Departamento de Planificación ELEPCO S.A.

### **ELABORADO POR:** Investigadores.

El grafico N° 35 presenta la curva de inclusión de cocinas de inducción en el alimentador Mulaló Joseguango bajo, observando según él (CONELEC) un plan agresivo en el segundo año (2016) que se prevé una migración 79%, esperando alcanzar un 91% en el año 2019 y finalizando la migración el año 2022 con la migración del total de cocinas de inducción.

GRÁFICO N° 35 CURVA DE INCLUSIÓN DE COCINAS DE INDUCCIÓN EN EL ALIMENTADOR MLS1.



# 3.4.3. Impacto de la incorporación de cocinas de inducción en el alimentador MLS1.

La potencia por incorporación de cocinas se determina multiplicando la demanda individual de la cocina de inducción por el número total de cocinas a introducir y por el factor de coincidencia correspondiente al número de artefactos que se incorporarían en cada transformador. La tabla N° 31 presenta el código del transformador con y la distribución de cocinas de acuerdo a los clientes residenciales por año. Está a la vez determina la potencia a incrementarse por el Programa de Cocción Eficiente en el alimentador, por cada año.

TABLA N° 31 POTENCIA A INCREMENTARSE POR EL PROGRAMA PEC POR CADA TRANSFORMADOR

| Nro.   | R/C |      | D    | istribu | ción de | cocinas | por af | ío   |      | Demanda máxima CI [kW] |      |      |      |      |      |      |      |
|--------|-----|------|------|---------|---------|---------|--------|------|------|------------------------|------|------|------|------|------|------|------|
| equipo | R/C | 2015 | 2016 | 2017    | 2018    | 2019    | 2020   | 2021 | 2022 | 2015                   | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| 1651   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1652   | 2   | 1    | 2    | 2       | 2       | 2       | 2      | 2    | 2    | 1,54                   | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 |
| 1653   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 7057   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1405   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 7929   | 2   | 1    | 2    | 2       | 2       | 2       | 2      | 2    | 2    | 1,54                   | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 |
| 5142   | 2   | 1    | 2    | 2       | 2       | 2       | 2      | 2    | 2    | 1,54                   | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 | 1,96 |
| 1753   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1409   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1610   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 1408   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 8246   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1749   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 3570   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 1489   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 1750   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 1488   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1751   | 1   | 0    | 1    | 1       | 1       | 1       | 1      | 1    | 1    | 0,00                   | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 | 1,54 |
| 2479   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 8810   | 0   | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0,00                   | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
| 1756   | 8   | 3    | 8    | 8       | 8       | 8       | 8      | 8    | 8    | 2,64                   | 5,00 | 5,00 | 5,00 | 5,00 | 5,00 | 5,00 | 5,00 |

El anexo N° 8 presenta todos los transformadores existentes en el alimentador MLS1 con la respectiva distribución anual de cocinas y la demanda máxima para cada una de ellas tomando en consideración una cocina de inducción de 4kW que se utilizó durante las pruebas.

### 3.4.3.1. Curva de carga proyectada

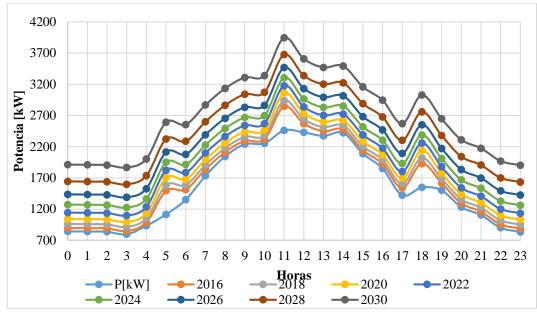
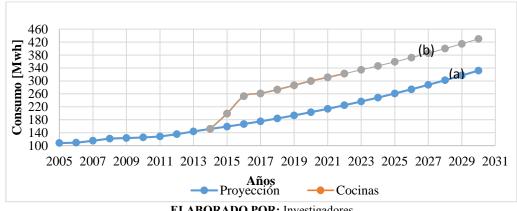

Con los datos obtenidos de la curva de inclusión anual de cocinas de inducción se establece la demanda máxima para cada año con la finalidad de determinar la curva de carga por lo que también se ha añadido el crecimiento de demanda del grupo de consumidores en kW, en la tabla N° 32 se muestra la demanda máxima anual, por el incremento de potencia de cocinas de inducción.

TABLA N° 32 POTENCIA DE LA CABECERA DEL ALIM-MLS1 [KW/AÑO] 2014-2022

|      |       | Pote | encia de | la Cab | ecera c | lel MLS | 1 kW/a | ño   |      |
|------|-------|------|----------|--------|---------|---------|--------|------|------|
| HORA | P[kW] | 2016 | 2018     | 2020   | 2022    | 2024    | 2026   | 2028 | 2030 |
| 0    | 843   | 895  | 960      | 1041   | 1143    | 1271    | 1434   | 1643 | 1912 |
| 1    | 840   | 892  | 957      | 1038   | 1140    | 1268    | 1431   | 1640 | 1909 |
| 2    | 836   | 888  | 953      | 1034   | 1136    | 1264    | 1427   | 1636 | 1905 |
| 3    | 796   | 848  | 913      | 994    | 1096    | 1224    | 1387   | 1596 | 1865 |
| 4    | 934   | 986  | 1051     | 1132   | 1234    | 1362    | 1525   | 1734 | 2003 |
| 5    | 1115  | 1493 | 1584     | 1705   | 1822    | 1951    | 2114   | 2323 | 2591 |
| 6    | 1350  | 1511 | 1584     | 1678   | 1785    | 1913    | 2077   | 2286 | 2554 |
| 7    | 1732  | 1838 | 1907     | 1995   | 2099    | 2227    | 2390   | 2599 | 2868 |
| 8    | 2043  | 2112 | 2178     | 2261   | 2363    | 2491    | 2655   | 2864 | 3132 |
| 9    | 2240  | 2292 | 2357     | 2438   | 2540    | 2668    | 2831   | 3040 | 3309 |
| 10   | 2254  | 2319 | 2385     | 2468   | 2570    | 2698    | 2862   | 3070 | 3339 |
| 11   | 2462  | 2847 | 2938     | 3060   | 3177    | 3306    | 3469   | 3678 | 3946 |
| 12   | 2430  | 2570 | 2642     | 2733   | 2839    | 2967    | 3130   | 3339 | 3608 |
| 13   | 2373  | 2448 | 2515     | 2599   | 2701    | 2829    | 2993   | 3202 | 3470 |
| 14   | 2422  | 2476 | 2541     | 2622   | 2724    | 2852    | 3015   | 3224 | 3493 |
| 15   | 2090  | 2142 | 2207     | 2288   | 2390    | 2518    | 2681   | 2890 | 3159 |
| 16   | 1850  | 1924 | 1990     | 2074   | 2176    | 2304    | 2468   | 2677 | 2945 |
| 17   | 1422  | 1538 | 1608     | 1696   | 1801    | 1929    | 2092   | 2301 | 2570 |
| 18   | 1547  | 1928 | 2020     | 2141   | 2258    | 2387    | 2550   | 2759 | 3027 |
| 19   | 1501  | 1616 | 1686     | 1775   | 1879    | 2008    | 2171   | 2380 | 2649 |
| 20   | 1231  | 1292 | 1357     | 1439   | 1541    | 1669    | 1833   | 2041 | 2310 |
| 21   | 1106  | 1158 | 1223     | 1304   | 1406    | 1534    | 1697   | 1906 | 2175 |
| 22   | 900   | 952  | 1017     | 1098   | 1200    | 1328    | 1491   | 1700 | 1969 |
| 23   | 833   | 885  | 950      | 1031   | 1133    | 1261    | 1424   | 1633 | 1902 |

También se considera las encuestas realizadas por lo que se toma los hábitos de consumo de la población y se las incluye en la curva de carga original teniendo una curva proyectada como se observa en la gráfica  $N^{\circ}$  36.

### GRÁFICO Nº 36 CURVA DE CARGA PROYECTADA




**ELABORADO POR:** Investigadores

#### 3.4.3.2. Curva de energía proyectada usuario residencial

La gráfica N° 37 presenta la curva (a) de consumo de energía proyectada sin la inclusión de cocinas de inducción y la curva (b) con la inclusión de dichos artefactos. Durante la implementación del programa de cocinas de inducción se observa un crecimiento acelerado el cual se estabiliza a partir del año 2022, esto se debe a que se considera que en este periodo se tendría implementado el 100% de cocinas.

GRÁFICO Nº 37 PROYECCIÓN VS COCINAS DE INDUCCIÓN (USUARIOS RESIDENCIALES)



**ELABORADO POR:** Investigadores

## 3.4.4. Flujos de potencia

El flujo de carga se lo realiza con los datos obtenidos de la proyección de la demanda de los grupos de consumidores mencionados anteriormente, añadido el consumo de las cocinas de inducción el cual fue calculado por la metodología propuesta por del MEER que se muestra en el anexo N° 8, este consumo multiplicado por 30 días del mes con un tiempo de uso promedio de 3 horas diarias obteniendo mediante las encuestas se tiene como resultado la energía consumida por el uso de cocinas de inducción, dichos valores se presenta en el anexo N°9.

Con el fin de determinar la evolución del comportamiento del alimentador se realiza un análisis cada dos años.

El valor de la corriente que se requiere para ingresar como dato al software se determinó de la curva de carga proyectada en cada periodo de evolución, estos datos se presentan en la tabla N° 33

TABLA N° 33 CORRIENTES DE CABECERA AÑOS 2014-2030

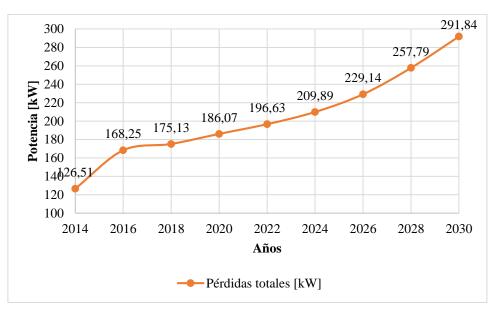
| Año  | P[kW] | la[A]  | lb[A]  | Ic[A]  |
|------|-------|--------|--------|--------|
| 2014 | 2456  | 105,11 | 108,22 | 115,69 |
| 2015 | 2602  | 111,35 | 114,65 | 122,57 |
| 2016 | 2847  | 121,82 | 125,43 | 134,09 |
| 2017 | 2885  | 123,45 | 127,10 | 135,88 |
| 2018 | 2938  | 125,74 | 129,46 | 138,41 |
| 2019 | 2997  | 128,26 | 132,05 | 141,17 |
| 2020 | 3060  | 130,96 | 134,84 | 144,15 |
| 2021 | 3116  | 133,35 | 137,29 | 146,78 |
| 2022 | 3177  | 135,97 | 140,00 | 149,67 |
| 2024 | 3306  | 141,47 | 145,65 | 155,71 |
| 2026 | 3469  | 148,45 | 152,85 | 163,40 |
| 2028 | 3678  | 157,39 | 162,05 | 173,24 |
| 2030 | 3946  | 168,89 | 173,89 | 185,90 |

ELABORADO POR: Investigadores

### 3.4.4.1. Comportamiento del alimentador

Realizada la distribución de carga y posteriormente el flujo de carga por el método de tensión desequilibrada se obtienen los resultados mostrados en la tabla N° 34 lo

que permite conocer el comportamiento del alimentador durante los años de crecimiento normal y con la inclusión de las cocinas de inducción.


TABLA N° 34 PÉRDIDAS DE POTENCIA [KW] DURANTE EL PERIODO 2014-2030

|                                 | 2014   | 2016   | 2018   | 2020   | 2022   | 2024   | 2026   | 2028   | 2030   |
|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Consumo total [kW]              | 2476,6 | 2866,6 | 2958,8 | 3081,7 | 3199,7 | 3329,3 | 3493,1 | 3703,1 | 3974,1 |
| Pérdidas en las líneas          | 67,88  | 94,95  | 99,16  | 105,42 | 110,63 | 116,16 | 123,84 | 135,55 | 155,39 |
| Pérdidas en los cables          | 0,01   | 0,01   | 0,01   | 0,01   | 0,01   | 0,01   | 0,01   | 0,01   | 0,01   |
| Pérdidas en los transformadores | 58,63  | 73,29  | 75,96  | 80,65  | 86     | 93,72  | 105,29 | 122,23 | 136,44 |
| Pérdidas totales [kW]           | 126,51 | 168,25 | 175,13 | 186,07 | 196,63 | 209,89 | 229,14 | 257,79 | 291,84 |

**ELABORADO POR:** Investigadores

El gráfico N° 38 presenta las pérdidas en [kW] que crese conforme se incrementa la demanda. En el año 2016 ingresa el 79% de cocinas de inducción por lo que en la gráfica se observa un incremento del 33% de las pérdidas con respecto al año 2014, las pérdidas con respecto al consumo total representa un 6,25 % anual.

GRÁFICO Nº 38 PÉRDIDAS TOTALES PERIODO 2014-2030



**ELABORADO POR:** Investigadores

Tomando en consideración que él [kWh] tiene un costo de \$0,08 en la tabla N° 35 presenta el costo que representaría las pérdidas en [kW].

TABLA N° 35 COSTO DE PÉRDIDAS DURANTE EL PERIODO 2014-2030

|                       | 2014   | 2016   | 2018   | 2020   | 2022   | 2024   | 2026   | 2028   | 2030   |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Pérdidas totales [kW] | 126,5  | 168,3  | 175,1  | 186,1  | 196,6  | 209,9  | 229,1  | 257,8  | 291,8  |
| MW-h/año              | 1108,2 | 1473,9 | 1534,1 | 1630,0 | 1722,5 | 1838,6 | 2007,3 | 2258,2 | 2556,5 |
| k\$/año               | 88,656 | 117,91 | 122,73 | 130,4  | 137,8  | 147,09 | 160,58 | 180,66 | 204,52 |

### 3.4.4.2. Cargabilidad de transformadores

La tabla N° 36 presenta la Cargabilidad de los trasformadores la cual crece progresivamente conforme se incrementa el consumo de energía ya sea por el crecimiento de la demanda o por el la inclusión de cocinas de inducción. En el anexo N° 10 presenta la Cargabilidad total de cada transformador.

