

UNIVERSIDAD TÉCNICA DE COTOPAXI UNIDAD ACADÉMICA DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

CARRERA DE INGENIERÍA DE MEDIO AMBIENTE TESIS DE GRADO

TEMA:

"DISEÑO DE UN MAPA ESTRATÉGICO DE AFECTACIÓN Y
DISPERSIÓN ACÚSTICA, MEDIANTE EL MONITOREO DE RUIDO
AMBIENTAL, PARA LA IDENTIFICACIÓN Y MEDICIÓN DE FUENTES
EMISORAS, EN EL CENTRO HISTÓRICO DE LA CIUDAD DE
LATACUNGA, PERIODO 2015."

Trabajo de investigación previo a la obtención de Título de Ingeniero en Medio Ambiente

Postulante: Ronquillo Cando Margarita Alexandra

Director: Ing. Oscar Daza

Latacunga - Ecuador Diciembre 2015

DECLARACIÓN DE AUTORÍA

Yo, RONQUILLO CANDO MARGARITA ALEXANRA; declaro bajo juramento que el trabajo descrito es de mi autoría, que no ha sido previamente presentado en ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento. A través de la presente declaración cedo mi derecho de propiedad intelectual correspondiente a lo desarrollado en este trabajo, a la UNIVERSIDAD TÉCNICA DE COTOPAXI, según lo establecido por la ley de la propiedad intelectual, por su reglamento y por la normativa institucional vigente.

POSTULANTE:

Ronquillo Cando Margarita Alexandra

C.C. 050316155-6

UNIDAD ACADÉMICA DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

<u>LATACUNGA – COTOPAXI – ECUADOR</u>

AVAL DEL DIRECTOR DE TESIS

Yo, Ing. Oscar Daza, Docente de la Universidad Técnica de Cotopaxi y Director de la presente Tesis de Grado: "DISEÑO DE UN MAPA ESTRATÉGICO DE AFECTACIÓN DISPERSIÓN ACÚSTICA, Y **MEDIANTE** MONITOREO DE RUIDO AMBIENTAL, PARA LA IDENTIFICACIÓN Y MEDICIÓN DE FUENTES EMISORAS, EN EL CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA, PERIODO 2015.", de autoría de la Señora Ronquillo Cando Margarita Alexandra de la especialidad de Ingeniería de Medio Ambiente. CERTIFICO: Que ha sido prolijamente realizada las correcciones emitidas por el Tribunal de Tesis. Por tanto Autorizo la presentación de este empastado; mismo que está de acuerdo a las normas establecidas en el REGLAMENTO INTERNO DE LA UNIVERSIDAD TÉCNICA DE COTOPAXI, vigente.

.....

Ing. MSc. Oscar Daza

DIRECTOR DE TESIS

UNIDAD ACADÉMICA DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

<u>LATACUNGA – COTOPAXI – ECUADOR</u>

AVAL DEL TRIBUNAL DE TESIS

En calidad de miembros del tribunal para el acto de Defensa de Tesis de la Señora postulante: **Ronquillo Cando Margarita Alexandra** con el Tema: "DISEÑO DE UN MAPA ESTRATÉGICO DE AFECTACIÓN Y DISPERSIÓN ACÚSTICA, MEDIANTE EL MONITOREO DE RUIDO AMBIENTAL, PARA LA IDENTIFICACIÓN Y MEDICIÓN DE FUENTES EMISORAS, EN EL CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA, PERIODO 2015.", se emitieron algunas sugerencias, mismas que han sido ejecutado a entera satisfacción, por lo que autorizamos a continuar con el trámite correspondiente.

	Ing. Marco Rivera	
	Presidente del Tribu	nal
	- -	
Ing. Renán Lara		Lic. MSc. Patricio Clavijo
Miembro del Tribunal		Opositor del Tribunal

"UNIVERSIDAD TÉCNICA DE COTOPAXI"

UNIDAD ACADÉMICA DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

CARRERA: INGENIERÍA EN MEDIO AMBIENTE

AVAL DE TRADUCCIÓN

En calidad de Docente del Centro Cultural de Idiomas de la Universidad Técnica de Cotopaxi; Yo Jorge Luis Rosero M, con C.C. 0500862727 CERTIFICO que he realizado la respectiva revisión del Abstract, con el tema: "DISEÑO DE UN MAPA ESTRATÉGICO DE AFECTACIÓN Y DISPERSIÓN ACÚSTICA, MEDIANTE EL MONITOREO DE RUIDO AMBIENTAL, PARA LA IDENTIFICACIÓN Y MEDICIÓN DE FUENTES EMISORAS, EN EL CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA, PERIODO 2015.", cuya autora es la señora Ronquillo Cando Margarita Alexandra y su director de tesis Ing. Oscar Daza.

M.Sc. Jorge L. Rosero M.

DOCENTE INGLÉS UTC

C.C. 0500862727

AGRADECIMIENTO

A *Dios* por permitirme vivir y despertarme cada mañana junto a mi familia. Gracias por bendecir mis pasos y ser mi fortín en momentos de tristeza, dolor y necesidad.

Agradezco a la *Universidad Técnica de Cotopaxi* que me dio la bienvenida y la oportunidad de estudiar una carrera profesional y llegar a culminarla, a sus docentes por los conocimientos otorgados y por la amistad brindada de manera especial al *Ing. Oscar Daza* por su aporte en la dirección de mi trabajo de investigación.

A mis Padres *Amable e Isabel* por los valores inculcados y por su ejemplo de superación que me motiva a ser mejor persona cada día.

Le doy gracias a mis hijas: a mi princesa *Dafne* por soportar largas horas sin mi presencia, por tu compañía en mis desvelos durante mis años de estudio, tu estuviste a mi lado abrazándome, sonriéndome y siendo mi motivación constante; a ti mi bebita *Isabella* porque llegaste para consolidar mi felicidad con tu inocencia e infinito amor. Ustedes son mi principal motivación para alcanzar nuevas metas y concluirlas.

A mi esposo *Flavio* porque avivaste mis deseos de superación de una u otra manera.

Quiero darle las gracias a mi hermano *Galileo*, quien estimuló la realización de esta investigación, por obsequiarme tu valioso tiempo y guiarme con paciencia y cariño.

Gracias a ti amigo *Paúl Ortega*, por abrirme las puertas de tu hogar a mí y a mi familia, por tu valiosa ayuda en la etapa de monitoreo de la investigación, sin

duda la amistad duplica las alegrías y disminuye las tristezas.

Finalmente gracias a todas aquellas personas, que de una u otra forma impulsaron la realización y culminación de este proyecto.

Gracias a todos.

Margarita

DEDICATORIA

Este trabajo lo dedico con infinito amor y reconocimiento a las personas que

siempre han estado a mi lado apoyándome y dando lo mejor de sí, para que

florezca personal y profesionalmente.

A mis hijas Dafne Elizabeth e Isabella Valentina; mi tesoro más preciado

ustedes son mi motivación e inspiración, por el infinito amor que me otorgan y

por ser mi fortaleza cuando a punto de caer he estado, por y para ustedes son mis

logros.

Con todo mi amor a mi esposo Flavio, por ser mi compañero, amigo y confidente,

por los momentos alegres, tristes y difíciles que se presentaron durante esta etapa

en la que estuviste siempre a mi lado.

A mis padres José Amable y María Isabel, por darme la vida y formarme con

buenos sentimientos y valores que han hecho de mí una mujer de bien, por su

ejemplo de dedicación, abnegación y superación constante. Mami y Papi son el

eje de mi vida, mis guías y consejeros; gracias por brindarme su amor

incondicional.

A mis hermanos, sobrinos y todos aquellos familiares que son parte de mi vida

por sus palabras de apoyo y por todos los momentos compartidos.

Margarita

viii

ÍNDICE GENERAL

DECLARACI	IÓN DE AUTORÍA	i
AVAL DEL I	DIRECTOR DE TESIS	ii
AVAL DEL 7	ΓRIBUNAL DE TESIS	iv
	RADUCCIÓN	
	MIENTO	
	RIA	
	RODUCCIÓN	
II. JU	ISTIFICACIÓN	XVII.
	BJETIVOS.	
	GENERAL.	
	OS ESPECÍFICOS	
1.1. Marc	co Teórico	1
1.1.1.	Sonido	1
1.1.1.1.		
1.1.1.2.	Cualidades del Sonido	6
1.1.1.3.	Niveles Sonoros	7
1.1.1.4.	Unidad de Medida	12
1.1.2.	Ruido	12
1.1.2.1.		
1.1.3.	Ruido Ambiental	17
1.1.3.1.	Índices para la Evaluación del Ruido Ambiental	18
1.1.3.2.	Datos sobre usos del suelo	20
1.1.3.3.	Efectos del ruido en la salud del ser humano.	22
1.1.3.4.	Niveles máximos de emisión de ruido	23
1.1.3.5.	Equipos de monitoreo de ruido ambiental.	25
1.1.3.6.	Ubicación del punto de monitoreo	25
1.1.4. 1.1.4.1.	Mapas Estratégicos De Ruido	
1.1.4.2.	Métodos de Interpolación de la Distribución Espacial	
1 1 4 2	•	
1.1.4.3. puntos.	Diseño de la toma de la muestra para la Interpolación pa 30	iiii de
1.1.5.	Normativa Ambiental Vigente	32
1.1.5.1.	A nivel Mundial	
1.1.5.2.	Normativa Nacional.	32
1.2. Marc	co Conceptual	

CAPITULO	II	40
2.1. Me	todología	40
2.1.1.	Descripción de la Unidad de Estudio	40
2.1.2.	Tipos de Investigación	
2.1.2.1.	1	
2.1.2.2.	Investigación de Campo	44
2.1.3.	Métodos y Técnicas	45
2.1.3.1.	Métodos	
2.1.3.2.	Técnicas	45
2.1.4.	Metodología Aplicada	46
2.1.4.1.		47
2.1.4.2.	Procesamiento de datos del Programa de Monitoreo Acú	stico 56
2.1.4.3. Acústica	Realización del Mapa Estratégico de Afectación y Dispera. 59	rsión
CAPITULO	III	64
	ALISIS E INTERPRETACIÓN DE RESULTADOS	64
3.1.1.	Introducción	64
3.1.2.	Análisis	66
3.1.3.	Interpretación	77
3.1.3.1.	Resultados del Monitoreo de Ruido Ambiental	77
3.1.3.2.	Resultados por Zonas y rangos de decibeles (dB) estable	cidos 77
3.2. CO	NCLUSIONES Y RECOMENDACIONES	97
3.2.1.	Conclusiones	97
3.2.2.	Recomendaciones	100
3.3. BIE	BLIOGRAFIA Y REFERENCIAS BIBLIOGRAFICAS	103
3.3.1.	Libros	103
3.3.2.	Legislación	103
3.3.3.	Tesis	103
3.3.4.	Documentos web	103
3.3.5.	Revistas	104
3.3.6.	Sitios web	104
ANEXOS		106