TABLA N° 36 CARGABILIDAD DE TRANSFORMADORES PERIODO 2016-2030

|             | Ca   | Cargabilidad de trasformadores ALIM-MLS1 /Año |      |      |      |      |      |      |  |  |  |
|-------------|------|-----------------------------------------------|------|------|------|------|------|------|--|--|--|
| Nro. equipo | 2016 | 2018                                          | 2020 | 2022 | 2024 | 2026 | 2028 | 2030 |  |  |  |
| 1651        | 110  | 135                                           | 163  | 198  | 236  | 283  | 344  | 440  |  |  |  |
| 1652        | 72,2 | 70,6                                          | 67,9 | 65,7 | 62,7 | 60,3 | 59   | 60,7 |  |  |  |
| 1653        | 62,5 | 60,2                                          | 57,1 | 54,5 | 51,3 | 48,6 | 47   | 47,8 |  |  |  |
| 7057        | 23,3 | 28,4                                          | 34,3 | 41,5 | 49,9 | 59,7 | 71,2 | 84,9 |  |  |  |
| 1405        | 64,2 | 64,7                                          | 64,3 | 64,3 | 63,6 | 63,4 | 64,5 | 69,1 |  |  |  |
| 7929        | 38   | 41                                            | 44,3 | 48,5 | 53,4 | 59   | 65,4 | 76,9 |  |  |  |
| 5142        | 202  | 196                                           | 188  | 181  | 172  | 165  | 160  | 165  |  |  |  |
| 1753        | 1,4  | 1,3                                           | 1,2  | 1    | 0,9  | 0,8  | 0,7  | 0,7  |  |  |  |
| 1409        | 0,3  | 0,3                                           | 0,2  | 0,2  | 0,2  | 0,2  | 0,2  | 0,1  |  |  |  |
| 1610        | 39,6 | 39                                            | 38,1 | 37,3 | 36,1 | 34,9 | 33,5 | 33,8 |  |  |  |
| 1408        | 85,3 | 104                                           | 126  | 152  | 183  | 218  | 261  | 311  |  |  |  |
| 8246        | 29   | 35,4                                          | 42,7 | 51,7 | 62,2 | 74,3 | 88,7 | 106  |  |  |  |
| 1749        | 4,1  | 5                                             | 6,1  | 7,4  | 8,9  | 10,6 | 12,6 | 15,1 |  |  |  |
| 3570        | 21,4 | 20,5                                          | 19,5 | 18,7 | 17,8 | 17   | 16,2 | 16,2 |  |  |  |
| 1489        | 7,6  | 8,2                                           | 9    | 10   | 11,3 | 12,7 | 14,5 | 16,6 |  |  |  |
| 1750        | 44,8 | 44                                            | 42,9 | 42,1 | 41,2 | 40,2 | 39,1 | 40   |  |  |  |
| 1488        | 2,6  | 3,1                                           | 3,8  | 4,5  | 5,5  | 6,5  | 7,8  | 9,3  |  |  |  |
| 8810        | 139  | 169                                           | 204  | 246  | 297  | 354  | 423  | 376  |  |  |  |
| 1756        | 203  | 212                                           | 220  | 233  | 246  | 265  | 294  | 347  |  |  |  |

**ELABORADO POR:** Investigadores

Existen transformadores con sobrecarga siendo los más frecuentes los monofásicos con capacidades de 5, 10, 15 y 25 kVA, el anexo N°11 muestra el total de transformadores que se encuentran sobrecargados, lo cual se debe tener en cuenta con el fin de tomar las acciones adecuadas y solucionar el problema.

El grafico N° 39 muestra el porcentaje de transformadores que presentan sobrecarga en el periodo de estudio notando un crecimiento considerable desde los años 2014-2016.

25 24,48 24,48 24,48 24,07 24 23,24 **Solution Locentaje** [%] 23 22 21 21,99 20,75 20 19,50 19 2016 2018 2020 2022 2024 2026 2028 2030 Años

GRÁFICO Nº 39 CARGABILIDAD DE TRANSFORMADORES EN PORCENTAJE EN EL PERIODO 2016-2030

**ELABORADO POR:** Investigadores

### 3.4.4.3. Cargabilidad de líneas

La tabla N° 37 presenta la Cargabilidad de las líneas durante el periodo en estudio, observando que las mismas se incrementa conforme va creciendo la demanda. El tramo que presenta mayor Cargabilidad alcanza un 44,6% de su capacidad hasta llegar en el año 2030 a una Cargabilidad de 61,9%

El resto de líneas tiene un Cargabilidad menor permitiendo diagnosticar que se encuentra funcionando dentro de los parámetros normales. El detalle de la Cargabilidad del resto de líneas se presenta en el anexo N° 12.

TABLA Nº 37 CARGABILIDAD DE LÍNEAS PERIODO 2016-2030

|             |              |      | Carga | bilida | d de lí | neas A | LIM-N | MLS1 |      |
|-------------|--------------|------|-------|--------|---------|--------|-------|------|------|
| Nudo origen | Nudo destino | 2016 | 2018  | 2020   | 2022    | 2024   | 2026  | 2028 | 2030 |
| MTA_S_5457  | MTA_L_5174   | 44,6 | 46,1  | 48     | 49,8    | 51,8   | 54,3  | 57,5 | 61,9 |
| MTA_L_5174  | MTA_L_5235   | 44,6 | 46,1  | 48     | 49,8    | 51,8   | 54,3  | 57,5 | 61,9 |
| MTA_L_5235  | MTA_L_5180   | 29,4 | 30,5  | 31,8   | 33,2    | 34,7   | 36,6  | 39   | 41,6 |
| MTA_L_5180  | MTA_L_5201   | 29,4 | 30,5  | 31,8   | 33,2    | 34,7   | 36,6  | 39   | 41,6 |
| MTA_L_5201  | MTA_L_5190   | 2,1  | 2,2   | 2,4    | 2,6     | 2,9    | 3,2   | 3,8  | 4,8  |
| MTA_L_5190  | MTA_L_5191   | 1,6  | 1,8   | 2,4    | 2,2     | 2,5    | 2,9   | 3,4  | 4,4  |
| MTA_L_5191  | MTA_L_5192   | 0,8  | 1     | 2,4    | 1,5     | 1,8    | 2,2   | 2,8  | 3,8  |
| MTA_L_5201  | MTA_S_43523  | 29,3 | 30,3  | 2,4    | 33      | 34,5   | 36,3  | 38,7 | 41,3 |
| MTA_S_43523 | MTA_L_43523  | 38,2 | 39,6  | 2,4    | 43,1    | 44,9   | 47,4  | 50,5 | 53,8 |
| MTA_L_43524 | MTA_L_43525  | 0,9  | 0,9   | 2,4    | 0,9     | 0,9    | 0,9   | 0,9  | 1    |
| MTA_L_43523 | MTA_L_43526  | 38,2 | 39,6  | 2,4    | 43,1    | 44,9   | 47,4  | 50,5 | 53,8 |
| MTA_L_43526 | MTA_L_43529  | 37,7 | 39    | 2,4    | 42,4    | 44,2   | 46,5  | 49,5 | 52,7 |
| MTA_L_43532 | MTA_L_64657  | 1,7  | 1,9   | 2,4    | 2,6     | 3,1    | 3,6   | 4,3  | 5,1  |
| MTA_L_64657 | MTA_L_43535  | 0    | 0     | 2,4    | 0       | 0      | 0     | 0    | 0    |
| MTA_L_64657 | MTA_S_43594  | 1,6  | 1,9   | 2,4    | 2,6     | 3,1    | 3,6   | 4,3  | 5,1  |
| MTA_S_43594 | MTA_S_43534  | 0,3  | 0,3   | 2,4    | 0,3     | 0,3    | 0,3   | 0,2  | 0,2  |
| MTA_S_43534 | MTA_L_43534  | 0,4  | 0,4   | 2,4    | 0,3     | 0,3    | 0,3   | 0,3  | 0,3  |
| MTA_L_43529 | MTA_L_43536  | 36,9 | 38,1  | 2,4    | 41      | 42,6   | 44,6  | 47,2 | 49,9 |

### 3.4.4.4. Niveles y perfiles de voltaje

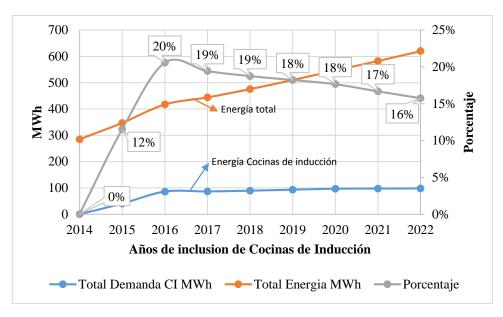
La tabla N° 38 presenta los niveles de voltaje para cada tramo, en el anexo N° 13 se muestra los valores del voltaje en la totalidad del alimentador determinando que en el año 2030 se tiene un voltaje de 13kV. El cual se encuentra fuera de los límites establecidos anteriormente; en el año 2016 se tiene un 80% de líneas fuera de límite permitido; en el año 2030 el problema asciende a 86% del total de tramos.

Es decir que si no se toma las correctivas necesarias el alimentador colapsara.

Las zonas de mayor afectación son: Mulaló, Joseguango bajo, Joseguango alto, Rumipamba, Macalo, Chinchil, Salatilin, Molino, Agua Clara, Avelina, San Ramón Laigua, Tandalivi.

TABLA N° 38 NIVELES DE VOLTAJE PERIODO 2016-2030

|              |              | 20    | 16    | 20    | 18    | 20    | 20    | 20    | 22    | 20    | )24   | 20    | 26    | 20    | 28    | 20    | 30    |
|--------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Nudo origen  | Nudo destino | Vb    | V(kV) | V b   | V(kV) | V b   | V(kV) | V b   | V(kV) | Vb    | V(kV) | Vb    | V(kV) | Vb    | V(kV) | V b   | V(kV) |
| MTA_S_5457   | MTA_L_5174   | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  | 119,8 | 13,8  |
| MTA_L_5174   | MTA_L_5235   | 118,9 | 13,7  | 118,9 | 13,7  | 118,8 | 13,7  | 118,8 | 13,7  | 118,8 | 13,7  | 118,7 | 13,6  | 118,6 | 13,6  | 118,5 | 13,6  |
| MTA_L_5235   | MTA_L_5180   | 118,8 | 13,7  | 118,8 | 13,7  | 118,8 | 13,7  | 118,7 | 13,7  | 118,7 | 13,6  | 118,6 | 13,6  | 118,5 | 13,6  | 118,4 | 13,6  |
| MTA_L_5180   | MTA_L_5201   | 118,7 | 13,7  | 118,7 | 13,6  | 118,6 | 13,6  | 118,6 | 13,6  | 118,5 | 13,6  | 118,4 | 13,6  | 118,3 | 13,6  | 118,2 | 13,6  |
| MTA_L_5201   | MTA_L_5190   | 118,2 |       | 118,1 |       | 118   |       | 118   |       | 117,9 |       | 117,8 |       | 117,6 |       | 117,4 |       |
| MTA_L_5190   | MTA_L_5191   | 118,2 |       | 118,1 |       | 118   |       | 118   |       | 117,9 |       | 117,8 |       | 117,6 |       | 117,4 |       |
| MTA_L_5191   | MTA_L_5192   | 118,2 |       | 118,1 |       | 118   |       | 118   |       | 117,9 |       | 117,8 |       | 117,6 |       | 117,4 |       |
| MTA_L_5201   | MTA_S_43523  | 118,7 | 13,6  | 118,6 | 13,6  | 118,5 | 13,6  | 118,5 | 13,6  | 118,4 | 13,6  | 118,4 | 13,6  | 118,2 | 13,6  | 118,1 | 13,6  |
| MTA_S_43523  | MTA_L_43523  | 118,5 | 13,6  | 118,5 | 13,6  | 118,4 | 13,6  | 118,3 | 13,6  | 118,3 | 13,6  | 118,2 | 13,6  | 118,1 | 13,6  | 117,9 | 13,6  |
| MTA_L_43524  | MTA_L_43525  | 117,9 |       | 117,8 |       | 117,7 |       | 117,7 |       | 117,6 |       | 117,4 |       | 117,3 |       | 117,1 |       |
| MTA_L_43523  | MTA_L_43526  | 117,8 | 13,5  | 117,7 | 13,5  | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,2 | 13,5  | 117   | 13,5  | 116,9 | 13,4  |
| MTA_L_43526  | MTA_L_43529  | 117,7 | 13,5  | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,3 | 13,5  | 117,2 | 13,5  | 116,9 | 13,4  | 116,8 | 13,4  |
| MTA_L_43532  | MTA_L_64657  | 117,7 | 13,5  | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,3 | 13,5  | 117,1 | 13,5  | 116,9 | 13,4  | 116,8 | 13,4  |
| MTA_L_64657  | MTA_L_43535  | 118,3 |       | 118,3 |       | 118,2 |       | 118,1 |       | 118,1 |       | 118   |       | 117,8 |       | 117,8 |       |
| MTA_L_64657  | MTA_S_43594  | 117,7 | 13,5  | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,3 | 13,5  | 117,1 | 13,5  | 116,9 | 13,4  | 116,8 | 13,4  |
| MTA_S_43594  | MTA_S_43534  | 118,3 |       | 118,3 |       | 118,2 |       | 118,1 |       | 118   |       | 117,9 |       | 117,8 |       | 117,8 |       |
| MTA_S_43534  | MTA_L_43534  | 118,3 |       | 118,3 |       | 118,2 |       | 118,1 |       | 118   |       | 117,9 |       | 117,8 |       | 117,8 |       |
| MTA_L_43529  | MTA_L_43536  | 117,6 | 13,5  | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,2 | 13,5  | 117,1 | 13,5  | 116,9 | 13,4  | 116,7 | 13,4  |
| MTA_L_43536  | IMTA_L_43541 | 117,6 | 13,5  | 117,5 | 13,5  | 117,4 | 13,5  | 117,3 | 13,5  | 117,2 | 13,5  | 117,1 | 13,5  | 116,8 | 13,4  | 116,7 | 13,4  |
| IMTA_L_43541 | MTA_L_43544  | 117,5 | 13,5  | 117,4 | 13,5  | 117,3 | 13,5  | 117,2 | 13,5  | 117,1 | 13,5  | 117   | 13,5  | 116,8 | 13,4  | 116,6 | 13,4  |


## 3.4.5. Propuestas de mejora

En el año 2014 se determina que no hay incidencia de las cocinas de inducción lo que implica que no existe influencia de armónicos por dicho electrodoméstico, mientras tanto que en el año 2016 ingresan masivamente las cocinas las cuales impactan el 20% de distorsión siendo este el año en el que el sistema consuma una mayor cantidad de energía eléctrica, mientras tanto en los siguientes años empieza a disminuir notablemente el ingreso de las cocinas teniendo un impacto de 16% con respecto al total de carga del alimentador.

El gráfico N° 40 indica el porcentaje que representa la inclusión del total de cocinas de inducción con respecto al total de energía anualmente registrada, notando que no

supera el 20% lo que no se considera este impacto para plantear posibles alternativas de solución ante el efecto de las armónicas por las cocinas de inducción.

GRÁFICO Nº 40 PORCENTAJE ANUAL DE DISTORSIÓN POR CARGAS NO LINEALES.



ELABORADO POR: Los Investigadores.

Con los problemas determinados se plantea alternativas de solución los cuales se describe a continuación.

### 3.4.5.1. Alternativa 1

### Balance de carga

En lo referente al alimentador es indispensable realizar el balance de carga para mejorar el nivel de voltaje en diversos tramos

La tabla N° 39 presenta los tramos que deben cambiar de fase para que se lleve a cabo esta corrección.