INDICE DE TABLAS

Tabla 1. Niveles Sonoros y Respuesta Humana	11
Tabla 2. Usos de Suelo en el Cantón Latacunga 2011-2016	21
Tabla 3. "Niveles Máximos de Emisión de Ruido (Lkeq) para Fuentes	Fijas de
Ruido"	24
Tabla 4. Normativa Ecuatoriana referente a Ruido	33
Tabla 5. Población del Cantón Latacunga	41
Tabla 6. Ubicación del Ensayo	42
Tabla 7. Términos correctores típicos de nivel basados en las categorí	as de las
fuentes sonoras y período del día	57
Tabla 8. Tabla Comparativa de Resultados de Monitoreo de Ruido Am	ıbiental del
Centro Histórico de la ciudad de Latacunga horario diurno	66
Tabla 9. Resultados del Monitoreo de Ruido Ambiental	75
Tabla 10. Resultados según el Rango de Decibeles	76

INDICE DE FIGURAS

Figura 1. Representación de una onda sonora ideal	2
Figura 2. Ondas de una misma frecuencia y diferente amplitud	
Figura 3 Representación de la longitud de onda en un tono puro	
Figura 4. Longitudes de ondas relacionadas con sus frecuencias	
Figura 5. Curvas de Fletcher y Munson	9
Figura 6. Curvas de ponderación A, B y C	10
Figura 7. Ruido Continuo	14
Figura 8. Ruido Intermitente	15
Figura 9. Ruido Impulsivo	15
Figura 10. Ruido Tonal	16
Figura 11. Medición para emisiones de una fuente fija hacia el exterior	26
Figura 12. Medición para fuentes vehiculares	
Figura 13. Muestreo regular	30
Figura 14. Muestreo aleatorio	31
Figura 15. Muestreo estratificado	31
Figura 16. Muestreo por agregados	32
Figura 17. Croquis de ubicación del Centro Histórico de la Ciudad de Late	acunga
	43
Figura 18. Ubicación de los Puntos de Monitoreo en ArcGIS 10.2	59
Figura 19. Escala de colores según la Norma ISO-1996	62
Figura 20. Porcentaje de Cumplimiento de la Normativa de Ruido de acuel	rdo a
la Tabla 1: Niveles Máximos de emisión de ruido (Lkeq) para Fuentes Fija	s de
Ruido	75
Figura 21 Resultados por rango de decibeles y Zonas	7 <i>t</i>
Figura 22. Mapa de Ubicación: Zona 1 rango de 50-55 dB	79
Figura 23. Mapa de Ubicación: Zona 2 rango de 55-60 dB	82
Figura 24. Mapa de Ubicación: Zona 3 rango de 60-65 dB	
Figura 25. Mapa de Ubicación: Zona 4 rango de 65-70 dB	91
Figura 26. Mapa de Ubicación: Zona 5 rango de 70-75 dB	95

INDICE DE FOTOGRAFÍAS

Fotografia 1. Técnico Responsable	48
Fotografía 2. Ensayo de Monitoreo de Ruido Ambiental	50
Fotografía 3. Sonómetro Integrador HD2010UC/A Clase 2, calibrador y sus	
accesorios	51
Fotografía 4. Estabilización del Trípode	52
Fotografía 5. Calibración del Sonómetro	53
Fotografía 6. Montaje del Sonómetro	53
Fotografía 7. Verificación de la altura del Trípode	
Fotografía 8. Direccionamiento del micrófono a 90°	54
Fotografía 9. Verificación de la velocidad del viento con el Anemómetro	
Fotografía 10. Inicio del Monitoreo de Ruido Ambiental	55
Fotografía 11. Cl. Hnos. Pazmiño entre Juan Abel Echeverría y Guayaquil	80
Fotografía 12. Cl. Guayaquil detrás de la Federación Deportiva de Cotopaxi	80
Fotografía 13. Inmediaciones U. E. San José La Salle calle Luis Fernando Vi	ivero
	83
Fotografía 14. Federación Deportiva de Cotopaxi	83
Fotografía 15. Sector Pasaje Luis Fernando Vivero	84
Fotografía 16, Calle 2 de Mayo Centro de Salud de Latacunga	87
Fotografía 17. Plazoleta San Agustín	87
Fotografía 18. Intersección Calle Quito y CalleTarqui	88
Fotografía 19. GAD Municipal del Cantón Latacunga	
Fotografía 20. Pasaje Tobar	
Fotografía 21. Calle Félix Valencia y Belisario Quevedo	92
Fotografia 22. Calle Quito y Guayaquil	
Fotografía 23. Calle Belisario Quevedo y Guayaquil	93
Fotografía 24. "La Ganga" Cl. Belisario Quevedo y Juan A. Echeverría	
Fotografía 25. Esquina calle Quito y Félix Valencia	
Fotografía 26. Calle Félix Valencia	96

TEMA DE TESIS

"DISEÑO DE UN MAPA ESTRATÉGICO DE AFECTACIÓN Y

DISPERSIÓN ACÚSTICA, MEDIANTE EL MONITOREO DE RUIDO

AMBIENTAL, PARA LA IDENTIFICACIÓN Y MEDICIÓN DE FUENTES

EMISORAS, EN EL CENTRO HISTÓRICO DE LA CIUDAD DE

LATACUNGA, PERIODO 2015.",

AUTOR: RONQUILLO CANDO MARGARITA ALEXANDRA

DIRECTOR: ING. OSCAR DAZA

RESUMEN

El presente trabajo investigativo tiene por objetivo diseñar un mapa estratégico de

ruido del Centro Histórico de la Ciudad de Latacunga, con la finalidad de evaluar

y dar a conocer la situación acústica del casco colonial de la urbe, permitiendo

conocer los niveles de ruido ambiental, su dispersión dentro del área de estudio y

por ende la identificación de las zonas más afectadas y aquellas tranquilas. Para

llevar a cabo este estudio se tomó en cuenta varios aspectos y procesos apegados a

la Normativa Ambiental vigente tanto nacional como internacional así también se

detalla el acogimiento de métodos y técnicas provechosas de acuerdo a la

experticia obtenida. Desprendiéndose del programa de monitoreo acústico

establecido para el área de estudio, el Mapa de Ubicación de Puntos de

Monitoreo, cuyos resultados se verán reflejados en el Mapa Estratégico de Zonas

Afectadas Acústicamente del Centro Histórico de la ciudad de Latacunga y en el

Mapa Estratégico de Zonas Afectadas Acústicamente para Ortofotografía del

Centro Histórico de la ciudad de Latacunga. Entre las más relevantes conclusiones

xiv

obtenidas se denota el cumplimiento ínfimo de los límites permisibles de ruido establecidos en el Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (TULSMA), Anexo 5 (suscrito mediante Acuerdo Ministerial N° 097), pues de acuerdo a los resultados obtenidos solo un 9% cumple la normativa y el incumplimiento corresponde al 91% de un total de 150 puntos monitoreados; se describe también la problemática de las zonas que exceden los niveles de ruido, situación que es preocupante por lo cual se recomienda la viabilidad del establecimiento de ciertas regulaciones que el GAD Municipal de Latacunga puede adoptar y que además son parte de sus atribuciones estipuladas en las Consideraciones Generales del Anexo 5 del Libro VI del TULSMA.

THEME

"DESIGN OF A STRATEGIC INVOLVEMENT AND ACOUSTIC MAP SPREAD THROUGH THE ENVIRONMENTAL NOISE MONITORING FOR IDENTIFICATION AND MEASUREMENT OF NOISE SOURCES IN THE HISTORICAL CENTER OF LATACUNGA CITY, 2015 PERIOD."

AUTHOR: RONQUILLO CANDO MARGARITA ALEXANDRA

DIRECTOR: ING. OSCAR DAZA

ABSTRACT

The present investigative work has as objective to design a strategic map of noise in the Historical Center of Latacunga city, with the purpose to evaluate and to announce the acoustic situation of the colonial area of the city, allowing to know the levels of environmental noise, its dispersion inside the study area and therefore the identification of affected and calm areas. To carry out this study it was took into account some aspects and processes attached to national and international environmental standards and the placement of helpful convenient methods and techniques, also details according to the experience gained. Coming off from the acoustic monitoring program, established for the study area, the location map of monitoring points, which results will be reflected in the strategic map of acoustically affected areas in the Historic Center of the city of Latacunga and the strategic map of acoustically affected areas for orthophotography in the Historic Center of Latacunga city. Among the most outstanding conclusions obtained is evident the very low compliance with the permissible noise limits set out in unified Book VI from the Secondary Legislation Environment Ministry (TULSMA), Annex 5 (signed by Ministerial Agreement No. 097), because according to the obtained results, only 9% completes the normative and the nonfulfillment corresponds to 91% of a total of 150 monitored points; it is also

described the problem of the areas that exceed the noise levels, situation that is worrying and it is recommended the viability of the establishment of certain regulations that the Municipal GAD of Latacunga can adopt and also are part of its attributions specified in the General Considerations from the annex 5 from the Book VI of TULSMA.

I. INTRODUCCIÓN

La contaminación acústica es un problema que aqueja a las ciudades tanto grandes como pequeñas sin discriminarlas y motivo de preocupación por las graves molestias que ocasiona y por sus efectos sobre la salud, la conducta y las actividades de las personas. Los mapas estratégicos de ruido constituyen un instrumento creado para facilitar a las autoridades información sobre los niveles de ruido existentes en una población. Mediante los resultados obtenidos, se podrán implantar medidas medioambientales orientadas a la disminución de los niveles sonoros existentes y al proclive de un ambiente confortable para los habitantes.

Con base en los antecedentes detallados, el presente trabajo investigativo tiene como objetivo diseñar un mapa estratégico de ruido ambiental del Centro Histórico de la Ciudad de Latacunga con la finalidad de predecir su dispersión y por ende identificar las zonas más afectadas de la localidad. Para llevar a cabo este estudio se tomó en cuenta varios aspectos y procesos que se describen a continuación:

Capítulo I recoge los fundamentos teóricos diferenciando en primera instancia el sonido del ruido, así como detallando los tipos de ruido, sus propiedades, unidades de medida e instrumentos de medición, normativa ambiental aplicable; conceptos y criterios indispensables para el sustento científico a lo largo del desarrolló de un mapa de ruido.

Capítulo II describe la metodología utilizada para el diseño del mapa estratégico de afectación y dispersión acústica del Centro histórico de la Ciudad de Latacunga, la experimentación in situ y en si el acogimiento de métodos y

técnicas provechosas de acuerdo a la experticia obtenida. Desprendiéndose de este apartado el Mapa de Ubicación de Puntos de Monitoreo (Anexo 1).

Capítulo III presenta los resultados obtenidos con su respectivo cotejo con la **Tabla 1: NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO** como lo establece el El Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (TULSMA) reformado mediante Acuerdo No. 061 publicado en el Registro Oficial Edición Especial No. 316, del 04 de mayo de 2015, Anexo 5 Acuerdo Ministerial N° 097 suscrito el 30 de julio de 2015. Con su debido análisis e interpretación.

Estos resultados se verán reflejados en el Mapa Estratégico de Zonas Afectadas Acústicamente del Centro Histórico de la ciudad de Latacunga (Anexo N°2) y en el Mapa Estratégico de Zonas Afectadas Acústicamente "Ortofotografía del Centro Histórico de la ciudad de Latacunga" (Anexo N°3)

Entre las más relevantes conclusiones obtenidas de la realización de la investigación se denota el cumplimiento ínfimo de los límites permisibles de ruido establecidos en la Normativa vigente con tan solo un 9% mientras que el incumplimiento es del 91%, situación que es preocupante por lo cual se recomienda la viabilidad del establecimiento de regulaciones encaminadas a propender un ambiente acústicamente más tranquilo.

II. JUSTIFICACIÓN

La contaminación acústica actualmente en la ciudad de Latacunga tiende a ser preocupante debido al incremento del parque automotor, de las actividades económicas productivas, las cuales se desarrollan prácticamente sin ningún tipo de control.

Se reconoce la necesidad de regular la circulación de vehículos sean pequeños, medianos, de carga, la presencia de almacenes con parlantes, altavoces, ventas informales, el aeropuerto y el funcionamiento de mercados en la zona urbana de Latacunga constituyen diversas causas para que exista una alta contaminación por ruido.

De esta forma el estudio determinará las posibles fuentes de ruido urbano en el centro histórico de la ciudad mediante la realización de un mapa acústico para tener un conocimiento exacto de los agentes contaminantes.

Con la finalidad de obtener una herramienta técnica que sirva a las autoridades de control ambiental para la toma de decisiones en áreas de mayor afectación de contaminación por ruido ambiental que genere, y con la posibilidad de realizar proyectos para poder controlar este tipo de impactos, lo cual seguro contribuirá a mejorar la calidad de vida de la población Latacungueña.

III. OBJETIVOS.

OBJETIVO GENERAL.

Diseñar un Mapa Estratégico de Afectación y Dispersión Acústica, a través de Monitoreo de Ruido Ambiental, para identificar y medir las Fuentes Emisoras, en el Centro Histórico de la Ciudad de Latacunga, Periodo 2013.".

OBJETIVOS ESPECÍFICOS.

- > Establecer un programa de monitoreo acústico, para el Centro Histórico de la ciudad de Latacunga.
- Definir las principales zonas de afectación a través del mapa acústico del centro histórico de la ciudad de Latacunga.
- ➤ Interpretar los resultados obtenidos con la Normativa Ambiental Vigente.

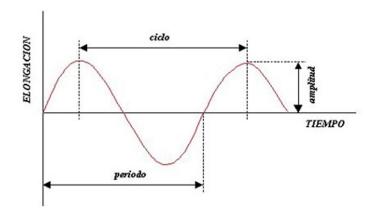
CAPITULO I

1. FUNDAMENTACIÓN TEÓRICA

1.1. Marco Teórico

1.1.1. Sonido

"El sonido es la sensación producida en el oído por las variaciones de presión generadas por un movimiento vibratorio que se transmiten a través de medios elásticos. Dentro de ciertos límites, estas variaciones pueden ser percibidas por el oído humano". (Fernández Diez, Martínez Abadía, 1999) citado por (Asinsten, 2006, pág. 7).


El sonido consiste en una vibración del aire que se propaga en forma de ondas de presión; se produce cuando el aire entra en vibración por cualquier procedimiento, generalmente cuando algún objeto vibrante entra en contacto con el aire. Por ejemplo una cuerda en vibración, empuja y comprime el aire delante de ella, y como la atmósfera es un medio elástico la porción de aire perturbada se propaga en todas las direcciones a partir del foco de perturbación. (López, 2000) citado por (Gavilanes Álvarez & López Granja, 2012, pág. 16).

1.1.1.1. Propiedades que definen al sonido.

> Periodo (T)

Según Pérez de Siles Marín (2001) periodo "es el tiempo que tarda en producirse un ciclo completo de la onda sonora. Su unidad es el segundo" (párr 1.).

Figura 1 Representación de una onda sonora ideal

Fuente: (Pérez de Siles Marín, 2001)

> Ciclo

"Se entiende como ciclo a la repetición de un suceso periódico. Los ciclos no tienen unidades de medida" (Gavilanes Álvarez & López Granja, 2012, pág. 19).

> Amplitud (A)

La amplitud "es un coeficiente que marca el volumen sonoro de la onda" (PCP files, 2005, párr 3.).

A las variaciones de presión que se producen en un sonido y hacen que se oigan más o menos fuerte se las conoce como amplitud de la onda. Una mayor amplitud (variación de presión) da un mayor "volumen". En la figura 2 se muestra cómo son las ondas de una misma frecuencia y diferente amplitud (PCP files, 2005)

Menor Volumen >> t

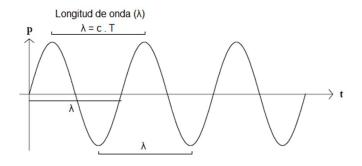
Figura 2. Ondas de una misma frecuencia y diferente amplitud

Fuente: (PCP files, 2005)

> Frecuencia (f)

De acuerdo a Pérez de Siles Marín (2001) "es el número de ciclos que se realizan por segundo. Por tanto es la inversa del periodo. Se mide en Hz." (Unidad física usada para medir la frecuencia de ondas y vibraciones de tipo electromagnético) (párr 2.).

> Longitud de onda (λ)


La longitud de onda está relacionada directamente con la velocidad del sonido y su frecuencia. En los sonidos periódicos, para cada periodo se repite la correspondiente perturbación que se desplaza una distancia c.T, entre puntos análogos. Esta distancia se denomina longitud de onda; se la mide en metros y

está determinada por la siguiente ecuación (Gavilanes Álvarez & López Granja, 2012)

Ecuación 1. Longitud de onda

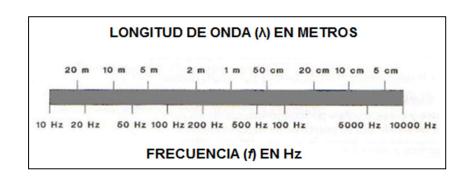

$$\lambda = \frac{c}{f} = c T$$

Figura 3 Representación de la longitud de onda en un tono puro.

Fuente: (Gavilanes Álvarez & López Granja, 2012)

Figura 4. Longitudes de ondas relacionadas con sus frecuencias.

Fuente: (Pérez de Siles Marín, 2001)

Velocidad de propagación del sonido (c)

Según Miyara (1999) "La velocidad del sonido en un gas depende de su peso molecular y de su temperatura, según la ecuación:" (pág.4).

$$c = \sqrt{\frac{\gamma RT}{M}}$$

Donde:

 γ = es el coeficiente de calores específicos = C_p/C_v = 1.4 (para el aire),

 $R = 8.31 \text{ J/mol} \cdot {}^{\circ}\text{K}$

M = masa de 1 mol en kg/mol = 0.0288 kg/mol para el aire,

T = temperatura absoluta en °K.

Para temperaturas cercanas a la temperatura ambiente, esta expresión puede aproximarse (para el aire) con la siguiente expresión

$$c = 332 + 0.608 T$$

Donde T es la temperatura en grados Celsius (°C) y c es la velocidad del sonido en m/s. Por tanto, para T = 20 °C resulta c = 344 m/s. Como se puede observar, la temperatura del aire tiene un efecto significativo sobre la velocidad de propagación de las ondas acústicas. (Miyara F. , 1999)

> Espectro del sonido

La información acerca de qué frecuencias integran un sonido y cuáles son las respectivas amplitudes y fases constituye lo que se denomina espectro del sonido.

Se suele presentar como un par de gráficos con la frecuencia en las abscisas, y en las ordenadas la amplitud o energía en uno y la fase en el otro. (Miyara, 1999)

.

1.1.1.2. Cualidades del Sonido

> Intensidad: está relacionada con la amplitud de onda.

Según Pérez de Siles Marín, Antonio (2011), La intensidad es "proporcional al cuadrado de dicha amplitud y podemos clasificar así los sonidos en fuertes y débiles". (p.3).

> Tono: está relacionado con la frecuencia.

Según Pérez de Siles Marín, Antonio (2001), "Es una cualidad mediante la cual distinguimos los sonidos graves de los agudos" (p.3), de forma que:

La sensación sonora aguda procede de sonidos producidos por focos sonoros que vibran a frecuencias elevadas.

La sensación sonora grave procede de sonidos producidos por focos sonoros que vibran a frecuencias bajas.

Timbre: está relacionado con los armónicos incluidos en la onda sonora.

Según Pérez de Siles Marín, Antonio (2011), "Es la cualidad mediante la cual podemos distinguir dos sonidos de igual intensidad e idéntico tono que han sido emitidos por focos sonoros diferentes." (p.3).