TABLA N° 39 BALANCE DE CARGA

| Nombre del | Camb  | io de fase | (kVA) |         | Fase A | Fase B | Fase C | Ineutro | Pérdidas<br>totales | Tensión<br>Factor de |
|------------|-------|------------|-------|---------|--------|--------|--------|---------|---------------------|----------------------|
| tramo      | A     | В          | C     |         | (V)    | (V)    | (V)    | (A)     | (kW)                | deseq.               |
| 43892_MTA  | a C   |            |       | Antes   | 113,86 | 116,23 | 112,73 | 15,24   | 145,7               | 0,49%                |
|            | 26,56 |            |       | Después | 114,67 | 115,8  | 112,33 | 18,17   | 144,97              | 0,25%                |
| 43881_MTA  |       | a C        |       | Antes   | 115,28 | 115,5  | 112,09 | 16,9    | 144,69              | 0,14%                |
|            |       | 16,09      |       | Después | 115,51 | 115,82 | 111,54 | 20,5    | 145,33              | 0,10%                |
| 43864_MTA  | a C   |            |       | Antes   | 114,56 | 116,03 | 112,69 | 13,1    | 144,97              | 0,31%                |
|            | 23,75 |            |       | Después | 115,21 | 115,71 | 112,35 | 18,02   | 144,69              | 0,15%                |
| 43829_MTA  | a C   |            |       | Antes   | 115,15 | 116,66 | 113,09 | 19,68   | 144,66              | 0,22%                |
|            | 13,8  |            |       | Después | 115,42 | 116,52 | 112,96 | 22,52   | 144,49              | 0,14%                |
| 38377_MTA  |       | a A        |       | Antes   | 117,16 | 117,21 | 115,22 | 9,86    | 144,49              | 0,13%                |
|            |       | 12,19      |       | Después | 117,05 | 117,42 | 115,14 | 7,25    | 144,63              | 0,07%                |
| 38239_MTA  |       |            | a A   | Antes   | 117,8  | 117,11 | 114,71 | 25,82   | 145,33              | 0,29%                |
|            |       |            | 41,38 | Después | 117,11 | 117,34 | 115,17 | 21,22   | 144,66              | 0,10%                |
| 65283_MTA  |       | a A        |       | Antes   | 118,86 | 117,01 | 117,4  | 21,15   | 145,93              | 0,44%                |
|            |       | 164,14     |       | Después | 118,01 | 118,6  | 116,67 | 20,96   | 145,7               | 0,03%                |

### Cambio de transformadores

Debido al incremento de la demanda varios transformadores se saturan por lo que la tabla N° 40 presenta los transformadores que deben ser cambiados por otro de potencia superiores. En este año se cambia el 20% del total de transformadores ya que con la inclusión de cocinas de inducción es necesario realizarlo para que el sistema se encuentre funcionando en óptimas condiciones.

A la par del incremento de potencia de los transformadores es necesario la construcción de red trifásica en una línea de 22,85 metros con conductor ACSR 3x1/0+1/0

TABLA Nº 40 TRANSFORMADORES A CAMBIAR AÑO 2016 ALTERNATIVA 1

| Nro. equipo | Carga 2016<br>(%) | Cap Actual (kVA) | Fase | Cap<br>recomendada<br>(kVA) |
|-------------|-------------------|------------------|------|-----------------------------|
| 5142        | 202               | 5                | С    | 10                          |
| 8810        | 138,5             | 100              | ABC  | 300                         |
| 1756        | 203,1             | 15               | С    | 50                          |
| 6873        | 146,4             | 25               | ABC  | 100                         |
| 9999        | 269,3             | 10               | С    | 50                          |
| 8158        | 134               | 10               | В    | 25                          |

| Nro. equipo | Carga 2016<br>(%) | Cap Actual (kVA) | Fase | Cap<br>recomendada<br>(kVA) |
|-------------|-------------------|------------------|------|-----------------------------|
| 6495        | 176,5             | 15               | В    | 37,5                        |
| 9099        | 157               | 15               | В    | 25                          |
| 7348        | 133,5             | 10               | В    | 15                          |
| 3567        | 314,6             | 10               | С    | 37,5                        |
| 1773        | 186,3             | 5                | В    | 10                          |
| 5182        | 155,4             | 15               | A    | 25                          |
| 1798        | 156,1             | 10               | В    | 15                          |
| 6940        | 174,4             | 15               | A    | 37,5                        |
| 1803        | 332,7             | 10               | С    | 37,5                        |
| 6021        | 135,9             | 25               | С    | 50                          |
| 5447        | 268,9             | 10               | С    | 25                          |
| 1801        | 159,9             | 10               | A    | 15                          |
| 1234        | 271,1             | 5                | A    | 15                          |
| 6906        | 183,4             | 15               | A    | 37,5                        |
| 3588        | 212,3             | 5                | A    | 10                          |
| 1764        | 153,4             | 25               | A    | 37,5                        |
| 6917        | 182,7             | 15               | A    | 25                          |
| 1777        | 171,9             | 10               | A    | 25                          |
| 5858        | 190               | 25               | A    | 50                          |
| 7427        | 234,7             | 10               | С    | 25                          |
| 3693        | 160,4             | 10               | A    | 15                          |
| 8387        | 169               | 25               | С    | 50                          |
| 8383        | 204,7             | 15               | C    | 37,5                        |
| 8391        | 160,8             | 25               | С    | 50                          |
| 6675        | 212,1             | 10               | C    | 25                          |
| 1733        | 266,9             | 10               | С    | 50                          |
| 8733        | 353,9             | 5                | С    | 25                          |
| 9235        | 146,6             | 15               | С    | 25                          |
| 7653        | 155,9             | 10               | С    | 25                          |
| 8735        | 328,6             | 5                | С    | 15                          |
| 8731        | 326,8             | 5                | С    | 15                          |
| 8727        | 238,7             | 5                | С    | 15                          |
| 8790        | 183,6             | 10               | C    | 25                          |
| 8739        | 206,3             | 10               | C    | 25                          |
| 8409        | 312,7             | 5                | C    | 15                          |
| 5204        | 255,1             | 10               | С    | 25                          |
| 1724        | 144,6             | 10               | В    | 15                          |
| 1782        | 183,8             | 10               | В    | 25                          |
| 1721        | 130,7             | 10               | В    | 37,5                        |
| 3542        | 147,2             | 15               | С    | 50                          |
| 1704        | 190,8             | 5                | A    | 10                          |
| 1706        | 175,1             | 5                | A    | 10                          |
| 1788        | 154,1             | 10               | В    | 15                          |
| 1800        | 149,6             | 10               | В    | 15                          |
| 1802        | 171,7             | 3                | С    | 5                           |
| 1766        | 140,8             | 15               | A    | 25                          |
| 8734        | 150,7             | 5                | В    | 10                          |

En la tabla 41 presenta los trasformadores a cambiar durante el periodo 2018- 2030, que se irá incorporando al sistema conforme vaya incrementando la demanda

TABLA N° 41 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030 ALTERNATIVA 1

| Nro. equipo | Carga (%) | Cap<br>Actual<br>(kVA) | Fase | Cap.<br>Requerida<br>kVA |  |  |  |  |  |  |  |  |
|-------------|-----------|------------------------|------|--------------------------|--|--|--|--|--|--|--|--|
|             | Año 2018  |                        |      |                          |  |  |  |  |  |  |  |  |
| 1651        | 135,3     | 10                     | С    | 50                       |  |  |  |  |  |  |  |  |
| 7539        | 133,4     | 15                     | ABC  | 75                       |  |  |  |  |  |  |  |  |
| 8972        | 133,3     | 30                     | ABC  | 45                       |  |  |  |  |  |  |  |  |
| Año 2020    |           |                        |      |                          |  |  |  |  |  |  |  |  |
| 1759        | 146,7     | 10                     | С    | 37,5                     |  |  |  |  |  |  |  |  |
| 7662        | 133,9     | 50                     | ABC  | 125                      |  |  |  |  |  |  |  |  |
| 3544        | 134,3     | 15                     | В    | 50                       |  |  |  |  |  |  |  |  |
|             |           | Año 2022               |      |                          |  |  |  |  |  |  |  |  |
| 1408        | 151,9     | 30                     | ABC  | 100                      |  |  |  |  |  |  |  |  |
| 1709        | 140,3     | 10                     | A    | 25                       |  |  |  |  |  |  |  |  |
| 1725        | 130,5     | 50                     | ABC  | 100                      |  |  |  |  |  |  |  |  |
|             |           | Año 2026               |      |                          |  |  |  |  |  |  |  |  |
| 1752        | 140,1     | 37,5                   | С    | 50                       |  |  |  |  |  |  |  |  |
| 7091        | 150       | 10                     | В    | 25                       |  |  |  |  |  |  |  |  |
| 1732        | 136,5     | 15                     | В    | 25                       |  |  |  |  |  |  |  |  |
|             | Año 2030  |                        |      |                          |  |  |  |  |  |  |  |  |
| 1745        | 149       | 10                     | В    | 15                       |  |  |  |  |  |  |  |  |
| 6692        | 136,4     | 10                     | В    | 15                       |  |  |  |  |  |  |  |  |

### Implementación de reguladores

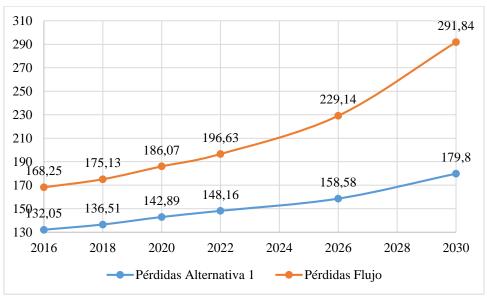
Como se muestra en la tabla N° 38, la caída de voltaje llega a un mínimo de 13 kV, por lo que en el año 2016 se debe ubicar 2 reguladores de voltaje; El primero se debe ubicar entre el tramo 38094\_MTA y 38131\_MTA el cual está situado ubicado en el sector Establo de la Hacienda Limache, El segundo reglador se debe ubicar entre el tramo 43523\_MTA y 43526\_MTA en el sector de la Avelina

### Construcción de Nuevas líneas

En el 2016 se requiere construir una línea trifásica de 580 m de longitud con conductor ACSR N° 3X2/0+1/0 entre el tramo 43705\_MTA y el tramo 43599\_MTA ubicado entre los sectores de la piedra colorada y santa clara.

El en 2018 se requiere construir una red trifásica de 1,5 km de longitud con conductor ACSR N° 3X1/0+1/0 ubicada en el sector de la hacienda San José.

Con los cambios propuestos en el alimentador este cumple con los parámetros establecidos, tanto por el nivel de voltaje o como por Cargabilidad de la línea. La tabla N° 42 presenta las pérdidas ocasionadas para el sistema en durante el periodo 2016- 2030


TABLA N° 42 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA 1

|                                    | 2016    | 2018    | 2020    | 2022   | 2026    | 2030    |
|------------------------------------|---------|---------|---------|--------|---------|---------|
| Consumo total [kW]                 | 2830,39 | 2920,22 | 3038,52 | 3151,2 | 3419,38 | 3773,43 |
| Pérdidas en las líneas             | 76,81   | 80,26   | 85,27   | 89,48  | 94,74   | 109,32  |
| Pérdidas en los cables             | 0       | 0       | 0       | 0      | 0       | 0       |
| Pérdidas en los<br>transformadores | 55,23   | 56,25   | 57,62   | 58,68  | 63,84   | 70,48   |
| Pérdidas totales [kW]              | 132,05  | 136,51  | 142,89  | 148,16 | 158,58  | 179,8   |

**ELABORADO POR:** Investigadores

Las pérdidas en función al consumo total representan un 4,69 % respecto a los flujos anteriores que representaba el 6,25% anual, en el gráfico N° 41 se muestra la curva de pérdidas de los flujos anteriores y las pérdidas del flujo de la alternativa 1 observando una reducción del 28% de perdida con respecto al flujo proyectado.

GRÁFICO Nº 41 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130 ALTERNATIVA 1



**ELABORADO POR:** Investigadores

### 3.4.5.2. *Alternativa* 2

Con el fin de encontrar la alternativa óptima se plantea la segunda alternativa en el cual se propone los siguientes cambios:

### Balance de carga

Al incrementar la potencia manteniendo la conexión en las mismas fases es necesario balancear la carga por lo que en la tabla N° 43 se muestra los tramos a ser modificados para corregir el desbalance

TABLA N° 43 BALANCE DE CARGA

| Nombre del | Camb  | io de fase | (kVA) |         | Fase A | Fase B | Fase C | Ineutro | Pérdidas<br>totales | Tensión<br>Factor de |
|------------|-------|------------|-------|---------|--------|--------|--------|---------|---------------------|----------------------|
| tramo      | A     | В          | C     |         | (V)    | (V)    | (V)    | (A)     | (kW)                | deseq.               |
| 43892_MTA  | a C   |            |       | Antes   | 113,86 | 116,23 | 112,73 | 15,24   | 145,7               | 0,49%                |
|            | 26,56 |            |       | Después | 114,67 | 115,8  | 112,33 | 18,17   | 144,97              | 0,25%                |
| 43881_MTA  |       | a C        |       | Antes   | 115,28 | 115,5  | 112,09 | 16,9    | 144,69              | 0,14%                |
|            |       | 16,09      |       | Después | 115,51 | 115,82 | 111,54 | 20,5    | 145,33              | 0,10%                |
| 43864_MTA  | a C   |            |       | Antes   | 114,56 | 116,03 | 112,69 | 13,1    | 144,97              | 0,31%                |
|            | 23,75 |            |       | Después | 115,21 | 115,71 | 112,35 | 18,02   | 144,69              | 0,15%                |
| 43829_MTA  | a C   |            |       | Antes   | 115,15 | 116,66 | 113,09 | 19,68   | 144,66              | 0,22%                |
|            | 13,8  |            |       | Después | 115,42 | 116,52 | 112,96 | 22,52   | 144,49              | 0,14%                |
| 38377_MTA  |       | a A        |       | Antes   | 117,16 | 117,21 | 115,22 | 9,86    | 144,49              | 0,13%                |
|            |       | 12,19      |       | Después | 117,05 | 117,42 | 115,14 | 7,25    | 144,63              | 0,07%                |
| 38239_MTA  |       |            | a A   | Antes   | 117,8  | 117,11 | 114,71 | 25,82   | 145,33              | 0,29%                |
|            |       |            | 41,38 | Después | 117,11 | 117,34 | 115,17 | 21,22   | 144,66              | 0,10%                |
| 65283_MTA  |       | a A        |       | Antes   | 118,86 | 117,01 | 117,4  | 21,15   | 145,93              | 0,44%                |
|            |       | 164,14     |       | Después | 118,01 | 118,6  | 116,67 | 20,96   | 145,7               | 0,03%                |

ELABORADO POR: Investigadores

### Cambio de transformadores

La tabla N° 44 presenta los códigos y potencias de los transformadores a ser cambiados durante el año 2016. En la cantidad de transformadores a ser cambiados representa el 20% del total de transformadores