Duración: es el tiempo durante el cual se mantiene un sonido.

Así, decimos que podemos escuchar sonidos largos o cortos. Se puede medir en segundos (s.), aunque también se la relaciona con la longitud de onda (λ) , que indica la distancia entre dos puntos consecutivos que se hallan en el mismo estado de vibración (medido en metros), en el mismo tiempo.

1.1.1.3. Niveles Sonoros

> Presión sonora

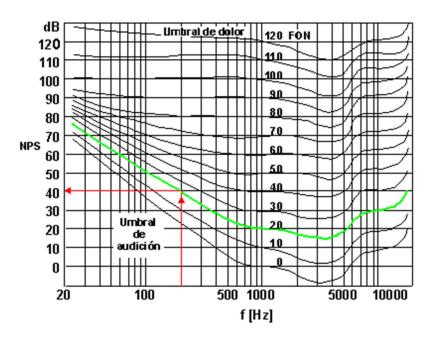
Es necesario primero conocer a que no referimos con *presión atmosférica*, "es decir la presión del aire ambiental en ausencia de sonido. Se mide en una unidad SI (Sistema Internacional) denominada *Pascal* (1 Pascal es igual a una fuerza de 1 newton actuando sobre una superficie de 1 m², y se abrevia 1 Pa). (Miyara F., 2015, párr 1). Esta presión es de alrededor de 100.000 Pa (el valor normalizado es de 101.325 Pa). Es así que la *presión sonora* se define como la diferencia entre la presión instantánea debida al sonido y la presión atmosférica, también se mide en Pa. Sin embargo, la presión sonora tiene en general valores muchísimo menores que el correspondiente a la presión atmosférica. (Miyara F., 2015)

> Nivel de Presión Sonora

Debido a que la relación entre la presión sonora del sonido más intenso (cuando la sensación de sonido pasa a ser de dolor auditivo) y la del sonido más débil sea de alrededor de 1.000.000 ha llevado a adoptar una escala comprimida denominada escala logarítmica. Llamando *Pref* (presión de referencia a la presión de un tono apenas audible (es decir 20 mPa) y *P* a la presión sonora, se la define con la siguiente ecuación:

$$Lp=20\log\left(\frac{P}{Pref}\right)$$

Donde **log** significa el logaritmo decimal (en base 10). La unidad utilizada para expresar el nivel de presión sonora es el **decibel**, abreviado **dB**. El nivel de presión sonora de los sonidos audibles varía entre 0 dB y 120 dB. Los sonidos de más de 120 dB pueden causar daños auditivos inmediatos e irreversibles, además de ser bastante dolorosos para la mayoría de las personas. (Miyara F., 2015)


Nivel Sonoro con Ponderación A

El nivel de presión sonora tiene la ventaja de ser una medida objetiva y bastante cómoda de la intensidad del sonido, pero tiene la desventaja de que está lejos de representar con precisión lo que realmente se percibe.

Esto se debe a que la sensibilidad del oído depende fuertemente de la frecuencia. En efecto, mientras que un sonido de 1 kHz y 0 dB ya es audible, es necesario llegar a los 37 dB para poder escuchar un tono de 100 Hz, y lo mismo es válido para sonidos de más de 16 kHz. (Miyara F., 2015)

La dependencia de la frecuencia de la sensación de sonoridad fue descubierta y medida (por Fletcher y Munson, en 1933), presumiendo que utilizando una red de filtrado (o ponderación de frecuencia) adecuada sería posible medir esa sensación en forma objetiva. Esta red de filtrado tendría que atenuar las bajas y las muy altas frecuencias, dejando las medias casi inalteradas. Es decir debía intercalar unos controles de graves y agudos al mínimo antes de realizar la medición.

Figura 5. Curvas de Fletcher y Munson

Fuente: (Miyara F., 2015)

Sin embargo existían dificultades para implementar tal instrumento o sistema de medición. El más obvio era que el oído se comporta de diferente manera con respecto a la dependencia de la frecuencia para diferentes niveles físicos del sonido. Por ejemplo, a muy bajos niveles, sólo los sonidos de frecuencias medias son audibles, mientras que a altos niveles, todas las frecuencias se escuchan más o menos con la misma sonoridad. Por lo tanto parecía razonable diseñar tres redes de ponderación de frecuencia correspondientes a niveles de alrededor de 40 dB, 70 dB y 100 dB, llamadas A, B y C respectivamente. La red de ponderación A (también denominada a veces red de compensación A) se aplicaría a los sonidos de bajo nivel, la red B a los de nivel medio y la C a los de nivel elevado (ver figura). El resultado de una medición efectuada con la red de ponderación A se expresa en decibeles A, abreviados dBA o algunas veces dB(A), y análogamente para las otras. (Miyara F., 2015)

dB C 0 В -10 -20 -30-40-50 20 50 100 500 1000 2000 5000 10000 f

Figura 6. Curvas de ponderación A, B y C

Fuente: (Miyara F., 2015)

Debido al hecho de que las curvas de Fletcher y Munson fueron obtenidas para tonos puros, es decir sonidos de una sola frecuencia, los cuales son muy raros en la Naturaleza, pues los sonidos como el ruido ambiente, la música o la palabra, contienen muchas frecuencias simultáneamente, principal razón por la cual la intención original detrás de las ponderaciones A, B y C fue un fracaso. (Miyara F. , 2015)

> Ponderación A y Efectos del Ruido

Diversos estudios han mostrado una buena correlación entre el nivel sonoro A y el daño auditivo, así como con la interferencia a la palabra. Sin otra información disponible, el nivel sonoro con ponderación A es la mejor medida única disponible para evaluar y justipreciar problemas de ruido y para tomar decisiones en consecuencia. Con respecto a su utilización en cuestiones legales, por ejemplo en la mayoría de las ordenanzas y leyes sobre ruido, es porque proporciona una medida objetiva del sonido de alguna manera relacionada con efectos deletéreos para la salud y la tranquilidad, así como la interferencia con diversas actividades. (Miyara F., 2015)

A continuación se presenta la tabla de niveles sonoros y respuesta humana que nos da un enfoque desde el punto de vista de daño auditivo. El ruido comienza a dañar la audición a niveles de alrededor de 70 dBA. Para el oído, un incremento de 10 dB implica duplicar la sonoridad. (Miyara F. , 2015)

Tabla 1. Niveles Sonoros y Respuesta Humana

Niveles Sonoros y Respuesta Humana		
Sonidos característicos	Nivel de presión	Efecto
	sonora [dB]	
Zona de lanzamiento de	180	Pérdida auditiva
cohetes		irreversible
(sin protección auditiva)		
Operación en pista de jets	140	Dolorosamente fuerte
Sirena antiaérea		
Trueno	130	
Despegue de jets (60 m)	120	Máximo esfuerzo vocal
Bocina de auto (1 m)		
Martillo neumático	110	Extremadamente fuerte
Concierto de Rock		
Camión recolector	100	Muy fuerte
Petardos		
Camión pesado (15 m)	90	Muy molesto
Tránsito urbano		Daño auditivo (8 Hrs.)
Reloj Despertador (0,5 m)	80	Molesto
Secador de cabello		
Restaurante ruidoso	70	Difícil uso del teléfono
Tránsito por autopista		
Oficina de negocios		
Aire acondicionado	60	Intrusivo
Conversación normal		
Tránsito de vehículos	50	Silencio
livianos		
(30 m)		
Líving	40	
Dormitorio		
Oficina tranquila		
Biblioteca	30	Muy silencioso
Susurro a 5 m		
Estudio de radiodifusión	20	
	10	Apenas audible
	0	Umbral auditivo

Fuente: Noise Pollution Clearinghouse citado por (Miyara F., 2015)

1.1.1.4. Unidad de Medida

> Decibel (dB)

El oído es capaz de tolerar sonidos débiles de presiones bajas hasta algunos graves con rangos de presiones sorprendentemente altas, es por eso que es conveniente utilizar una escala logarítmica para comprimir este gran intervalo. Además varios experimentos demuestran que el oído humano responde logarítmicamente en relación a la audibilidad de un estímulo aplicado. (Pecorelli, 2014)

Según (Pecorelli, 2014) El decibel "es una unidad adimensional usada para expresar el logaritmo de la razón entre una cantidad medida y una cantidad de referencia". De esta manera el decibel es usado para describir niveles de presión, potencia e intensidad acústica. (pág. 13).

1.1.2. Ruido

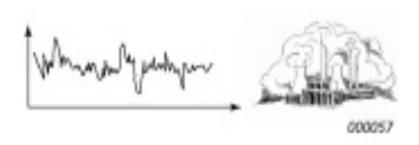
El ruido se define como un sonido no deseado y que causa molestia, siendo un tipo de vibración que puede conducirse a través de sólidos, líquidos o gases. Es una forma de energía en el aire, vibraciones invisibles que entran al oído y crean una sensación. Por tanto es considerado un fenómeno subjetivo, debido a que mientras para unas personas puede ser causa de molestia en otras no tiene el mismo efecto. (Pecorelli, 2014)

Sin duda alguna el ruido es un sonido no deseado que actualmente se encuentra entre los contaminantes más invasivos. El ruido del tránsito, de aviones, de camiones de recolección de residuos, de equipos y maquinarias de la construcción, de los procesos industriales de fabricación, de cortadoras de césped,

de equipos de sonido fijos o montados en automóviles, por mencionar sólo unos pocos, se encuentran entre los sonidos no deseados que se emiten a la atmósfera en forma rutinaria. (Comité Científico Interdiciplinario de Ecológía y Ruido, 2000).

1.1.2.1. Tipos de ruido

En la cotidianidad de nuestra vida nos encontramos con todo tipo de ruidos desde los más agradables pasando por los tolerantes hasta los más desagradables e intolerantes, o desde los ruidos sumamente cortos pero de gran intensidad (explosión, sirena, claxon) hasta los ruidos permanentes en el tiempo pero de niveles bajos (aire acondicionado, ordenador, etc.). (STEE - EILAS, 2001)

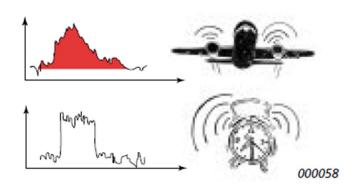

Para medir el ruido, necesitamos saber el tipo de ruido que es con el fin de que podamos seleccionar los parámetros a medir, el equipo a usar y la duración de las mediciones. Frecuentemente utilizamos nuestro oído para captar y subrayar las características molestas del ruido, antes de empezar a tomar medidas, analizarlas y documentarlas (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

.

> Ruido Continuo

Según (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)"el ruido continuo se produce por maquinaria que opera del mismo modo sin interrupción, por ejemplo: ventiladores, bombas y equipos de proceso" (pág.14).

Figura 7. Ruido Continuo

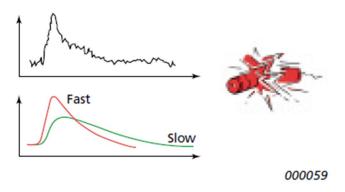

Fuente: (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

Existe otro tipo de descriptor del ruido medioambiental que se conoce con el nombre de ruido continuo, en el que el nivel de presión sonora puede ser constante o puede variar ligeramente durante un intervalo de tiempo. Producen este tipo de ruido algunos sistemas como ventiladores, torres de refrigeración o transmisores. (Aparici, 2010)

> Ruido Intermitente

Cuando la maquinaria opera en ciclos, o cuando pasan vehículos aislados o aviones, el nivel de ruido aumenta y disminuye rápidamente. Para cada ciclo de una fuente de ruido de maquinaria, el nivel de ruido puede medirse simplemente como un ruido continuo. Pero también debe anotarse la duración del ciclo. El paso aislado de un vehículo o aeronave se llama suceso. Para medir el ruido de un suceso, se mide el Nivel de Exposición Sonora, que combina en un único descriptor tanto el nivel como la duración. El nivel de presión sonora máximo también puede utilizarse. Puede medirse un número similar de sucesos para establecer una media fiable. (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

Figura 8. Ruido Intermitente



Fuente: (Brüel&KjærSound&Vibration Measurement A/S. 2000)

Ruido Impulsivo

El ruido de impactos o explosiones, por ejemplo de un martinete, troqueladora o pistola, es llamado ruido impulsivo. Es breve y abrupto, y su efecto sorprendente causa mayor molestia que la esperada a partir de una simple medida del nivel de presión sonora. Para cuantificar el impulso del ruido, se puede utilizar la diferencia entre un parámetro con respuesta rápida y uno de respuesta lenta (como se ve en la base del gráfico). También deberá documentarse la tasa de repetición de los impulsos (número de impulsos por segundo, minuto, hora o día). (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

Figura 9. Ruido Impulsivo

Fuente: (Brüel&KjærSound&Vibration Measurement A/S. 2000)

> Ruido Tonal

Aplican para los tonos molestos que pueden verse generados de dos maneras: Frecuentemente las maquinas con partes rotativas tales como: motores, cajas de cambios, ventiladores y bombas, crean tonos. Los desequilibrios o impactos repetidos causan vibraciones que, transmitidas a través de las superficies al aire, pueden ser oídos como tonos. También pueden generar tonos los flujos pulsantes de líquidos o gases que se producen por causa de procesos de combustión o restricción del flujo. (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

Los tonos pueden ser identificados subjetivamente escuchándolos u objetivamente mediante análisis de frecuencias.

000060

Figura 10. Ruido Tonal

Fuente: Brüel&KjærSound&Vibration Measurement A/S. 2010

> Ruido de Baja Frecuencia

El ruido de baja frecuencia tiene una energía acústica significante en el margen de frecuencias de 8 a 100 Hz. Este tipo de ruido es típico en grandes motores diésel de trenes, barcos y plantas de energía y, puesto que este ruido es difícil de amortiguar y se extiende fácilmente en todas direcciones, puede ser oído a muchos kilómetros.

El ruido de baja frecuencia es más molesto que lo que se cabría esperar con una medida del nivel de presión sonora ponderado A. La diferencia entre el nivel sonoro ponderado A y el ponderado C puede indicar la existencia o no de un problema de ruido de baja frecuencia. Para calcular la audibilidad de componentes de baja frecuencia en el ruido, se mide el espectro y se compara con el umbral auditivo. Los infrasonidos tienen un espectro con componentes significantes por debajo de 20 Hz. Lo percibimos no como un sonido sino más bien como una presión. La evaluación de los infrasonidos es aún experimental y en la actualidad no está reflejado en las normas internacionales. (Brüel & Kjær Sound & Vibration Measurement A/S, 2000)

1.1.3. Ruido Ambiental

Para (Viro, 2002) "los términos *ruido urbano* o *ruido ambiente* se refieren al nivel de ruido existente en exteriores, en cercanías de áreas habitadas" (pág. 5).

Entre las principales fuentes que contribuyen al ruido ambiente se encuentran los medios de transporte, industrias, construcciones, personas y animales. Dentro de los hogares, en cambio, las principales fuentes de ruido son electrodomésticos, radio, televisión, calefacción y ventilación, también personas y animales. (Viro, 2002).

Teniendo en cuenta la definición subjetiva de ruido, como sonido no deseado, es fácil comprender que no siempre las fuentes sonoras del interior de un hogar son fuentes de *ruido*. Por ejemplo, si uno no desea escuchar la radio, simplemente la apaga, por lo tanto la misma no constituiría una fuente de ruido. Sin embargo, uno no tiene ese mismo control sobre las fuentes de ruido externas que causan grandes molestias, como lo es, en forma absolutamente preponderante, el tráfico automotor urbano. (Viro, 2002, pág. 5).

1.1.3.1. Índices para la Evaluación del Ruido Ambiental

Nivel de presión sonora (nivel sonoro). L, SPL

"Representan el ruido de mayor y menor intensidad y no aportan información sobre su duración ni sobre la exposición total al ruido" (Segués, 2007, págs. 24-25).

\triangleright Nivel de presión sonora continúo equivalente. $L_{Aeq}(T)$ (Leq)

Expresa la media de la energía sonora percibida por un individuo en un intervalo de tiempo, es decir, representa el nivel de presión que habría sido producido por un ruido constante con la misma energía que el ruido realmente percibido, durante el mismo intervalo de tiempo. El nivel de presión sonora equivalente debe ir acompañado siempre de la indicación del período de tiempo al que se refiere. Se expresa $L_{Aeq}(T)$ o $L_{Aeq,T}$ que indica la utilización de la red de ponderación A (Segués, 2007, pág. 25) y su formulación matemática es:

$$L_{Aeq}(T)=10\log\left(\frac{1}{T}\right)\int T\left(\frac{P}{P_0}\right)^2dt$$

En la práctica el cálculo del $L_{Aeq}(T)$ se realiza sumando niveles de presión sonora Li emitidos en os intervalos de tiempo ti, y la expresión adopta la forma (discreta)

$$L_{Aeq}(T)=10\log\left(\frac{1}{T}\right)\sum_{10}^{Li}/_{10}$$
. ti

Donde: T = ti = tiempo de exposición

Li= nivel de presión sonora constante en el intervalo i

ti = tiempo del intervalo i correspondiente al nivel Li

El $L_{Aeq}(T)$ se expresa en dBA.

\triangleright El $L_{Aeq}(T)$ como indicador del ruido ambiental

El nivel de presión sonora equivalente $L_{Aeq}(T)$ es un índice relativamente complejo que plantea algunos problemas de comprensión por parte del público general. No corresponde, tal y como se cree a menudo, a una simple media aritmética de los niveles sonoros instantáneos. El $L_{Aeq}(T)$ realiza la suma de la energía acústica recibida durante el intervalo de tiempo (Segués, 2007, pág. 28).

El *LAeq* permite evaluar bien la molestia de la población en general, pero sin embargo no explica bien las grandes variaciones existentes en las respuestas individuales, sin embargo es el indicador universal de ruido. Hasta la actualidad, el indicador comúnmente utilizado en España es el nivel sonoro continuo equivalente *LAeq* referido a un periodo diurno y a un periodo nocturno (Segués, 2007).

La mayoría de las administraciones europeas tienden a utilizar el *LAeq* (o índices derivados de éste) como indicadores universales, debido fundamentalmente a las siguientes ventajas que ofrecen:

- Es un índice relativamente sencillo de comprender, en comparación con otros índices.
- Es un índice que mide un concepto acústico muy claro: la energía media durante un determinado periodo de tiempo
- Es un índice que permite considerar diferentes periodos de tiempo para la evaluación del impacto
- Es un índice que permite comparar los niveles originados por una determinada fuente con los niveles de fondo ambientales existentes en una determinada zona.

 Es un índice que se puede obtener directamente de los instrumentos de medida. (Segués, 2007, pág. 30)

1.1.3.2. Datos sobre usos del suelo

El TULSMA, Libro VI, Anexo 5 (2015) establece que: Uso Residencial (R1) Es aquel que tiene como destino principal la vivienda humana permanente. Los usos compatibles, actividades complementarias y condicionadas a este uso deberán cumplir con los niveles máximos de emisión de ruido para este uso de suelo. El nivel máximo de emisión para uso residencial también aplica al uso de suelo destinado a resguardar el patrimonio cultural, el cual se refiere al suelo ocupado por áreas, elementos o edificaciones que forman parte del legado histórico o con un valor patrimonial que requieren preservarse y recuperarse. (pág.16)

Se toma en cuenta también los distintos usos de suelo contemplados en el planeamiento urbanístico del Cantón Latacunga contemplado en el Plan de Ordenamiento Territorial del Cantón que permite conocer la clasificación del suelo (Urbano, Urbanizable o de Expansión urbana, No Urbanizable o Rural) y el uso (Residencial, Industrial, Comercial, etc.). La tabla No. 8 presenta la zonificación por uso de suelo del cantón Latacunga. El Centró Histórico como tal no tiene una zonificación especial.