TABLA Nº 44 TRANSFORMADORES A CAMBIAR AÑO 2016 ALTERNATIVA 2

| Nro. equipo | Carga 2016<br>(%) | Cap Nom (kVA) | Fase | Cap cambiada<br>(kVA) |
|-------------|-------------------|---------------|------|-----------------------|
| 5142        | 202               | 5             | С    | 10                    |
| 8810        | 138,5             | 100           | ABC  | 300                   |

| Nro. equipo | Carga 2016<br>(%) | Cap Nom (kVA)      | Fase   | Cap cambiada<br>(kVA) |
|-------------|-------------------|--------------------|--------|-----------------------|
| 1756        | 203,1             | 15                 | С      | 50                    |
| 6873        | 146,4             | 25                 | ABC    | 100                   |
| 9999        | 269,3             | 10                 | С      | 50                    |
| 8158        | 134               | 10                 | В      | 25                    |
| 6495        | 176,5             | 15                 | В      | 37,5                  |
| 9099        | 157               | 15                 | В      | 25                    |
| 7348        | 133,5             | 10                 | В      | 15                    |
| 3567        | 314,6             | 10                 | С      | 37,5                  |
| 1773        | 186,3             | 5                  | В      | 10                    |
| 5182        | 155,4             | 15                 | A      | 25                    |
| 1798        | 156,1             | 10                 | В      | 15                    |
| 6940        | 174,4             | 15                 | A      | 37,5                  |
| 1803        | 332,7             | 10                 | С      | 37,5                  |
| 6021        | 135,9             | 25                 | C      | 50                    |
| 5447        | 268,9             | 10                 | C      | 25                    |
| 1801        | 159,9             | 10                 | A      | 15                    |
| 1234        | 271,1             | 5                  | A      | 15                    |
| 6906        | 183,4             | 15                 | A      | 37,5                  |
| 3588        | 212,3             | 5                  | A      | 10                    |
| 1764        | 153,4             | 25                 | A      | 37,5                  |
| 6917        | 182,7             | 15                 | A      | 25                    |
| 1777        | 171,9             | 10                 | A      | 25                    |
| 5858        | 190               | 25                 | A      | 50                    |
| 7427        | 234,7             | 10                 | C      | 25                    |
| 3693        | 160,4             | 10                 | A      | 15                    |
| 8387        | 169               | 25                 | C      | 50                    |
| 8383        | 204,7             | 15                 | C      | 37,5                  |
| 8391        | 160,8             | 25                 | C      | 50                    |
| 6675        | 212,1             | 10                 | C      | 25                    |
| 1733        | 266,9             | 10                 | C      | 50                    |
| 8733        | 353,9             | 5                  | C      | 25                    |
| 9235        | 146,6             | 15                 | C      | 25                    |
| 7653        | 155,9             | 10                 | C      | 25                    |
| 8735        | 328,6             | 5                  | C      | 15                    |
| 8731        | 326,8             | 5                  | C      | 15                    |
| 8727        | 238,7             | 5                  | C      | 15                    |
| 8790        | 183,6             | 10                 | C      | 25                    |
| 8739        | 206,3             | 10                 | C      | 25                    |
| 8409        | 312,7             | 5                  | C      | 15                    |
| 5204        | 255,1             | 10                 | C      | 25                    |
| 1724        | 144,6             | 10                 | В      | 15                    |
| 1782        | 183,8             | 10                 | В      | 25                    |
| 1721        | 130,7             | 10                 | В      | 37,5                  |
| 3542        | 147,2             | 15                 | C      | 50                    |
| 1704        | 190,8             | 5                  | A      | 10                    |
| 1704        | 175,1             | 5                  |        | 10                    |
|             |                   |                    | A<br>B | 15                    |
| 1788        | 154,1             | 10                 |        |                       |
| 1800        | 149,6             | 10                 | В      | 15                    |
| 1802        | 171,7             | 3                  | C      | 5                     |
| 1766        | 140,8             | 15                 | A      | 25                    |
| 8734        | 150,7             | OPADO POP: Investi | В      | 10                    |

Los cambios por transformadores que presenta sobrecarga durante los años 2018 - 2030 se muestra en la tabla  $N^{\circ}$  45 con las capacidades requeridas para su correcto funcionamiento.

TABLA N° 45 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030 ALTERNATIVA 2

| Nro. equipo | Carga (%) | Cap<br>Actual<br>(kVA) | Fase | Cap.<br>Requerida<br>kVA |  |  |  |  |  |  |  |
|-------------|-----------|------------------------|------|--------------------------|--|--|--|--|--|--|--|
|             | Año 2018  |                        |      |                          |  |  |  |  |  |  |  |
| 1651        | 135,3     | 10                     | С    | 50                       |  |  |  |  |  |  |  |
| 7539        | 133,4     | 15                     | ABC  | 75                       |  |  |  |  |  |  |  |
| 8972        | 133,3     | 30                     | ABC  | 45                       |  |  |  |  |  |  |  |
| Año 2020    |           |                        |      |                          |  |  |  |  |  |  |  |
| 1759        | 146,7     | 10                     | С    | 37,5                     |  |  |  |  |  |  |  |
| 7662        | 133,9     | 50                     | ABC  | 125                      |  |  |  |  |  |  |  |
| 3544        | 134,3     | 15                     | В    | 50                       |  |  |  |  |  |  |  |
|             |           | Año 2022               |      |                          |  |  |  |  |  |  |  |
| 1408        | 151,9     | 30                     | ABC  | 100                      |  |  |  |  |  |  |  |
| 1709        | 140,3     | 10                     | A    | 25                       |  |  |  |  |  |  |  |
| 1725        | 130,5     | 50                     | ABC  | 100                      |  |  |  |  |  |  |  |
|             |           | Año 2026               |      |                          |  |  |  |  |  |  |  |
| 1752        | 140,1     | 37,5                   | С    | 50                       |  |  |  |  |  |  |  |
| 7091        | 150       | 10                     | В    | 25                       |  |  |  |  |  |  |  |
| 1732        | 136,5     | 15                     | В    | 25                       |  |  |  |  |  |  |  |
|             | Año 2030  |                        |      |                          |  |  |  |  |  |  |  |
| 1745        | 149       | 10                     | В    | 15                       |  |  |  |  |  |  |  |
| 6692        | 136,4     | 10                     | В    | 15                       |  |  |  |  |  |  |  |

ELABORADO POR: Investigadores

### Implementación de reguladores

En el año 2016 se debe colocar 3 regulador 1φ de voltaje entre el tramo 38131\_MTA y 38330\_MTA ubicada en la Hacienda Limache, el segundo regulador se ubicó en la derivación del tramo 43664\_MTA ubicado en el sector de Joseguango bajo.

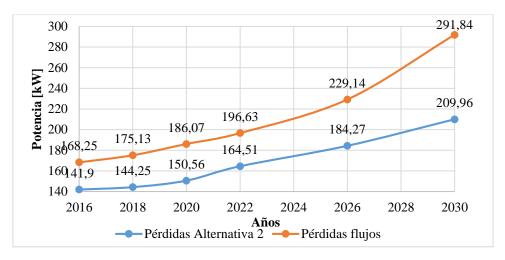
### Construcción de nuevas líneas

En el año 2016 se construye una línea trifásica de 500 metros de longitud, con conductor ACSR N° 3X2/0+1/0, entre el tramo 43705\_MTA y el tramo 43599 MTA ubicada entre los sectores de la piedra colorada y Santa clara.

Se construye una línea trifásica de 800 metros de longitud con conductor ACSR N° 3x2/0 + 1/0, entre el tramo 48446\_MTA y la salida 1 de la S/E ubicada entre la Hacienda San José y la S/E Mulaló.

En el 2018 se construye una línea de 1,2 km de red trifásica, con conductor 3X1/0 +1/0 desde el tramo 43740\_MTA hasta el tramo 48336\_MTA, ubicada por la hacienda san José. Adicionalmente en el año 2030, se cambia 2,5 km de red monofásica de conductor 1X1/0+1/0 desde el tramo 65283\_MTA hasta el tramo 38177\_MTA ubicada en el sector de Rumipamba de cruces hasta Rumipamba.

Con los cambios sugeridos en el alimentador se tiene sistema que cumple con los parámetros establecidos en la regulación vigente prestando un servicio de calidad para los usuarios conectados a la red. En la tabla N° 46 se presenta las pérdidas ocasionadas para el sistema en durante el periodo 2016- 2030


TABLA N° 46 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA 2

|                                    | 2016    | 2018    | 2020    | 2022    | 2026    | 2030    |
|------------------------------------|---------|---------|---------|---------|---------|---------|
| Consumo Total [kW]                 | 2811,79 | 2899,92 | 3010,94 | 3123,38 | 3391,07 | 3739,67 |
| Pérdidas en las líneas             | 58,41   | 60,14   | 57,84   | 61,78   | 66,38   | 75,3    |
| Pérdidas en los cables             | 0,01    | 0,01    | 0,01    | 0,01    | 0,01    | 0,01    |
| Pérdidas en los<br>transformadores | 55,03   | 56,07   | 57,47   | 58,55   | 63,88   | 70,73   |
| Pérdidas totales [kW]              | 113,45  | 116,21  | 115,31  | 120,34  | 130,27  | 146,04  |

ELABORADO POR: Investigadores

Las pérdidas en función del consumo total representan un 3,91% anual respecto a los flujos anteriores que representaba el 6,25% anual en el gráfico N° 42 se presenta la curva de pérdidas con la alternativa 2 y con relación a las pérdidas de flujo proyectado representa en un una reducción del 40%.

# GRÁFICO Nº 42 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130 ALTERNATIVA 2



**ELABORADO POR:** Investigadores

### 3.4.5.3. *Alternativa 3*

Una tercera propuesta es la que se describe a continuación:

### Balance de carga

Como medida de corrección se realiza el balance de carga como se muestra en la tabla N° 47 presentando los tramos a ser modificados para corregir el desbalance.

TABLA N° 47 BALANCE DE CARGA

| Nombre del | Cambio de fase (kVA) |        |       |         | Fase A | Fase B | Fase C | Ineutro | Pérdidas<br>totales | Tensión<br>Factor de |
|------------|----------------------|--------|-------|---------|--------|--------|--------|---------|---------------------|----------------------|
| tramo      | A                    | В      | C     |         | (V)    | (V)    | (V)    | (A)     | (kW)                | deseq.               |
| 43892_MTA  | a C                  |        |       | Antes   | 113,86 | 116,23 | 112,73 | 15,24   | 145,7               | 0,49%                |
|            | 26,56                |        |       | Después | 114,67 | 115,8  | 112,33 | 18,17   | 144,97              | 0,25%                |
| 43881_MTA  |                      | a C    |       | Antes   | 115,28 | 115,5  | 112,09 | 16,9    | 144,69              | 0,14%                |
|            |                      | 16,09  |       | Después | 115,51 | 115,82 | 111,54 | 20,5    | 145,33              | 0,10%                |
| 43864_MTA  | a C                  |        |       | Antes   | 114,56 | 116,03 | 112,69 | 13,1    | 144,97              | 0,31%                |
|            | 23,75                |        |       | Después | 115,21 | 115,71 | 112,35 | 18,02   | 144,69              | 0,15%                |
| 43829_MTA  | a C                  |        |       | Antes   | 115,15 | 116,66 | 113,09 | 19,68   | 144,66              | 0,22%                |
|            | 13,8                 |        |       | Después | 115,42 | 116,52 | 112,96 | 22,52   | 144,49              | 0,14%                |
| 38377_MTA  |                      | a A    |       | Antes   | 117,16 | 117,21 | 115,22 | 9,86    | 144,49              | 0,13%                |
|            |                      | 12,19  |       | Después | 117,05 | 117,42 | 115,14 | 7,25    | 144,63              | 0,07%                |
| 38239_MTA  |                      |        | a A   | Antes   | 117,8  | 117,11 | 114,71 | 25,82   | 145,33              | 0,29%                |
|            |                      |        | 41,38 | Después | 117,11 | 117,34 | 115,17 | 21,22   | 144,66              | 0,10%                |
| 65283_MTA  |                      | a A    |       | Antes   | 118,86 | 117,01 | 117,4  | 21,15   | 145,93              | 0,44%                |
|            |                      | 164,14 |       | Después | 118,01 | 118,6  | 116,67 | 20,96   | 145,7               | 0,03%                |

**ELABORADO POR:** Investigadores

# Cambio de transformadores

La tabla  $N^{\circ}$  48 presenta los 53 transformadores con diversas capacidades que se requiere sustituirlas en el año 2016.

TABLA N° 48 TRANSFORMADORES A CAMBIAR AÑO 2016 ALTERNATIVA 3

| Nro. equipo | Carga 2016<br>(%) | Cap Actual (kVA) | Fase | Cap Requerida<br>(kVA) |
|-------------|-------------------|------------------|------|------------------------|
| 5142        | 202               | 5                | С    | 10                     |
| 8810        | 138,5             | 100              | ABC  | 300                    |
| 1756        | 203,1             | 15               | С    | 50                     |
| 6873        | 146,4             | 25               | ABC  | 100                    |
| 9999        | 269,3             | 10               | С    | 50                     |
| 8158        | 134               | 10               | В    | 25                     |
| 6495        | 176,5             | 15               | В    | 37,5                   |
| 9099        | 157               | 15               | В    | 25                     |
| 7348        | 133,5             | 10               | В    | 15                     |
| 3567        | 314,6             | 10               | С    | 37,5                   |
| 1773        | 186,3             | 5                | В    | 10                     |
| 5182        | 155,4             | 15               | A    | 25                     |
| 1798        | 156,1             | 10               | В    | 15                     |
| 6940        | 174,4             | 15               | A    | 37,5                   |
| 1803        | 332,7             | 10               | С    | 37,5                   |
| 6021        | 135,9             | 25               | С    | 50                     |
| 5447        | 268,9             | 10               | С    | 25                     |
| 1801        | 159,9             | 10               | A    | 15                     |
| 1234        | 271,1             | 5                | A    | 15                     |
| 6906        | 183,4             | 15               | A    | 37,5                   |
| 3588        | 212,3             | 5                | A    | 10                     |
| 1764        | 153,4             | 25               | A    | 37,5                   |
| 6917        | 182,7             | 15               | A    | 25                     |
| 1777        | 171,9             | 10               | A    | 25                     |
| 5858        | 190               | 25               | A    | 50                     |
| 7427        | 234,7             | 10               | С    | 25                     |
| 3693        | 160,4             | 10               | A    | 15                     |
| 8387        | 169               | 25               | С    | 50                     |
| 8383        | 204,7             | 15               | С    | 37,5                   |
| 8391        | 160,8             | 25               | С    | 50                     |
| 6675        | 212,1             | 10               | С    | 25                     |
| 1733        | 266,9             | 10               | С    | 50                     |
| 8733        | 353,9             | 5                | С    | 25                     |
| 9235        | 146,6             | 15               | С    | 25                     |
| 7653        | 155,9             | 10               | С    | 25                     |
| 8735        | 328,6             | 5                | С    | 15                     |
| 8731        | 326,8             | 5                | С    | 15                     |
| 8727        | 238,7             | 5                | С    | 15                     |
| 8790        | 183,6             | 10               | С    | 25                     |
| 8739        | 206,3             | 10               | С    | 25                     |
| 8409        | 312,7             | 5                | С    | 15                     |
| 5204        | 255,1             | 10               | С    | 25                     |
| 1724        | 144,6             | 10               | В    | 15                     |
| 1782        | 183,8             | 10               | В    | 25                     |

| Nro. equipo | Carga 2016<br>(%) | Cap Nom (kVA) | Fase | Cap cambiada<br>(kVA) |
|-------------|-------------------|---------------|------|-----------------------|
| 1721        | 130,7             | 10            | В    | 37,5                  |
| 3542        | 147,2             | 15            | C    | 50                    |
| 1704        | 190,8             | 5             | A    | 10                    |
| 1706        | 175,1             | 5             | A    | 10                    |
| 1788        | 154,1             | 10            | В    | 15                    |
| 1800        | 149,6             | 10            | В    | 15                    |
| 1802        | 171,7             | 3             | C    | 5                     |
| 1766        | 140,8             | 15            | A    | 25                    |
| 8734        | 150,7             | 5             | В    | 10                    |

La tabla N° 49 presenta los transformadores en sobrecarga desde el periodo 2018- 2030 mostrando la capacidad requerida a ser cambiada para un óptimo funcionamiento del sistema.