Tabla 2. Usos de Suelo en el Cantón Latacunga 2011-2016

Tipo	código	Naturaleza	
Residencial	R	Puede tener varias sub categorías según el grado de densidad de ocupación buscada	
Residencial Múltiple	RM	Permite diversidad de actividades aparte de la residencia	
Industrial	Ι	Tres categorías según impactos	
Agricultura Urbana	AU	Permite explotación dentro del área urbana	
Equipamientos	E	De diversa índole, que tengan trascendencia zonal o urbana; los demás se consideran comprendidos en los usos de tipo R.	
		Por ejemplo escuelas, CDI etc.	
Áreas Naturales	AP	Que comprende bosques protectores, áreas protegidas, cuencas, río	
Áreas Patrimoniales	Н	Áreas Patrimoniales Tangibles	
Recursos Naturales Renovables y No Renovables	RNR RNN	Comprenden áreas naturales de explotación agro pecuaria y piscícola Minería	
Comerciales	С	Diversas instalaciones que permiten transacciones comerciales y prestación de servicios; públicos y privados	

Elaborado por: Margarita Ronquillo

Fuente: (GAD Municipal del Canton Latacunga, 2013)

1.1.3.3. Efectos del ruido en la salud del ser humano.

De acuerdo a la (Organización Mundial de la Salud (OMS), 1999), las consecuencias de la contaminación acústica para la salud se describen según sus efectos específicos: deficiencia auditiva causada por el ruido; interferencia en la comunicación oral; trastorno del sueño y reposo; efectos psicofisiológicos, sobre la salud mental y el rendimiento; efectos sobre el comportamiento; e interferencia en actividades (pág. 2).

> Efectos sobre la audición.

La deficiencia auditiva se define como un incremento en el umbral de audición que puede estar acompañada de zumbido de oídos. La deficiencia auditiva causada por ruido se produce predominantemente en una banda de frecuencia de 3 000 a 6 000 Hz; el efecto más grande ocurre a 4 000 Hz. Pero si el LAeq,8h y el tiempo de exposición aumentan, la deficiencia auditiva puede ocurrir inclusive en frecuencias tan bajas como de 2 000 Hz. (Organización Mundial de la Salud (OMS), 1999, pág. 3)

> Efectos sobre el sueño.

El ruido ambiental produce trastornos del sueño principalmente dificultad para conciliar el sueño, interrupción del sueño, alteración en la profundidad del sueño, cambios en la presión arterial y en la frecuencia cardíaca, incremento del pulso, vasoconstricción, variación en la respiración, arritmia cardíaca y mayores movimientos corporales. Para descansar apropiadamente, el nivel de sonido equivalente no debe exceder 30 dB(A) para el ruido continuo de fondo y se debe evitar el ruido individual por encima de 45 dB(A). (Organización Mundial de la Salud (OMS), 1999).

> Efectos sobre las funciones fisiológicas.

De acuerdo a la (Organización Mundial de la Salud (OMS), 1999), la presión arterial y el riesgo de hipertensión suelen incrementarse en los trabajadores expuestos a altos niveles de ruido industrial durante 5 a 30 años. Una exposición de largo plazo al ruido del tráfico con valores de LAeq,24h de 65-70 dB(A) también puede tener efectos cardiovasculares (pág. 4).

> Efectos sobre la salud mental.

Existen varios estudios que señalan que el ruido ambiental puede tener efectos nocivos sobre la salud mental, aunque no existen todavía resultados concluyentes sobre estos indicios, si se ha vinculado a la neurosis con la exposición a altos niveles de ruido ocupacional. (Organización Mundial de la Salud (OMS), 1999).

1.1.3.4. Niveles máximos de emisión de ruido

En base al Texto Unificado de Legislación Secundaria TULSMA Libro VI Acuerdo No. 061 publicado en el Registro Oficial Edición Especial No. 316, del 04 de mayo de 2015, Anexo 5 NIVELES MAXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES Y NIVELES MÁXIMOS DE VIBRACIÓN Y METODOLOGÍA DE MEDICIÓN Acuerdo Ministerial N° 097 del 30 de julio de 2015.

La presente norma técnica determina o establece los niveles máximos de ruido para fuentes fijas de acuerdo a los diferentes usos de suelo contemplados en la tabla que se señala a continuación:

Tabla 3. "NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO"

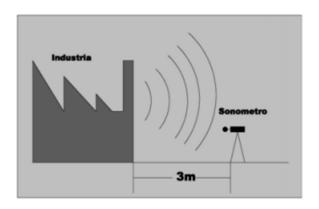
NIVELES MÁXIMOS DE EMISIÓN DE RUIDO PARA FFR				
Uso de suelo	LKeq (dB)			
	Periodo Diurno	Periodo Nocturno		
	07:01 hasta 21:00 horas	21:01 hasta 07:00 horas		
Residencial (R1)	55	45		
Equipamiento de	55	45		
Servicios Sociales (EQ1)				
Equipamiento de	60	50		
Servicios Públicos(EQ2)				
Comercial (CM)	60	50		
Agrícola Residencial	65	45		
(AR)				
Industrial (ID 1/ID2)	65	55		
Industrial (ID3/ID4)	70	65		
Uso Múltiple	Cuando existan usos de suelo múltiple o combinados			
	se utilizará el LKeq más	bajo de cualquiera de los		
	usos de suelo que componen la combinación.			
	Ejemplo: Uso de suelo: Residencial + ID2			
	LKeq para este caso = Diurno 55 dB y Nocturno			
	45dB.			
Protección Ecológica	La determinación del LKeq para estos casos se lo			
(PE)	llevara a cabo de acuerdo al procedimiento descrito			
Recursos Naturales (RN)	en el Anexo 4.			

Fuente: (Ministerio del Ambiente del Ecuador, 2015)

Elaborado por: Margarita Ronquillo C.

1.1.3.5. Equipos de monitoreo de ruido ambiental.

El Sonómetro es un "instrumento que mide la intensidad de ruido en dB (decibeles) de forma directa. Diseñado para responder al sonido en aproximadamente la misma manera que lo hace el oído humano y dar mediciones objetivas y reproducibles del nivel de presión sonora" (Ministerio del Ambiente de Perú, 2012, pág. 17)


La medición se basa en el análisis de la presión sonora al entrar por su micrófono convirtiendo la señal sonora en una señal eléctrica equivalente. Generalmente además de recoger las señales es capaz de ponderarla, en función de la sensibilidad real del oído humano a las distintas frecuencias existentes (ponderaciones A, B, C), y de ofrecer un valor único en dBA (decibeles A) del nivel de ruido del lugar a analizar (Nivel de presión sonora continúo equivalente $(L_{Aeq}(T))$ (Ministerio del Ambiente de Perú, 2012).

1.1.3.6. Ubicación del punto de monitoreo

Los puntos de monitoreo deberán ubicarse en áreas representativas siempre al exterior, que se identificarán de la siguiente manera:

Cuando se trate de mediciones de ruido producto de la emisión de una fuente hacia el exterior (sin necesidad que exista un agente directamente afectado), el punto se ubicará en el exterior del recinto donde se sitúe la fuente o fuentes, a mínimo 3 metros del lindero que la contenga, siempre que no existan superficies reflectantes en dicha distancia. En caso existan superficies reflectantes dentro de esa distancia, se aplicará lo establecido en la Figura Nº 11. El siguiente gráfico muestra lo antes expuesto (Ministerio del Ambiente de Perú, 2012, pág. 11)

Figura 11. Medición para emisiones de una fuente fija hacia el exterior

Fuente: (Ministerio del Ambiente de Perú, 2012)

Para el caso de fuentes vehiculares, el punto se ubicará en el límite de la calzada. El siguiente cuadro muestra la ubicación del sonómetro en estos casos:

Sonometro

Figura 12. Medición para fuentes vehiculares

Fuente: (Ministerio del Ambiente de Perú, 2012)

1.1.4. Mapas Estratégicos De Ruido

Según la Directiva 2002/49/CE del Parlamento Europeo y del consejo sobre evaluación y gestión del ruido ambiental estableció la siguiente definición de *mapa estratégico de ruido*:

Mapa diseñado para poder evaluar globalmente la exposición al ruido en una zona determinada, debido a la existencia de distintas fuentes de ruido, o para poder realizar predicciones globales para dicha zona (Sistema de Información sobre Contaminación Acústica (SICA), 2015, párr 2.)

Un mapa de ruido es la representación, generalmente de forma gráfica, de las características acústicas de un área geográfica. En la mayoría de las ocasiones la zona de interés se encuentra afectada por diversos tipos de fuentes de ruido. Un mapa de ruido engloba todas las fuentes que afecten al área de interés. (Departamento de Territorio y Sostenibilidad de Catalunya, 2015)

El objetivo de la realización de un mapa de ruido es:

- Conocer y dar información tanto de la situación acústica como de las medidas que se toman para mejorarla o mantenerla en el caso de que ésta resulte adecuada.
- Elaborar planes de acción para la mejora y mantenimiento de las condiciones cuando éstas son favorables.

Un mapa estratégico se considera una sino una herramienta de trabajo, a partir de la cual organizar la gestión del ruido medioambiental. (Departamento de Territorio y Sostenibilidad de Catalunya, 2015)

1.1.4.1. Métodos de Realización.

> Método experimental o clásico

Realizado a partir del promediado de mediciones realizadas en diferentes momentos temporales, sobre puntos elegidos mediante el trazado de una cuadrícula sobre el mapa del municipio o por otros métodos de selección. Estos métodos son muy costosos ya que para realizar un mapa que realmente represente el comportamiento del municipio hay que realizar diversas mediciones en un gran número de puntos de la ciudad. Por otra parte, estas mediciones representan una foto promedio del comportamiento del área, pero no permiten conocer el comportamiento de la misma. (TrasguNET, 2015, párr 2).

> Método computacional

Basado en softwares de predicción y simulación en los que la estimación de la potencia de las fuentes ruidosas se hace de forma indirecta, mediante la medición de factores como el volumen de tráfico, estado del pavimento, porcentaje de vehículos pesados y es el propio software el que realiza la estimación de la potencia de las fuentes utilizando métodos de cálculo recomendados por la normativa. El principal problema de estos sistemas es por un lado la gran desviación que existe entre los métodos de cálculo recomendados y la situación real de las fuentes de ruido y por otro la inexistencia de comparaciones entre los resultados predichos y los valores reales registrados en diferentes puntos de la zona. Por otra parte, la gran ventaja que presentan es la posibilidad de realizar predicciones del comportamiento del municipio, a partir del modelo creado del

mismo, pudiendo así, estimar los niveles sonoros futuros conociendo los patrones de evolución del comportamiento del mismo. (TrasguNET, 2015, párr 2).

> Método híbrido o inverso

Se le llama híbrido porque toma lo mejor de cada uno de los métodos presentados anteriormente. Se basa en la realización de un modelo del municipio, lo que permitirá en un futuro realizar estimaciones del cambio del comportamiento y por tanto de los niveles ruidosos, creado a partir de la medición en diversos puntos del municipio de las condiciones sonoras. De este modo la determinación de la potencia sonora se realiza mediante la continua medición del nivel que producen las fuentes en el área. Estas estimaciones realizadas basadas en un modelo matemático de la zona son comparadas con registros reales restringiendo de este modo el error cometido por el modelado. (TrasguNET, 2015, párr 2).

1.1.4.2. Métodos de Interpolación de la Distribución Espacial

"Interpolación es un procedimiento matemático utilizado para predecir el valor de un atributo en una locación precisa a partir de valores del atributo obtenidos de puntos vecinos ubicados al interior de la misma región. A la predicción del valor de un atributo en lugares fuera de la región cubierta por las observaciones se le llama extrapolación" (FAO, 2003) citado por (Gavilanes Álvarez & López Granja, 2012)

La interpolación se la puede realizar en un Sistema de Información Geográfica (SIG) que según el Enviromental Systems Research Institute (ESRI, 1993): "es una colección organizada de hardware, software y datos geográficos diseñados para la eficiente captura, almacenamiento, integración, actualización,

codificación, análisis espacial, y despliegue de todo tipo de información geográficamente referenciada"

Todos los métodos de interpolación espacial se basan en la presunción lógica de que cuanto más cercanos estén dos puntos sobre la superficie terrestre, los valores de cualquier variable cuantitativa que midamos en ellos serán similares, es decir, las variables espaciales muestran una autocorrelación espacial (Sarría, 2006)

1.1.4.3. Diseño de la toma de la muestra para la Interpolación partir de puntos.

Para poder realizar una interpolación se parte de un conjunto de puntos de muestreo en los que se ha medido la variable que se quiere interpolar, constituyen una muestra. En relación con la localización de estos puntos de muestreo pueden darse diversas (Sarría, 2006)

 a. Muestreo regular, los puntos de muestreo se disponen siguiendo una malla regular

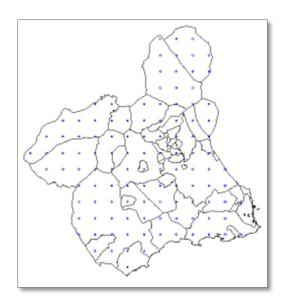


Figura 13. Muestreo regular

Fuente: (Sarría, 2006)

b. Muestreo aleatorio, los puntos de muestreo se disponen al azar

Figura 14. Muestreo aleatorio

Fuente: (Sarría, 2006)

c. Muestreo estratificado, se utiliza una variable de apoyo para realizar el muestreo de forma que se debe muestrear en todos los valores posibles de la variable de apoyo.

Figura 15. Muestreo estratificado

Fuente: (Sarría, 2006)

d. Muestreo por agregados, se establecen varias escalas de muestreo y en cada una de ellas se hacen muestreos regulares o aleatorios.

Figura 16. Muestreo por agregados

Fuente: (Sarría, 2006)

1.1.5. Normativa Ambiental Vigente

1.1.5.1. A nivel Mundial

En 1999 la Organización Mundial de la Salud (OMS) publicó la Guía para el control del Ruido, proponiendo límites máximos para distintos tipos de ambientes como lo muestra la Tabla (OMS, 1999)

1.1.5.2. Normativa Nacional.

Según, La Constitución del Ecuador (2008):

Art. 425.- El orden jerárquico de aplicación de las normas será el siguiente: La Constitución; los tratados y convenios internacionales; las leyes orgánicas; las leyes ordinarias; las normas regionales y las ordenanzas distritales; los decretos y reglamentos; las ordenanzas; los acuerdos y las resoluciones; y los demás actos y decisiones de los poderes públicos. (p.189).

Por lo tanto el marco legislativo de la presente investigación se basará en el cumplimiento del art. 425 de la Constitución del Ecuador (2008)

Tabla 4. Normativa Ecuatoriana Referente a Ruido

Cuerpo jurídico	Contenido referente a ruido
La Constitución de	Art. 14, Sección Segunda, reconoce el: "Derecho de la
la República del	población a vivir en un ambiente sano y ecológicamente
Ecuador, publicada	equilibrado que garantice la sostenibilidad y el buen vivir.
en el Registro	Se declara de interés público la preservación del ambiente,
Oficial No.449 del	la conservación de los ecosistemas, la biodiversidad y la
20 de octubre de	integridad del patrimonio genético del país, la prevención
2008.	del daño ambiental y la recuperación de los espacios
	naturales degradados".
	Art. 66. –Se reconoce y garantizará a las personas, numeral
	27: "El derecho a vivir en un ambiente sano,
	ecológicamente equilibrado, libre de contaminación y en
	armonía con la naturaleza.
Ley de Gestión	Art 9, literal j: El Ministerio del Ambiente coordinará con
Ambiental	los organismos competentes y sistemas de control para la
codificación 19,	verificación del cumplimiento de las normas de calidad
registro oficial	ambiental referentes al aire, agua, suelo, ruido, desechos y
suplemento 418 de	agentes contaminantes;
10 de septiembre del	Art. 23, literal b: "En la evaluación del impacto
2004	ambiental se incluirá condiciones de tranquilidad públicas,

	tales como: ruido, vibraciones, olores, emisiones		
	luminosas, cambios térmicos y cualquier otro perjuicio		
	ambiental derivado de su ejecución"		
El Texto Unificado	Libro VI Capítulo VIII Calidad de los Componentes		
de Legislación	Bióticos y Abióticos		
Secundaria del	SECCIÓN III		
Ministerio del	CALIDAD DE COMPONENTES ABIÓTICOS		
Ambiente	Art. 208 Componentes abióticos Entiéndase a los		
(TULSMA)	componentes sin vida que conforman un espacio físico que		
reformado mediante	pueden ser alterados de su estado natural por actividades		
Acuerdo No. 061	antrópicas, siendo entre otros: el agua, el suelo, los		
publicado en el	sedimentos, el aire, los factores climáticos, así como los		
Registro Oficial	fenómenos físicos.		
Edición Especial	PARÁGRAFO V		
No. 316, del 04 de	DE LOS FENÓMENOS FÍSICOS		
mayo de 2015	RUIDO		
	Art. 225 De las normas técnicas La Autoridad Ambiental		
	Nacional será quien expida las normas técnicas para el		
	control de la contaminación ambiental por ruido,		
	estipuladas en el Anexo V o en las normas técnicas		
	correspondientes. Estas normas establecerán niveles		
	máximos permisibles de ruido según el uso del suelo y		
	fuente, además indicará los métodos y procedimientos		
	destinados a la determinación de los niveles de ruido en el		
	ambiente, así como disposiciones para la prevención y		
	control de ruidos.		
	Son complementarias las normas sobre la generación de		
	ruido industrial, la que será tratada por la autoridad		
	competente en materia de Salud y en materia Laboral.		
	,		
	Acuerdo Ministerial No. 097-A		

ACUERDA

Expedir los Anexos del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente.

Artículo 5.- Expídase el Anexo 5, referente a la Niveles Máximos de Emisión de Ruido y Metodología de Medición para Fuentes Fijas y Fuentes Móviles y Niveles Máximos de Emisión de Vibraciones y Metodología de Medición.

Disposiciones Generales

Primera.- Los anexos descritos en los artículos anteriores pasarán a formar parte integrante del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente, reformado mediante Acuerdo Ministerial No. 061.

El Libro VI, Anexo 5 NIVELES MAXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES Y NIVELES MÁXIMOS DE VIBRACIÓN Y METODOLOGÍA DE MEDICIÓN Acuerdo Ministerial N° 097 del 30 de julio de 2015.

La presente norma técnica determina o establece:

4 NIVELES MAXÍMOS DE EMISIÓN DE RUIDO PARA FFR Y FMR

4.1 Niveles máximos de emisión de ruido para FFR

4.1.1 El nivel de presión sonora continua equivalente corregido, **LKeq** en decibeles, obtenido de la evaluación de ruido emitido por una FFR, no podrá exceder los niveles que se fijan en la Tabla 1, de acuerdo al uso del suelo en que se encuentre.

Tabla 1: NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO

PARA FFR Uso de suelo	a	
Periodo Periodo Diurno Nocturno 07:01 hasta 21:01 hasta 21:00 horas 07:00 hora Residencial (R1) 55 45	a	
Diurno Nocturno	a	
07:01 hasta 21:01 hasta 21:00 horas 07:00 hora Residencial (R1) 55 45	a	
21:00 horas 07:00 hora Residencial (R1) 55 45		
Residencial (R1) 55 45	as	
Equipamiento de 55 45		
Servicios Sociales		
(EQ1)		
Equipamiento de 60 50		
Servicios		
Públicos(EQ2)		
Comercial (CM) 60 50		
Agrícola 65 45		
Residencial (AR)		
Industrial (ID 65 55		
1/ID2)		
Industrial 70 65		
(ID3/ID4)		
Uso Múltiple Cuando existan usos de su	ielo	
múltiple o combinados se utiliz	ará	
el LKeq más bajo de cualquiera	ı de	
los usos de suelo que componer	los usos de suelo que componen la	
combinación.		
Ejemplo: Uso de sue	elo:	
Residencial + ID2		
LKeq para este caso = Diurno	55	
dB y Nocturno 45dB.		
Protección La determinación del LKeq p	ara	

	Ecológica (PE)	estos casos se lo llevara a cabo de	
	Recursos	acuerdo al procedimiento descrito	
	Naturales (RN)	en el Anexo 4.	
Ley Orgánica de	Art. 7 Toda persona, sin discriminación por motivo		
Salud. Registro	alguno, tiene en relación a la salud, los siguientes		
Oficial Suplemento	derechos: c) Vivir en un ambiente sano, ecológicamente		
423, de 22 de	equilibrado y libre de contaminación;		
Diciembre del 2006.	Art. 113 Toda actividad laboral, productiva, industrial,		
	comercial, recreativa y de diversión; así como las		
	viviendas y otras instalaciones y medios de transporte,		
	deben cumplir con lo dispuesto en las respectivas normas y		
	reglamentos sobre prevención y control, a fin de evitar la		
	contaminación por ruido, que afecte a la salud humana.		
Normativa	Descripción, medición y evaluación del ruido ambiental.		
Internacional	Parte 2: determinación de los niveles de ruido ambiental		
NTEINEN-ISO	(ISO 1996-2:2007, ID	T)	
1996-2 (2007)			

Elaborado por: Margarita Ronquillo 2015

1.2. Marco Conceptual

Amplitud (A).- Es un coeficiente que marca el volumen sonoro de la onda.