TABLA N° 49 TRANSFORMADORES A CAMBIAR PERIODO 2018- 2030 ALTERNATIVA 2

| Nro. equipo | Carga (%) | Cap<br>Actual<br>(kVA) | Fase | Cap.<br>Requerida<br>kVA |  |  |  |  |  |
|-------------|-----------|------------------------|------|--------------------------|--|--|--|--|--|
|             |           | Año 2018               |      |                          |  |  |  |  |  |
| 1651        | 135,3     | 10                     | С    | 50                       |  |  |  |  |  |
| 7539        | 133,4     | 15                     | ABC  | 75                       |  |  |  |  |  |
| 8972        | 133,3     | 30                     | ABC  | 45                       |  |  |  |  |  |
| Año 2020    |           |                        |      |                          |  |  |  |  |  |
| 1759        | 146,7     | 10                     | С    | 37,5                     |  |  |  |  |  |
| 7662        | 133,9     | 50                     | ABC  | 125                      |  |  |  |  |  |
| 3544        | 134,3     | 15                     | В    | 50                       |  |  |  |  |  |
|             |           | Año 2022               |      |                          |  |  |  |  |  |
| 1408        | 151,9     | 30                     | ABC  | 100                      |  |  |  |  |  |
| 1709        | 140,3     | 10                     | A    | 25                       |  |  |  |  |  |
| 1725        | 130,5     | 50                     | ABC  | 100                      |  |  |  |  |  |
|             |           | Año 2026               |      |                          |  |  |  |  |  |
| 1752        | 140,1     | 37,5                   | С    | 50                       |  |  |  |  |  |
| 7091        | 150       | 10                     | В    | 25                       |  |  |  |  |  |
| 1732        | 136,5     | 15                     | В    | 25                       |  |  |  |  |  |
|             | Año 2030  |                        |      |                          |  |  |  |  |  |
| 1745        | 149       | 10                     | В    | 15                       |  |  |  |  |  |
| 6692        | 136,4     | 10                     | В    | 15                       |  |  |  |  |  |

**ELABORADO POR:** Investigadores

### Implementación de reguladores

De acuerdo a la tabla N° 38, muestra un bajo voltaje el cual se debe corregir mediante reguladores de voltaje.

Se debe instalar reguladores de voltaje, el primer regulador se instaló en los tramos 59438\_MTA y 38085\_MTA en el sector de establos de Limache y el segundo regulador de voltaje se instaló en los tramos 5201\_MTA y 5238\_MTA, con el fin de mejorar el voltaje en el lado sur del alimentador.

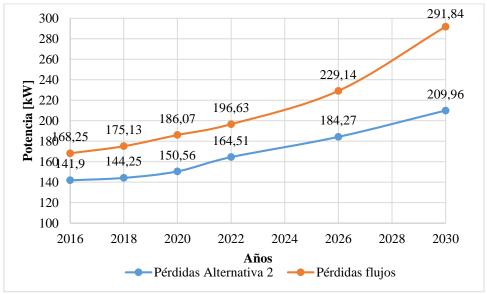
Adicionalmente en el 2030 se instaló un nuevo regulador en los tramos 38554\_MTA y 38206 MTA ubicado en el sector de la Escuela Juan Pio Montufar

#### Construcción de nuevas líneas

Para solucionar la caída de voltaje en el año 2016 se construye 220 metros de red trifásica en el tramo 43738\_MTA con conductor 3X2/0+1/0 ubicado en el sector de la Escuela M. #6, adicionalmente se construye una red monofásica de 730 metros de longitud entre el tramo MTA\_L\_46733 y el MTA\_L\_43656, con conductor ACSR 1X 1/0 +1/0 ubicado en el sector de Joseguango bajo.

En el 2018 se creó una nueva línea de conductor 3 km de conductor ACSR N° 1X1/0+1/0 2 desde el nodo MTA\_L\_43677 hasta el nodo MTA\_S\_38441 ubicado en el sector de Chinchil. La tabla N° 50 presenta los resultados de los flujos de carga realizados durante el período 2016-2030 observando la producción total y las pérdidas ocasionadas en el sistema

TABLA N° 50 TABLA DE RESUMEN PERIODO 2016-2030 ALTERNATIVA 3


|                        | 2016    | 2018    | 2020    | 2022    | 2026    | 2030    |
|------------------------|---------|---------|---------|---------|---------|---------|
| Consumo Total [kW]     | 2840,12 | 2988,43 | 3080,82 | 3292,38 | 3391,07 | 3951,57 |
| Pérdidas en las líneas | 85,6    | 86,32   | 89,69   | 99,26   | 112,38  | 126,61  |
| Pérdidas en los cables | 0,01    | 0       | 0       | 0       | 0,01    | 0       |
| Pérdidas en los        |         |         |         |         |         |         |
| transformadores        | 56,29   | 57,92   | 60,87   | 65,25   | 71,88   | 83,35   |
| Pérdidas Totales [kW]  | 141,9   | 144,25  | 150,56  | 164,51  | 184,27  | 209,96  |

**ELABORADO POR:** Investigadores

Las pérdidas en función del consumo total representan un 5,08% anual con respecto a los flujos anteriores que representaba el 6,25% anual en el gráfico N° 43 presenta

la curva de pérdidas de los flujos anteriores y las pérdidas del flujo de la alternativa 3 observando una reducción considerable del 20% de pérdida debido a la Cargabilidad de los trasformadores, construcción de nuevos tramos y ubicación de reguladores en el alimentador.

GRÁFICO N° 43 EVOLUCIÓN DE PERDIDAS PERÍODO 2016-20130 ALTERNATIVA 3



**ELABORADO POR:** Investigadores

#### 3.4.6. Factibilidad técnica

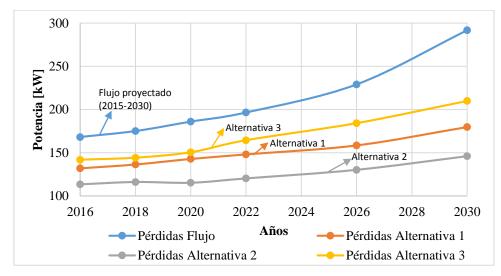
Con los resultados obtenidos de las propuestas planteadas, mediante la construcción de nuevas redes, cambio de transformadores, cambio de calibre de conductor, balance de carga e instalación de reguladores en los tramos de la red, se mejora la Cargabilidad de los trasformadores y los niveles de voltaje se mantiene dentro de la norma establecida ya descrita, la tabla N° 51 presenta las mejoras realizadas mediante ítems de las alternativas planteadas.

TABLA N° 51 RESUMEN DE ALTERNATIVAS PLANTEADAS

|                            |      | Alternativa 1 |      |      |      | A    | Altern | ativa | 2    |      | Alternativa 3 |      |      |      |      |      |      |      |
|----------------------------|------|---------------|------|------|------|------|--------|-------|------|------|---------------|------|------|------|------|------|------|------|
| Años de proyección         | 2016 | 2018          | 2020 | 2022 | 2026 | 2030 | 2016   | 2018  | 2020 | 2022 | 2026          | 2030 | 2016 | 2018 | 2020 | 2022 | 2026 | 2030 |
| Balance de carga           | Si   |               |      |      |      |      | Si     |       |      |      |               |      | Si   |      |      |      |      |      |
| Cambio de transformadores  | Si   | Si            | Si   | Si   |      | Si   | Si     | Si    | Si   | Si   |               | Si   | Si   | Si   | Si   | Si   |      | Si   |
| Instalación de reguladores | Si   |               |      |      |      |      | Si     |       |      |      |               |      | Si   | Si   |      |      |      | Si   |
| Construcción de líneas     | Si   | Si            |      |      |      |      | Si     | Si    |      |      |               | Si   | Si   |      |      |      |      | Si   |

De la misma manera de las mediciones realizadas se determina el nivel de los armónicos en el alimentador por incorporación masiva de cocinas de inducción. Estos no sobrepasan los niveles recomendados por las normas.

La tabla N° 52 presenta las pérdidas producidas durante la operación del sistema lo cual se observa que el incremento es notable conforme avanza la proyección


TABLA N° 52 PÉRDIDAS POR ALTERNATIVA EN [KW]

|                                | 2016   | 2018   | 2020   | 2022   | 2026   | 2030   |
|--------------------------------|--------|--------|--------|--------|--------|--------|
| Pérdidas flujo proyectado [kW] | 168,25 | 175,13 | 186,07 | 196,63 | 229,14 | 291,84 |
| Pérdidas Alternativa 1 [kW]    | 132,05 | 136,51 | 142,89 | 148,16 | 158,58 | 179,8  |
| Pérdidas Alternativa 2 [kW]    | 113,45 | 116,21 | 115,31 | 120,34 | 130,27 | 146,04 |
| Pérdidas Alternativa 3 [kW]    | 141,9  | 144,25 | 150,56 | 164,51 | 184,27 | 209,96 |

**ELABORADO POR:** Investigadores

El gráfico N° 44 presenta las pérdidas de las alternativas planteadas y las pérdidas de los flujos de potencia realizada con las respectivas proyecciones, notando que la alternativa 2 representa el 3,91% anual, con respeto a las demás alternativas que presenta un valor más elevado en pérdidas.

GRÁFICO Nº 44 PERDIDAS MEDIANTE ALTERNATIVAS PLANTEADAS



#### 3.4.7. Factibilidad Económica

El factor económico es uno de los principales parámetros al momento de elegir algún proyecto, a continuación se describe costos totales de inversión que se requiere para las alternativas planteadas en este estudio.

La tabla N° 53 presenta el presupuesto requerido para la alternativa 1, el costo total de esta alternativa planteada con la descripción de cada elemento se lo puede observar en el anexo N° 15

TABLA N° 53 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 1

LISTA DE MATERIALES

| PROVECTO : REI | PROYECTO: REFORZAMIENTO ALIMENTADOR MLS1 ALTERNATIVA 1 PRESUPUESTO No.: CON-2015- 471 |      |          |            |            |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------|------|----------|------------|------------|--|--|--|--|--|
| CODIGO ITEM    | DESCRIPCIÓN                                                                           | UNI. | CANTIDAD | PREC.UNIT. | PREC.TOTAL |  |  |  |  |  |
| POSTES TORRES  | YACCESORIOS                                                                           |      |          |            |            |  |  |  |  |  |
| 01C0102005     | CABLE COBRE DESNUDO N°2                                                               | MTS  | 960      | 3,85       | 3.696,00   |  |  |  |  |  |
| 01C0103002     | CABLE ACERO TENSOR 3/8                                                                | MTS  | 260      | 1,13       | 293,8      |  |  |  |  |  |
| 02A0103001     | ABRAZ. PERNO CENT. SIMP. 5 1/2                                                        | UNI  | 98       | 4,43       | 434,14     |  |  |  |  |  |
| 02A0104001     | ABRAZ. PERNO CENT.DOBLE 5 1/2                                                         | UNI  | 5        | 5,84       | 29,2       |  |  |  |  |  |
| 02A0105001     | ABRAZ. EXT. CADENA SIMP. 5 1/2                                                        | UNI  | 7        | 6,23       | 43,61      |  |  |  |  |  |
| 02A0106001     | ABRAZ. EXT. CADENA DOBLE 5 1/2                                                        | UNI  | 2        | 7,5        | 15         |  |  |  |  |  |
| 02A0201001     | AISLADOR PIN ANSI 55-4                                                                | UNI  | 51       | 6,55       | 334,05     |  |  |  |  |  |
| 02A0203007     | AISLADOR DE SUSPENSION POLIMER                                                        | UNI  | 29       | 16,22      | 470,38     |  |  |  |  |  |
| 02A0204002     | AISLADOR DE RETENIDA ANSI 54-2                                                        | UNI  | 10       | 3,7        | 37         |  |  |  |  |  |
| 02B0801002     | BLOQUE DE ANCLAJE DE 40X30X20                                                         | UNI  | 10       | 8,73       | 87,3       |  |  |  |  |  |
| 02C0208008     | CONEC.WEJTAP 2 CU 2 CON BALA                                                          | UNI  | 169      | 3,63       | 613,47     |  |  |  |  |  |
| 02C0301001     | CINTA DE ARMAR 5 MM.                                                                  | MTS  | 75       | 0,6        | 45         |  |  |  |  |  |
| 02C0401005     | CRUCETA HIERRO "L" 2 MTS.                                                             | UNI  | 13       | 41,06      | 533,78     |  |  |  |  |  |
| 02C0401023     | CRUCETA HIERRO 1MTS                                                                   | UNI  | 53       | 26,43      | 1.400,79   |  |  |  |  |  |
| 02C0401050     | CRUCETA EN L 3/16"X7CMX150CM.                                                         | UNI  | 4        | 31,15      | 124,6      |  |  |  |  |  |
| 02G0102006     | GRAPA ANG.SIM. NGK ALUM 2 1/0                                                         | UNI  | 1        | 13,87      | 13,87      |  |  |  |  |  |
| 02G0301003     | GUARDACABOS 3/8"                                                                      | UNI  | 20       | 0,65       | 13         |  |  |  |  |  |
| 02H0101001     | HORQUILLA ANCLA 5/8 GUARD 1/2"                                                        | UNI  | 28       | 4,41       | 123,48     |  |  |  |  |  |
| 02P0101001     | PERNO "U" 5/8X70 CRUCETA HIERR                                                        | UNI  | 60       | 2,88       | 172,8      |  |  |  |  |  |
| 02P0102003     | PERNO DE OJO 5/8 X 12"                                                                | UNI  | 6        | 5,26       | 31,56      |  |  |  |  |  |
| 02P0102004     | PERNO DE OJO 5/8 X 14"                                                                | UNI  | 6        | 5,55       | 33,3       |  |  |  |  |  |
| 02P0103001     | PERNO ESPARRAGO DE 5/8 X 12"                                                          | UNI  | 2        | 3,93       | 7,86       |  |  |  |  |  |
| 02P0103003     | PERNO ESPARRAGO DE 5/8 X 14"                                                          | UNI  | 6        | 4,5        | 27         |  |  |  |  |  |

| 02P0104002               | PERNO MAQUINA 1/2 X 1 1/2       | UNI  | 70    | 0.62      | 43,4       |
|--------------------------|---------------------------------|------|-------|-----------|------------|
| 02P0105006               | PERNO PIN ESPIGA 3/4            | UNI  | 27    | 5,76      | 155,52     |
| 02P0106004               | PERNO PUNTA POSTE SIMPLE 3/4    | UNI  | 22    | 9,95      | 218,9      |
| 02P0106005               | PERNO PUNTA POSTE DOBLE 3/4     | UNI  | 1     | 12,1      | 12.1       |
| 02P0201008               | PIE AMIGO ANGULO I/D 4X4X0,60   | UNI  | 53    | 5,54      | 293,62     |
| 02P0201013               | PIE AMIGO ANGULO IZ Y DER 1,45  | UNI  | 17    | 16,52     | 280,84     |
| 02P0302001               | PREFORM, TERMINAL N. 2 DG4542   | UNI  | 28    | 2,38      | 66,64      |
| 02P0302003               | PREFORM, TERMINAL N 1/0 DG4544  | UNI  | 28    | 2,55      | 71.4       |
| 02P0303001               | PREFORMADO CABLE TENSOR N 3/8   | UNI  | 40    | 4,42      | 176,8      |
| 02P0501019               | POSTE HORMIGON 12 MTS X 500 KG  | UNI  | 42    | 264       | 11.088,00  |
| 02S0102001               | SECC. PORTAFUSIB. 15 KV 100 AM  | UNI  | 53    | 107.35    | 5.689.55   |
| 02T0101001               | TUERCA DE OJO 5/8"              | UNI  | 6     | 2,03      | 12,18      |
| 02V0101002               | VARILLA COPERWELD               | UNI  | 128   | 8,4       | 1.075,20   |
| 02V0102003               | VARILLA ANCLAJE 5/8X2.0 ARANDE  | UNI  | 10    | 11,32     | 113.2      |
| 04P0101002               | PARARRAYO DE 10 KV              | UNI  | 38    | 82,82     | 3.147,16   |
| 04T0101002               | TIRAFUSIBLE DE 1 AMP            | UNI  | 53    | 2,5       | 132,5      |
| 06S0201003               | SUELDA EXOTERMICA N.65          | UNI  | 128   | 4.02      | 514,56     |
| CONDUCTORES              |                                 | 0.11 | 120   | 1,02      | 511,50     |
| 01C0201004               | CONDUCTOR DE ALUMINIO ACSR #1/0 | MTS  | 5.400 | 0,85      | 4.590,00   |
|                          | NSFORMADORES DE DISTRIBUCIÓN    |      |       | 3,02      |            |
| 01C0102004               | CABLE COBRE AISLADO 1/0         | MTS  | 484   | 9,42      | 4.559,28   |
| 01C0102005               | CABLE COBRE DESNUDO N°2         | MTS  | 120   | 3,85      | 462        |
| 02A0107004               | ABRAZADERA TRANSFORMADOR 5 1/2  | UNI  | 98    | 9.18      | 899,64     |
| 02B0301006               | BASE PORTAFUSIBLE 250 AM CON T  | UNI  | 39    | 13,98     | 545,22     |
| 02C0101002               | CAPACETA GALVANIZADA TRIFASICA  | UNI  | 13    | 26,7      | 347,1      |
| 02C0214003               | CONECTOR DP7 DOBLE DENTADO HER  | UNI  | 190   | 3,88      | 737,2      |
| 02C0214013               | CONEC.WEJTAP 1/0-CU#2 51725 BA  | UNI  | 76    | 3,81      | 289,56     |
| 02C0214014               | CONEC.WEJTAP 1/0 CU2/0-2 92001  | UNI  | 13    | 4,87      | 63,31      |
| 02C0216009               | CONECTOR CUÑA CON ESTRIBO       | UNI  | 39    | 8,85      | 345,15     |
| 02C0216011               | CONECTOR CUÑA ESTRIBO PARA N.2  | UNI  | 46    | 11,51     | 529,46     |
| 02C0401016               | CRUCETA HIERRO L 75X75X6MX2:4M  | UNI  | 57    | 34.22     | 1.950.54   |
| 02G0101001               | GRAPA DERIVACION EN CALIENTE    | UNI  | 85    | 11,44     | 972,4      |
| 02P0101001               | PERNO "U" 5/8X70 CRUCETA HIERR  | UNI  | 26    | 2,88      | 74,88      |
| 02P0103002               | PERNO ESPARRAGO DE 5/8 X 16"    | UNI  | 24    | 3,85      | 92.4       |
| 02P0103003               | PERNO ESPARRAGO DE 5/8 X 14"    | UNI  | 52    | 4.5       | 234        |
| 02P0107001               | PERNO CADMIADO DE 3/8 X 1 1/2   | UNI  | 78    | 0,46      | 35,88      |
| 02T0203003               | TERMINAL DE COBRE EN L SLU 175  | UNI  | 6     | 4,31      | 25,86      |
| 02T0209001               | TERMINAL TIPO SLU -225          | UNI  | 72    | 4.68      | 336.96     |
| 03R0101008               | REGULADOR VOLTAJE 38KVA 7620/   | UNI  | 6     | 18.400,00 | 110.400,00 |
| 03T0108006               | TRAN MONOF 5KVA T. CSP 13800V   | UNI  | 1     | 1.015,94  | 1.015,94   |
| 03T0109007               | TRAN MONOF 10KVA 13800V T. CSP  | UNI  | 5     | 1.203,65  | 6.018,25   |
| 03T0110006               | TRAN MONOF 15KVA 13800V T. CSP  | UNI  | 13    | 1.300,08  | 16.901,04  |
| 03T0111007               | TRAN MONOF 25KVA 13.800 T.CSP   | UNI  | 18    | 1.609,05  | 28.962,90  |
| 03T0112005               | TRAN MON 37,5KVA 13800V T.CSP   | UNI  | 9     | 2.020,15  | 18.181,35  |
| 03T0137004               | TRAN TRIFASICO 45KVA 13800CON   | UNI  | 1     | 2.644,35  | 2.644,35   |
| 03T0137004               | TRAN TRIFASICO 50KVA 13800V CO  | UNI  | 8     | 2.771,80  | 22.174,40  |
|                          | TRAN TRIFASICO 50KVA 13800V CO  | UNI  | 1     | 3.231,70  | 3.231,70   |
| 03T0140001               |                                 |      |       |           |            |
| 03T0140001<br>03T0142006 | TRAN TRIFASICO 75KVA 13800V     | UNI  | 2     | 3.555,69  | 7.111,38   |

TOTAL MATERIALES

270.764,86

# **ELABORADO POR:** Investigadores

La tabla  $N^\circ$  54 presenta el presupuesto requerido para la alternativa 2, el costo total de esta alternativa planteada con la descripción de cada elemento se lo puede observar en el anexo  $N^\circ$  16

TABLA N° 54 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 2

| CODIGO ITEM              | DRZAMIENTO ALIMENTADOR MLS1 ALTERNATIVA<br>DESCRIPCIÓN            | UNI.       | PRESUPUESTO No.<br>CANTIDAD | PREC.UNIT.            | PREC.TOTA      |
|--------------------------|-------------------------------------------------------------------|------------|-----------------------------|-----------------------|----------------|
| POSTES TORRES Y          |                                                                   | LMTC       | 075                         | 2.05                  | 2 752          |
| 01C0102005<br>01C0103002 | CABLE COBRE DESNUDO №2  CABLE ACERO TENSOR 3/8                    | MTS<br>MTS | 975<br>264                  | 3,85<br>1,13          | 3.753,<br>298. |
| 02A0101002               | ABRAZ. SIMPLE DE 6 1/2 RACK                                       | UNI        | 47                          | 4,6                   | 298            |
| 02A0102002               | ABRAZ. DOBLE DE 6 1/2 RACK                                        | UNI        | 5                           | 4,98                  | 2              |
| 02A0103001               | ABRAZ. PERNO CENT. SIMP. 5 1/2                                    | UNI        | 202                         | 4,43                  | 894            |
| 02A0104001               | ABRAZ. PERNO CENT.DOBLE 5 1/2                                     | UNI        | 14                          | 5,84                  | 81             |
| 02A0105001               | ABRAZ. EXT. CADENA SIMP. 5 1/2                                    | UNI        | 15                          | 6,23                  | 93             |
| 02A0106001               | ABRAZ. EXT. CADENA DOBLE 5 1/2                                    | UNI        | 2                           | 7,5                   |                |
| 02A0201001               | AISLADOR PIN ANSI 55-4                                            | UNI        | 166                         | 6,55                  | 1.087          |
| 02A0202001               | AISLADOR ROLLO ANSI 53-2                                          | UNI        | 57<br>55                    | 1,22                  | 69             |
| 02A0203007<br>02A0204002 | AISLADOR DE SUSPENSION POLIMER AISLADOR DE RETENIDA ANSI 54-2     | UNI        | 12                          | 16,22<br>3,7          | 85             |
| )2B0401001               | BASTIDORES DE UNA VIA                                             | UNI        | 57                          | 2,75                  | 150            |
| )2B0801002               | BLOQUE DE ANCLAJE DE 40X30X20                                     | UNI        | 12                          | 8,73                  | 104            |
| )2C0208008               | CONEC.WEJTAP 2 CU 2 CON BALA                                      | UNI        | 273                         | 3,63                  | 990            |
| )2C0301001               | CINTA DE ARMAR 5 MM.                                              | MTS        | 276                         | 0,6                   | 10             |
| )2C0401005               | CRUCETA HIERRO "L" 2 MTS.                                         | UNI        | 58                          | 41,06                 | 2.38           |
| )2C0401023               | CRUCETA HIERRO 1MTS                                               | UNI        | 93                          | 26,43                 | 2.45           |
| )2C0401050               | CRUCETA EN L 3/16"X7CMX150CM.                                     | UNI        | 4                           | 31,15                 | 12             |
| )2G0301003               | GUARDACABOS 3/8"                                                  | UNI        | 20                          | 0,65                  |                |
| )2H0101001               | HORQUILLA ANCLA 5/8 GUARD 1/2"                                    | UNI        | 55                          | 4,41                  | 242            |
| 02P0101001               | PERNO "U" 5/8X70 CRUCETA HIERR                                    | UNI        | 127                         | 2,88                  | 36:            |
| )2P0102003               | PERNO DE OJO 5/8 X 12"                                            | UNI        | 24                          | 5,26                  | 120            |
| )2P0102004               | PERNO DE OJO 5/8 X 14"  PERNO ESPARRAGO DE 5/8 X 12"              | UNI        | 6                           | 5,55                  |                |
| 02P0103001<br>02P0103003 | PERNO ESPARRAGO DE 5/8 X 12" PERNO ESPARRAGO DE 5/8 X 14"         | UNI        | 8<br>18                     | 3,93<br>4,5           | 3              |
| 02P0103003               | PERNO MAQUINA 1/2 X 1 1/2                                         | UNI        | 155                         | 0,62                  |                |
| 02P0105006               | PERNO PIN ESPIGA 3/4                                              | UNI        | 126                         | 5,76                  | 72:            |
| 02P0106004               | PERNO PUNTA POSTE SIMPLE 3/4                                      | UNI        | 30                          | 9,95                  | 25             |
| )2P0106005               | PERNO PUNTA POSTE DOBLE 3/4                                       | UNI        | 5                           | 12,1                  |                |
| 02P0201008               | PIE AMIGO ANGULO I/D 4X4X0,60                                     | UNI        | 93                          | 5,54                  | 51:            |
| )2P0201013               | PIE AMIGO ANGULO IZ Y DER 1,45                                    | UNI        | 62                          | 16,52                 | 1.02           |
| )2P0302001               | PREFORM. TERMINAL N. 2 DG4542                                     | UNI        | 77                          | 2,38                  | 183            |
| 02P0302003               | PREFORM. TERMINAL N 1/0 DG4544                                    | UNI        | 19                          | 2,55                  | 4              |
| 02P0303001               | PREFORMADO CABLE TENSOR N 3/8                                     | UNI        | 44                          | 4,42                  | 19             |
| )2P0501019               | POSTE HORMIGON 12 MTS X 500 KG                                    | UNI        | 98                          | 264                   | 25.87          |
| )2S0102001               | SECC. PORTAFUSIB. 15 KV 100 AM                                    | UNI        | 93                          | 107,35                | 9.98           |
| 02T0101001<br>02V0101002 | TUERCA DE OJO 5/8"  VARILLA COPERWELD                             | UNI        | 130                         | 2,03<br>8,4           | 1.09           |
| 02V0101002               | VARILLA COPERWELD  VARILLA ANCLAJE 5/8X2.0 ARANDE                 | UNI        | 130                         | 11,32                 | 13:            |
| 04P0101002               | PARARRAYO DE 10 KV                                                | UNI        | 75                          | 82,82                 | 6.21           |
| 04T0101002               | TIRAFUSIBLE DE 1 AMP                                              | UNI        | 93                          | 2,5                   | 2:             |
| 06S0201003               | SUELDA EXOTERMICA N.65                                            | UNI        | 130                         | 4,02                  | 52             |
| ****** CONDU             | CTORES AEREOS                                                     |            |                             | ,.                    |                |
| 01C0201004               | CONDUCTOR ALUMINIO ACSR # 1/0                                     | MTS        | 5.000                       | 0,85                  | 4.25           |
| 1C0201022                | CONDUCTOR ALUMNIO ACSR 2/0                                        | MTS        | 9.600                       | 1,07                  | 10.27          |
| ****** TRANS             | FORMADORES DE DISTRIBUCION                                        |            |                             |                       |                |
| 01C0102004               | CABLE COBRE AISLADO 1/0                                           | MTS        | 452                         | 9,42                  | 4.25           |
| 01C0102005               | CABLE COBRE DESNUDO N°2                                           | MTS        | 120                         | 3,85                  |                |
| 02A0107004               | ABRAZADERA TRANSFORMADOR 5 1/2                                    | UNI        | 114                         | 9,18                  | 1.04           |
| 02B0301006               | BASE PORTAFUSIBLE 250 AM CON T                                    | UNI        | 15                          | 13,98                 | 2              |
| )2C0101002<br>)2C0214003 | CAPACETA GALVANIZADA TRIFASICA CONECTOR DP7 DOBLE DENTADO HER     | UNI        | 5<br>182                    | 26,7                  | 70             |
| 02C0214003               | CONEC.WEJTAP 1/0-CU#2 51725 BA                                    | UNI        | 84                          | 3,88<br>3,81          | 32             |
| 02C0214013<br>02C0214014 | CONEC.WEJTAP 1/0-CU#2 51 /25 BA<br>CONEC.WEJTAP 1/0 CU2/0-2 92001 | UNI        | 5                           | 4,87                  | 2              |
| 02C0216009               | CONECTOR CUÑA CON ESTRIBO                                         | UNI        | 15                          | 8,85                  | 13:            |
| 02C0216011               | CONECTOR CUÑA ESTRIBO PARA N.2                                    | UNI        | 54                          | 11,51                 | 62             |
| )2C0401016               | CRUCETA HIERRO L 75X75X6MX2:4M                                    | UNI        | 33                          | 34,22                 | 1.12           |
| 02G0101001               | GRAPA DERIVACION EN CALIENTE                                      | UNI        | 69                          | 11,44                 | 78             |
| 02P0101001               | PERNO "U" 5/8X70 CRUCETA HIERR                                    | UNI        | 10                          | 2,88                  |                |
| 02P0103002               | PERNO ESPARRAGO DE 5/8 X 16"                                      | UNI        | 24                          | 3,85                  |                |
| 02P0103003               | PERNO ESPARRAGO DE 5/8 X 14"                                      | UNI        | 20                          | 4,5                   |                |
| 02P0107001               | PERNO CADMIADO DE 3/8 X 1 1/2                                     | UNI        | 30                          | 0,46                  |                |
| 02T0203003               | TERMINAL DE COBRE EN L SLU 175                                    | UNI        | 6                           | 4,31                  | 2:             |
| 2T0209001                | TERMINAL TIPO SLU -225                                            | UNI        | 24                          | 4,68                  | 110.40         |
| 03R0101008               | REGULADOR VOLTAJE 38KVA 7620/                                     | UNI        | 6                           | 18.400,00<br>1.015.94 | 110.40         |
| 03T0108006<br>03T0109007 | TRAN MONOF 5KVA T. CSP 13800V<br>TRAN MONOF 10KVA 13800V T. CSP   | UNI        | 1 5                         | 1.015,94              | 1.01:          |
| 03T0109007               | TRAN MONOF 10K VA 13800V 1. CSP TRAN MONOF 15K VA 13800V T. CSP   |            | 13                          | 1.203,65              | 6.01<br>16.90  |
| 03T01110006              | TRAN MONOF 15K VA 13800V 1. CSP TRAN MONOF 25K VA 13.800 T.CSP    | UNI        | 13                          | 1.609,05              | 28.96          |
| 03T0111007               | TRAN MONOF 23K VA 13.800 T.CSF  TRAN MON 37,5KVA 13800V T.CSP     | UNI        | 9                           | 2.020,15              | 18.18          |
| 03T0112003               | TRAN MON. 50KVA 13800V T. CSP                                     | UNI        | 8                           | 2.447,15              | 19.57          |
| 03T0137004               | TRAN TRIFASICO 45KVA 13800CON                                     | UNI        | 1                           | 2.644,35              | 2.64           |
| 03T0142006               | TRAN TRIFASICO 100KVA 13800V                                      | UNI        | 3                           | 3.555,69              | 10.66          |
|                          | TRAN TRIFASICO 125KVA 13800V                                      | UNI        | 1                           | 5.360,15              | 10.00          |

TOTAL MATERIALES

\*\*ELABORADO POR: Investigadores\*\*

\*\*ELABORADO POR: Investigadores\*\*

\*\*TOTAL MATERIALES\*\*

La tabla  $N^{\circ}$  55 presenta el presupuesto requerido para la alternativa 3, el costo total de esta alternativa planteada con la descripción de cada elemento se lo puede observar en el anexo  $N^{\circ}$  17

# TABLA N° 55 DESCRIPCIÓN ELEMENTOS REQUERIDOS ALTERNATIVA 3

LISTA DE MATERIALES
PROYECTO: REFORZAMIENTO ALIMENTADOR MLS1 ALTERNATIVA 3
CODIGO ITEM DESCRIPCIÓN UNI.

POSTES TORRES Y ACCESORIOS

PRESUPUESTO No.: CON-2015- 471
CANTIDAD PREC.UNIT. PREC.TOTAL

| CODIGOTTEM               | DESCRIPCION                                                    | UNI.   | CANTIDAD | PREC.UNII. | PREC.IOTAL |
|--------------------------|----------------------------------------------------------------|--------|----------|------------|------------|
| POSTES TORRES            | YACCESORIOS                                                    |        |          |            |            |
| 01C0102005               | CABLE COBRE DESNUDO N°2                                        | MTS    | 1.035    | 3,85       | 3.984,75   |
| 01C0103002               | CABLE ACERO TENSOR 3/8                                         | MTS    | 520      | 1,13       | 587,6      |
| 02A0101002               | ABRAZ. SIMPLE DE 6 1/2 RACK                                    | UNI    | 39       | 4,6        | 179.4      |
| 02A0102002               | ABRAZ. DOBLE DE 6 1/2 RACK                                     | UNI    | 3        | 4,98       | 14,94      |
| 02A0103001               | ABRAZ. PERNO CENT. SIMP. 5 1/2                                 | UNI    | 215      | 4,43       | 952,45     |
| 02A0104001               | ABRAZ. PERNO CENT. DOBLE 5 1/2                                 | UNI    | 213      | 5,84       | 11,68      |
| 02A0105001               | ABRAZ. EXT. CADENA SIMP. 5 1/2                                 | UNI    | 10       | 6,23       | 62,3       |
| 02A0105001<br>02A0106001 | ABRAZ, EXT. CADENA SIMP. 5 1/2  ABRAZ, EXT. CADENA DOBLE 5 1/2 | UNI    | 4        | 7,5        | 30         |
| 02A0106001<br>02A0201001 |                                                                | UNI    | 75       |            | 491,25     |
| 02A0201001<br>02A0202001 | AISLADOR PIN ANSI 55-4                                         | UNI    | 45       | 6,55       | 54,9       |
|                          | AISLADOR ROLLO ANSI 53-2                                       |        |          | 1,22       |            |
| 02A0203007               | AISLADOR DE SUSPENSION POLIMER                                 | UNI    | 24       | 16,22      | 389,28     |
| 02A0204002               | AISLADOR DE RETENIDA ANSI 54-2                                 | UNI    | 20       | 3,7        | 74         |
| 02B0401001               | BASTIDORES DE UNA VIA                                          | UNI    | 45       | 2,75       | 123,75     |
| 02B0801002               | BLOQUE DE ANCLAJE DE 40X30X20                                  | UNI    | 20       | 8,73       | 174,6      |
| 02C0208008               | CONEC.WEJTAP 2 CU 2 CON BALA                                   | UNI    | 311      | 3,63       | 1.128,93   |
| 02C0301001               | CINTA DE ARMAR 5 MM.                                           | MTS    | 198      | 0,6        | 118,8      |
| 02C0401005               | CRUCETA HIERRO "L" 2 MTS.                                      | UNI    | 6        | 41,06      | 246,36     |
| 02C0401023               | CRUCETA HIERRO 1MTS                                            | UNI    | 120      | 26,43      | 3.171,60   |
| 02E0201001               | ESLABON EN "U" CON PASADOR 5/8                                 | UNI    | 6        | 1,58       | 9,48       |
| 02G0301003               | GUARDACABOS 3/8"                                               | UNI    | 40       | 0,65       | 26         |
| 02H0101001               | HORQUILLA ANCLA 5/8 GUARD 1/2"                                 | UNI    | 24       | 4,41       | 105,84     |
| 02P0101001               | PERNO "U" 5/8X70 CRUCETA HIERR                                 | UNI    | 122      | 2,88       | 351,36     |
| 02P0102004               | PERNO DE OJO 5/8 X 14"                                         | UNI    | 6        | 5,55       | 33,3       |
| 02P0102004<br>02P0103003 | PERNO DE 030 3/8 X 14<br>PERNO ESPARRAGO DE 5/8 X 14"          | UNI    | 2        | 4,5        | 33,3       |
|                          |                                                                | UNI    | 132      | 0,62       | 81,84      |
| 02P0104002               | PERNO MAQUINA 1/2 X 1 1/2                                      |        |          |            |            |
| 02P0105006               | PERNO PIN ESPIGA 3/4                                           | UNI    | 4        | 5,76       | 23,04      |
| 02P0106004               | PERNO PUNTA POSTE SIMPLE 3/4                                   | UNI    | 61       | 9,95       | 606,95     |
| 02P0106005               | PERNO PUNTA POSTE DOBLE 3/4                                    | UNI    | 5        | 12,1       | 60,5       |
| 02P0201007               | PIE AMIGO ANG.IZQUI Y DER 0,70                                 | UNI    | 12       | 8,27       | 99,24      |
| 02P0201008               | PIE AMIGO ANGULO I/D 4X4X0,60                                  | UNI    | 120      | 5,54       | 664,8      |
| 02P0302001               | PREFORM. TERMINAL N. 2 DG4542                                  | UNI    | 42       | 2,38       | 99,96      |
| 02P0302003               | PREFORM. TERMINAL N 1/0 DG4544                                 | UNI    | 18       | 2,55       | 45,9       |
| 02P0303001               | PREFORMADO CABLE TENSOR N 3/8                                  | UNI    | 80       | 4,42       | 353,6      |
| 02P0501019               | POSTE HORMIGON 12 MTS X 500 KG                                 | UNI    | 78       | 264        | 20.592,00  |
| 02S0102001               | SECC. PORTAFUSIB. 15 KV 100 AM                                 | UNI    | 120      | 107,35     | 12.882,00  |
| 02V0101002               | VARILLA COPERWELD                                              | UNI    | 138      | 8,4        | 1.159,20   |
| 02V0102003               | VARILLA ANCLAJE 5/8X2.0 ARANDE                                 | UNI    | 20       | 11,32      | 226,4      |
| 04P0101002               | PARARRAYO DE 10 KV                                             | UNI    | 93       | 82,82      | 7.702,26   |
| 04T0101002               | TIRAFUSIBLE DE 1 AMP                                           | UNI    | 120      | 2,5        | 300        |
| 06S0201003               | SUELDA EXOTERMICA N.65                                         | UNI    | 138      | 4,02       | 554,76     |
| ****** CONDUC            | TORES AEREOS                                                   | UNI    | 130      | 4,02       | 334,70     |
|                          |                                                                | ) (TCC | 7 400    | 0.05       | 6 200 00   |
| 01C0201004               | CONDUCTOR ALUMINIO ACSR # 1/0                                  | MTS    | 7.400    | 0,85       | 6.290,00   |
| 01C0201022               | CONDUCTOR ALUMNIO ACSR 2/0                                     | MTS    | 880      | 1,07       | 941,6      |
| ***** TRANSF             | ORMADORES DE DISTRIBUCION                                      |        |          |            |            |
| 01C0102004               | CABLE COBRE AISLADO 1/0                                        | MTS    | 491      | 9,42       | 4.625,22   |
| 01C0102005               | CABLE COBRE DESNUDO N°2                                        | MTS    | 180      | 3,85       | 693        |
| 02A0107004               | ABRAZADERA TRANSFORMADOR 5 1/2                                 | UNI    | 117      | 9,18       | 1.074,06   |
| 02B0301006               | BASE PORTAFUSIBLE 250 AM CON T                                 | UNI    | 15       | 13,98      | 209,7      |
| 02C0101002               | CAPACETA GALVANIZADA TRIFASICA                                 | UNI    | 5        | 26,7       | 133,5      |
| 02C0214003               | CONECTOR DP7 DOBLE DENTADO HER                                 | UNI    | 182      | 3,88       | 706,16     |
| 02C0214013               | CONEC.WEJTAP 1/0-CU#2 51725 BA                                 | UNI    | 99       | 3,81       | 377,19     |
| 02C0214014               | CONEC.WEJTAP 1/0 CU2/0-2 92001                                 | UNI    | 5        | 4,87       | 24,35      |
| 02C0216009               | CONECTOR CUÑA CON ESTRIBO                                      | UNI    | 15       | 8,85       | 132,75     |
| 02C0216011               | CONECTOR CUÑA ESTRIBO PARA N.2                                 | UNI    | 54       | 11,51      | 621.54     |
| 02C0401016               | CRUCETA HIERRO L 75X75X6MX2:4M                                 | UNI    | 42       | 34,22      | 1.437,24   |
| 02G0101001               | GRAPA DERIVACION EN CALIENTE                                   | UNI    | 69       | 11,44      | 789,36     |
| 02P0101001               | PERNO "U" 5/8X70 CRUCETA HIERR                                 | UNI    | 10       | 2,88       | 28,8       |
|                          |                                                                | _      |          |            |            |
| 02P0103002               | PERNO ESPARRAGO DE 5/8 X 16"                                   | UNI    | 36       | 3,85       | 138,6      |
| 02P0103003               | PERNO ESPARRAGO DE 5/8 X 14"                                   | UNI    | 20       | 4,5        | 90         |
| 02P0107001               | PERNO CADMIADO DE 3/8 X 1 1/2                                  | UNI    | 30       | 0,46       | 13,8       |
| 02T0203003               | TERMINAL DE COBRE EN L SLU 175                                 | UNI    | 6        | 4,31       | 25,86      |
| 02T0209001               | TERMINAL TIPO SLU -225                                         | UNI    | 24       | 4,68       | 112,32     |
| 03R0101008               | REGULADOR VOLTAJE 38KVA 7620/                                  | UNI    | 9        | 18.400,00  | 165.600,00 |
| 03T0108006               | TRAN MONOF 5KVA T. CSP 13800V                                  | UNI    | 1        | 1.015,94   | 1.015,94   |
| 03T0109007               | TRAN MONOF 10KVA 13800V T. CSP                                 | UNI    | 5        | 1.203,65   | 6.018,25   |
| 03T0110006               | TRAN MONOF 15KVA 13800V T. CSP                                 | UNI    | 13       | 1.300,08   | 16.901,04  |
| 03T0111007               | TRAN MONOF 25KVA 13.800 T.CSP                                  | UNI    | 18       | 1.609,05   | 28.962,90  |
| 03T0112005               | TRAN MON 37,5KVA 13800V T.CSP                                  | UNI    | 9        | 2.020,15   | 18.181,35  |
| 03T0113003               | TRAN MON. 50KVA 13800V T. CSP                                  | UNI    | 8        | 2.447,15   | 19.577,20  |
| 03T0137004               | TRAN TRIFASICO 45KVA 13800CON                                  | UNI    | 1        | 2.644,35   | 2.644.35   |
| 03T0137004               | TRAN TRIFASICO 75KVA 13800V                                    | UNI    | 1        | 3.231,70   | 3.231,70   |
| 03T0140001               | TRAN TRIFASICO 100KVA 13800V                                   | UNI    | 2        | 3.555,69   | 7.111,38   |
| 03T0164002               | TRAN TRIFASICO 100KVA 13800V                                   | UNI    |          |            |            |
| 0310104002               | TRAIN TRIFASICO 123KVA 13800V                                  | UINI   | 1        | 5.360,15   | 5.360,15   |

TOTAL MATERIALES 350.853,33

**ELABORADO POR:** Investigadores

#### 3.4.7.1. Análisis económico.

Realizada la evaluación de cada alternativa y revisado detalladamente los materiales necesarios para la ejecución de las mismas, como también gastos que implica la construcción, sustitución e implementación de elementos en la red. Se presenta en la tabla N° 56 los costos totales de cada alternativa planteada.

TABLA N° 56 COSTOS DE ALTERNATIVAS PLANTEADAS

|                        | Alternativa 1 | Alternativa 2 | Alternativa 3 |
|------------------------|---------------|---------------|---------------|
| MATERIALES             | 303256,64     | 343.170,43    | 392.955,73    |
| MANO DE OBRA           | 13884,85      | 24.263,52     | 21.220,62     |
| GASTOS ADMINISTRATIVOS | 1130,04       | 1.130,04      | 1.130,04      |
| TRANSPORTE             | 4520,01       | 6956,12       | 6.458,37      |
| FISCALIZACIÓN          | 1943,95       | 3357,33       | 2.952,06      |
| SUBTOTAL               | 324735,49     | 378.877,44    | 424.716,82    |
| COSTO TOTAL            | 324735,49     | 378.877,44    | 424.716,82    |

**ELABORADO POR:** Investigadores

### 3.4.7.2. Ingresos operacionales

Mediante la diferencia entre las perdidas obtenidas en la proyección de demanda proyectada durante el periodo 2015-2030 y las pérdidas obtenidas por alternativas planteadas durante el periodo de estudio, se obtuvo el valor económico anual que significa la reducción de pérdidas, tomando en consideración que el kWh está valorado en 0,08 dólares que es el primer ingreso operacional. Adicionalmente se considera el total de energía por uso de cocinas de inducción, calculando la potencia a incrementarse anualmente tomado del anexo N°8 con una duración de uso de 3 horas diarias por los 365 días del año obteniendo la energía total anual que se utiliza.

La energía eléctrica en función al equivalente calorífico de un cilindro de GLP de 15 kg es igual a 200,62 [kWh], tomada de la revista interconexiones publicación 80 página 11, mediante este dato se obtiene la relación entre la energía por el uso de cocinas de inducción y por la energía de un cilindro de gas. Determinando el segundo ingreso operacional. En la tabla N° 57 presenta el total por ingresos operacionales detalladas anualmente, y el costo de inversión por alternativa.

TABLA N° 57 TOTAL DE INGRESOS OPERACIONALES

| [\$/anual]    | Inversión I | 2016       | 2017       | 2018       | 2019       | 2020       | 2021       | 2022       |
|---------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| Alternativa 1 | -\$ 324.735 | \$ 101.585 | \$ 96.103  | \$ 106.365 | \$ 109.971 | \$ 116.220 | \$ 121.549 | \$ 121.028 |
| Alternativa 2 | -\$ 378.877 | \$ 114.620 | \$ 110.816 | \$ 121.222 | \$ 126.060 | \$ 134.917 | \$ 139.014 | \$ 140.524 |
| Alternativa 3 | -\$ 424.717 | \$ 94.682  | \$ 91.036  | \$ 100.940 | \$ 102.445 | \$ 110.845 | \$ 111.564 | \$ 109.569 |
| [\$/anual]    | 2023        | 2024       | 2025       | 2026       | 2027       | 2028       | 2029       | 2030       |
| Alternativa 1 | \$ 129.839  | \$ 124.711 | \$ 137.617 | \$ 136.508 | \$ 145.396 | \$ 149.033 | \$ 153.174 | \$ 165.577 |
| Alternativa 2 | \$ 148.680  | \$ 144.241 | \$ 157.835 | \$ 156.348 | \$ 166.990 | \$ 171.316 | \$ 176.145 | \$ 189.236 |
| Alternativa 3 | \$ 117.394  | \$ 111.036 | \$ 122.713 | \$ 118.505 | \$ 128.032 | \$ 130.440 | \$ 133.351 | \$ 144.441 |

## 3.4.7.3. Relación costo beneficio

Este ítem permite conocer si el proyecto es viable o no, ya que si supera a uno el proyecto será viable, caso contrario se rechazaría. Si el proyecto supera a uno quiere decir que por cada dólar invertido se obtendrá el equivalente a uno o más, en la tabla N° 58 se observa la relación costo benéfico de nuestro proyecto avaluando las tres alternativas

TABLA N° 58 ANÁLISIS COSTO BENEFICIO

|               | VAN       | TIR | VAN ingresos | VAN egresos | B/C  |
|---------------|-----------|-----|--------------|-------------|------|
| Alternativa 1 | 349835,20 | 33% | \$ 674.571   | \$ 281.717  | 2,28 |
| Alternativa 2 | 394633,97 | 33% | \$ 773.511   | \$ 328.687  | 2,26 |
| Alternativa 3 | 194638,60 | 24% | \$ 619.355   | \$ 368.454  | 1,59 |

**ELABORADO POR:** Investigadores

Un proyecto es factible cuando la relación costo beneficio es mayor a 1, en el estudio realizado como se observa el valor supera a 1 siendo viable la alternativa 1 y 2.

### 3.5. Conclusiones

- El porcentaje de crecimiento es de 5,02% anual obtenido mediante el análisis de proyección de la demanda, siendo mayor a los datos registrados anteriormente sin la incorporación de las cocinas de inducción lo que representaba con un porcentaje del 3,96% anual.
- A medida que la Cargabilidad en los trasformadores supera el límite máximo, las pérdidas en las mismas tiende a crecer significativamente y con ello la disminución la vida útil, incrementando los costos por reposición y pérdidas en energía.
- Desde el año 2016 hasta el 2022 se requiere elevar la capacidad de 58 transformadores. ya que estos se encuentran con mayor problema de sobrecarga por la incorporación de cocinas de inducción.
- El THDv en la cabecera es de un 7,37%, observando así que se cumple la regulación CONELEC 004/01 con un máximo establecido de 8%. Mientras que el THDi la máxima distorsión de corriente armónica en porcentaje de la (*I<sub>L</sub>*), se encuentra en el rango de 50<100 por lo que el TDD admisible es del 12%, según la NORMA IEEE 519.</li>
- El THDv de la cocina de inducción es de 3,62%, cumpliendo con la regulación CONELEC 004/01 con un máximo establecido de 8%. Mientras que THDi de la cocina de inducción se tiene un 3,89%, observando que se encuentra de la norma con un máximo admisible del 5% en el punto de conexión.
- Mediante el análisis realizado de las tres alternativas propuestas en el presente proyecto, se ha determinado que la alternativa 2 es la que menor presupuesto requiere para la ejecución de la misma con el 3,91% de perdidas, al igual que los perfiles de voltaje son los especificados en la norma descrita.
- La propuesta de la alternativa 2 es viable económicamente con una inversión de 378.887,44 dólares, demostrando que la TIR es de 33% y una relación costo beneficio de 2,26 y técnicamente viable por la reducción de pérdidas que representa el 3,91% con respecto al consumo total de energía.

#### 3.6. Recomendaciones

- Las empresas eléctricas deben evaluar permanentes el comportamiento de la red de distribución para realizarlos cambios pertinentes en función del real ingreso de las cocinas de inducción y así cumplir con los estándares de calidad
- Es recomendable realizar un estudio minucioso en las redes de bajo voltaje para conocer el comportamiento de esta parte del sistema, con lo que se determina no solo el incremento de potencia en trasformadores si no la reubicación de los mismos, así como proponer las alternativas de solución en este nivel de voltaje.
- Es recomendable mantener actualizado los datos en toda el área de concesión para validar información en las bases tanto comercial como en la del ArGis.
- Una vez reconfigurado el alimentador MLS1 se debe realizar un estudio para la coordinación de protecciones en las nuevas barras a implementarse por la nueva demanda.
- Adquirir los módulos de bajo voltaje del software CYMDIST para realiza flujos en medio y bajo voltaje conjuntamente, ya que las perdidas y anomalías de bajo voltaje se refleja en medio voltaje y hace un análisis completo.
- Al realizar mediciones en la cabecera, es recomendable programar al instrumento para que recopile información de armónicas en la red, tanto de corriente como de voltaje y los ángulos que los desfasan.
- Se debe realizar un estudio en un sistema de distribución en bajo voltaje, para conocer de una manera más especifica la cantidad de contaminación que generan las cargas no lineales (cocinas de inducción) conectadas a un sistema de red eléctrica y así obtener claramente la máxima distorsión armónica

## 3.7. Glosario de términos y siglas

V.- Voltaje

I.- Corriente

MT.- Medio voltaje

**BT.-** Bajo voltaje

AT.- Alto Voltaje

F.- Frecuencia [Hz]

**kWh.-** Kilovatio-hora, uso de mil vatios durante una hora.

**kV.**- kilovoltio

**kVA.-** Potencia aparente expresada en mil Voltio-Amperios

**kVAR.-** Potencia reactiva expresada en mil Voltio-Amperios reactivos.

**kW.-** Potencia activa o efectiva expresada en kilovatios.

**MVA.-** mega voltamperios

MW.- Mega watios

Fp.- factor de potencia

V rms.- volteje eficaz

**Amplitud:** Hace referencia al valor del voltaje o de la intensidad del armónico, la amplitud de un armónico es generalmente un pequeño porcentaje de la fundamental.

Fase: Hace referencia al valor del ángulo entre el armónico y la fundamental.

**Orden:** Hace referencia al valor de su frecuencia referida a la fundamental. Así un armónico de orden 3 tiene una frecuencia tres veces superior a la fundamental.

**Carga no lineal.-** Una carga es considerada no lineal cuando la intensidad que circula por ella no tiene la misma forma sinusoidal que el voltaje que la alimenta.

**THD.-** Distorsión armónica total.

**THDv:** Indica la distorsión de la onda de voltaje.

**THDi:** Indica la distorsión de la onda de corriente.

**El espectro**: (descomposición en frecuencia de la señal) da una representación diferente de las señales eléctricas, y permite evaluar la distorsión.

Perturbación.- Cualquier fenómeno electromagnético.

**CYMDIST.-** Es una herramienta muy potente para crear sus propios estudios predictivos por simulación para evaluar el impacto de los cambios efectuados en la red.

**SQL.-** Es el lenguaje estándar de definición, manipulación y control de bases de datos relacionales.

**ArcGIS.-** Es una completa plataforma de información que permite crear, analizar, almacenar y difundir datos

GIS.- Sistema de Información Geográfica

**ELEPCO S.A..-** EMPRESA ELÉCTRICA PROVINCIAL DE COTOPAXI SOCIEDAD ANÓNIMA

INECEL.- Instituto Ecuatoriano de Electrificación

S.E.L..- Sistema Eléctrico Latacunga

S/E.- Subestación

PEC.- Programa de cocción eficiente

SIN.- Sistema nacional interconectado

**Msnm.-** Metros sobre el nivel del mar.

ACSR.- Conductor de aluminio con centro de acero galvanizado.

**CONELEC.-** Consejo Nacional de Electricidad.

**IEEE 519.-** Instituto de Ingenieros Eléctricos y Electrónicos.

# MLS1.- Mulaló Joseguango bajo salida 1

- R.- Usuario residencial
- C.- Usuario comercial
- **I.-** Usuario industrial
- O.- Otros

## 3.8. Referencias bibliográficas

Armónicos en las redes eléctricas. [En línea] [Citado el: 29 de Julio de 2014.] https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCkQFjAA&url=https%3A%2F%2Fwww.u-

cursos.cl%2Fingenieria%2F2011%2F2%2FEL5203%2F1%2Fmaterial\_docente%2Fbajar%3Fid\_material%3D384495&ei=ysjXU6T9PMXR7AbZmYHgBg&usg=AFQjCNHTe720F5f\_hEMQNWYB.

Análisis de la incidencia del usos de cocinas eléctricas de inducción. **MUÑOS**, **Jorge. 2013.** QUITO : Solventia, 2013, INTERCONEXIONES, Vol. 83. Julio-Septiembre 2013 N° 83.

**CALLEJO, Javier, y otros.** *Introducción a las técnicas de investigación social.* España : Centro de estudios Ramón Areces,s.a., 2009.

**CONELEC. 2004.** Normativa, Nacionales, Regulaciones. *CONELEC 004/01*. Marzo de 2004. Disponible en

http://www.conelec.gob.ec/normativa\_detalle.php?cd\_norm=23. 29/07/2014.

COOPER, Power Systems. CYMDIST. *Análisis de sistemas de distribución*. CYME International T&D, 2014. Disponible en http://www.cyme.com/es/software/cymdist/. 09/06/2014.

CUSHICÓNDOR, Elías y TITO, Diego. Diseño y consrucción de un prototipo de una cocina de induccion electromagnética. Quito : Tesis E. P.N, 2009.

**DAHAKE, Girish.** Calentamiento por inducción de presión. *Fundamentos de calentamiento por inducción*. AMBRELL, 2014. Disponible en http://es.ambrell.com/acerca-de-induccion.html. 29/05/2014.

ESPINOSA Y LARA, Roberto. Sistemas de Distribución. Noriega: Limusa.

**ESRI, España.** Productos. *ArcGIS*. 2010. Disponible en http://www.esri.es/es/productos/arcgis/.13/01/2015.

**ESTEVE, Vicente.** *Influencia de los componentes parásitos en el análisis y diseño de inversores resonantes paralelo para aplicaciones de calentamiento por inducción.* Valencia: Tesis Doctoral Universidad de Valencia, 1999.

**FAIRCHILD, semiconductor.** *AN-9012* "Induction Heating System Topology Review." 2000.Disponible en http://www.fairchildsemi.com/an/AN/an-9012.pdf. 25/05/2014

**FISCHER, Fern.** Salud. *Problemas de salud con estufas de inducción*. EHOW En español, Disponible en http://www.ehowenespanol.com/problemas-salud-estufas-induccion-sobre\_178355/.04/06/2014

**Gutiérrez, Abraham.** *Métodos de Investigación y Eleboración de Monografias*. Quito: Colegio Técnico Don Bosco, 2005.

**HARPER, Enríquez.** *El ABC de la calidad de la Energía eléctrica*. México : Limusa Noriega Editores.

**INDUCS.** Catalogo. *5715*. Disponible en http://inco.nu/datos/catalogos/5715.pdf. 22/05/2014.

**LEIVA, Francisco.** *Nociones de Metodología de Investigación Científica*. Quinta Edición. Quito : Grupo LEER, 2007.

PME 2013-2022 VOL 2\_Estudio y gestión de la demanda eléctrica. [En línea] [Citado el: 13 de Diciembre de 2013.]

**Ramírez, Ing. Eugenio Téllez.** watergymex. [En línea] AP&C. [Citado el: 06 de Agosto de 2015.] http://watergymex.org/.

**RAMIREZ, Samuel.** Redes de distribución. Colombia : Manizales.

**RECREAC.** Cultura y Ocio. *Cocina de inducción - ¿cuáles son las ventajas y desventajas?* Disponible en http://www.recreac.org/induccion-desventajas-a03579340.htm. 02/06/2014.

**RUIZ, Jorge y ORTÍZ, Francisco.** Repositorio UTP. *Metodología para identificar fuentes armónicas en sistemas eléctricos.* 2007.Disponible en http://repositorio.utp.edu.co/dspace/bitstream/11059/101/3/62138223R934.pdf. 29/07/2014.

**SAADAT E-BOOK, HADI.** POWER SYSTEM ANALYSIS.

**SCHNEIDER ELECTRIC.** *Deteción y filtrados de armónicos.* 2004.

**Tamayo, Mario Tamayo y.** *El Proceso De La Investigación Científica*. LIMUSA, S.A DE C.V., México, 2006.

**TAMA, Alberto.** Cocinas de Inducción vs Cocina a Gas (GLP).2013, Disponible en http://www.slideshare.net/albertama/cocina-de-induccin-versus-cocina-a-gas-glp, pág. 7.

**YEBRA, Juan Antonio.** *Sistemas Electricos de Distribucion.* Reverte, Barcelona, España, 2009.

# ANEXOS