Ciclo.- Se entiende como ciclo a la repetición de un suceso periódico. Los ciclos no tienen unidades de medida

Decibel.- Unidad adimensional utilizada para expresar el logaritmo de la razón entre una cantidad medida y una cantidad de referencia. El decibel es utilizado para describir niveles de presión, de potencia o de intensidad sonora

Decibelio (dB).- Unidad de medida para expresar la intensidad de los sonidos.

Fuente Fija de Ruido (FFR).- fuente emisora de ruido o a un conjunto de fuentes emisoras de ruido situadas dentro de los límites físicos y legales de un predio ubicado en un lugar fijo o determinado. Ejemplo de estas fuentes son: metal mecánicas, lavaderos de carros, fabricas, terminales de buses, discotecas, etc.

Hertzio (Hz [s-1]): Un hercio representa un ciclo por cada segundo, entendiendo ciclo como la repetición de un suceso.

Longitud de onda (λ).- La longitud de onda está relacionada directamente con la velocidad del sonido y su frecuencia.

$$\lambda = \frac{c}{f} = c T$$

Nivel de Presión Sonora.- Diez veces el logaritmo decimal del cuadrado del cociente de una presión sonora cuadrática determinada y la presión acústica de

referencia, que se obtiene con una ponderación frecuencial (A,B,C)y una ponderación temporal normalizadas (LENTO o IMPULSIVO)

Nivel de Presión Sonora Continuo Equivalente (Leq).- Diez veces el logaritmo decimal del cuadrado del cociente de una pres1on sonora cuadrática media durante un intervalo de tiempo determinado y la presión acústica de referencia, que se obtiene con una ponderación frecuencial normalizada.

Periodo (T).- El período es el tiempo transcurrido entre dos puntos equivalentes de la oscilación es decir en producirse un *ciclo completo* de la onda sonora.

Puntos Críticos de Afectación (PCA).- Sitios o lugares, cercanos a una FFR, ocupados por receptores sensibles (humanos, fauna, etc.) que requieren de condiciones de tranquilidad y serenidad.

Ruido.- Sonido no deseado y que causa molestia, siendo un tipo de vibración que puede conducirse a través de sólidos, líquidos o gases.

Ruido Ambiente.- Es el ruido total en un medio ambiente dado.

Ruido de fondo.-Es el nivel de ruido ambiente sobre el que se deben presentar las señales o medir las fuentes de ruido.

Sonido.- Cualquier variación de presión que el oído humano pueda detectar.

Tono.- Es una característica mediante la cual distinguimos los sonidos graves de los agudos, de tal forma que los sonidos que vibran a baja frecuencia son graves (bajos), mientras que los de alta frecuencia son agudos (Altos)

CAPITULO II

2. DISEÑO METODOLOGICO

2.1. Metodología

2.1.1. Descripción de la Unidad de Estudio

El cantón Latacunga se ubica en las Coordenadas 78°43'20''W y 00°57'26''S; a 2850 metros sobre el nivel del mar; tiene una temperatura promedio de 12°C, encierra en su territorio a la capital de la provincia, Latacunga, su extensión territorial es de 6.160 km2

Al Norte limita con el Cantón Sigchos y la Provincia de Pichincha, al Sur con Salcedo, al Este con la Provincia de Napo; y al oeste con el Cantón Pujilí.

La ciudad de Latacunga ha funcionado con una centralidad única, que en esencia está conformada por el Centro Histórico y su área de influencia inmediata. Este Centro histórico ha sido declarado Patrimonio Histórico Nacional y forma parte de una red que abarca a 22 ciudades del Ecuador.

En esa área y en su entorno físico inmediato, el modelo territorial vigente, permitió o indujo a ocupar esa parte de la ciudad como el centro de servicios y equipamientos de carácter urbano, zonal y barrial de la ciudad y cantón, pero no previó la habilitación de un conjunto de requerimientos físicos y funcionales que permitan atender los flujos de población y vehículos que se generan para atender esas demandas. La estructura propia del Centro Histórico por su parte tampoco posee las condiciones para desempeñar ese rol concentrador.

En los últimos tiempos el crecimiento de la población ha incidido con mayor fuerza en el funcionamiento de esta área urbana y ha agravado aún más su condición deficitaria

> Demografía

De acuerdo a los datos del Censo 2010, realizado por el Instituto Nacional de Estadísticas y Censos, la población total del cantón Latacunga es de 170.489 habitantes, de los cuales 88.188 son mujeres, y 82.301, hombres, además de esta población 63.842 habitantes viven en la parte urbana y 106.647 en el sector rural, como se puede observar en la siguiente tabla:

Tabla 5. Población del Cantón Latacunga

POBLACIÓN DEL CANTÓN LATACUNGA CENSO			
2010			
ÁREAS	TOTAL	HOMBRES	MUJERES
TOTAL	170489	82301	88188
URBANA	63842	30582	33260
RURAL	106647	51719	54928

Fuente: Censo de población y vivienda INEC 2010

Elaborado por: Margarita Ronquillo 2015

Tabla 6. Ubicación del Ensayo

CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA

Altitud

2850 m.s.n.m.

EXTENSIÓN, POBLACIÓN Y CLIMA

Extensión

Territorial

Comprende:

La zona comprendida desde la intersección de las calles Félix Valencia y Dos de Mayo se sigue por el Sur hasta la calle Hermanas Páez; desde esta sigue en dirección Este hasta la Avenida Oriente por ella al Norte hasta la Napo con esta a la intersección con la Guayaquil, siguiendo al Oeste hasta la calle Hermanos Pazmiño; al Norte por la calle Hermanas Pazmiño hasta la calle Félix Valencia; siguiendo por esta al Oeste hasta la intersección con la calle Dos de Mayo. Art. 166°. Subdivisión y Sectorización Sección 3 De la Delimitación de las Áreas de Valor Histórico. **PLAN ORDENANZA** DEL DE **DESARROLLO** URBANO DE LATACUNGA

Clima

Temperatura entre los 12º C y los 17º C

Fuente: GAD Municipal del Cantón Latacunga **Elaborado por:** Margarita Ronquillo 2015

Figura 17. Croquis de ubicación del Centro Histórico de la Ciudad de Latacunga

Fuente: GAD Municipal del Cantón Latacunga

2.1.2. Tipos de Investigación

Para el desarrollo del trabajo investigativo se utilizó los siguientes tipos de investigación:

2.1.2.1. Investigación descriptiva

La Investigación descriptiva utiliza criterios sistemáticos que permiten poner de manifiesto la estructura o el comportamiento de los fenómenos en estudio. Acude a técnicas específicas en la recolección de información, la mayoría de las veces se utiliza el muestreo para la recolección de información.

Con base en lo descrito anteriormente se define a la investigación realizada como descriptiva pues se mediante la medición de ruido ambiental, se pudo diseñar un mapa de estratégico de ruido y de esta manera conocer la dispersión del ruido ambiental que permitió identificar las zonas de acústicamente afectadas del centro histórico de la ciudad. Además se utilizó técnicas de recolección de información como el fichaje.

2.1.2.2. Investigación de Campo

La investigación se desarrolló en condiciones naturales en el sitio que se presentó el fenómeno de estudio, seleccionando y ubicando 150 puntos de monitoreo de ruido ambiental en el Centro Histórico de la ciudad los cuales fueron documentados uno a uno.

2.1.3. Métodos y Técnicas

2.1.3.1. *Métodos*

> Método Empírico

Se utilizó la Observación Directa como método de investigación pues el investigador (postulante) estuvo en contacto personal con el hecho investigado la contaminación acústica y se tuvo claro los parámetros a identificar para lograr mayor homogeneidad de condiciones en los datos observados y registrados.

> Método Lógico Inductivo

Parte de casos particulares y se llega a conocimientos generales. En la investigación realizada la inducción es completa pues conocemos con exactitud el número de elementos que son parte de la misma (150 puntos monitoreados), lo que nos permite articular cada uno de sus resultados para poder llegar a una Conclusión General la cual es que el porcentaje de cumplimiento de los límites de ruido permisibles de acuerdo al uso de suelo residencial es de muy baja con apenas 9% y el incumplimiento corresponde al 91%.

2.1.3.2. *Técnicas*

> Fichaje

Dentro del Programa de Monitoreo Acústico se estableció como auxiliares de la observación un Ficha o Tabla de registro de resultados de los puntos

monitoreados, en la cual se anotó todos los datos con respecto a ubicación, Nivel de presión sonora continúo equivalente $L_{Aeq}(T)$, observaciones de cada punto, hora de registro, etc.

> Técnica de Muestreo (Regular)

Dentro del programa de acústico, se estableció como técnica de monitoreo el Muestreo Regular que consiste en ubicar o disponer los puntos de muestreo siguiendo una malla o rejilla regular, se utilizó un croquis del Centro Histórico de la ciudad como recurso de referencia cartográfica para identificar los puntos monitoreados que posteriormente se ingresaron al software ArcGis 10.2 creando una rejilla uniforme de muestreo.

2.1.4. Metodología Aplicada

La metodología para la realización del Mapa Estratégico de Afectación y Dispersión Acústica del Centro Histórico de la Ciudad de Latacunga, toma en cuenta las recomendaciones más recientes en relación al ruido ambiental.

En este sentido, la referencia básica aplicable es el Acuerdo Ministerial No. 061 publicado en el Registro Oficial Edición Especial No. 316, del 04 de mayo de 2015 que sustituye El Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (TULSMA), estableciendo que los mapas de ruido ambiental serán elaborados utilizando técnicas y procedimientos apropiados y considerándolos como una herramienta estratégica para la gestión del control de la contaminación acústica y la planificación territorial. No obstante, como no se estipula la metodología, técnicas y procedimientos para su realización, se utilizó como complemento la Normativa NTE INEN-ISO 1996-2:2007 Descripción, Medición y Evaluación del Ruido Ambiental. Parte 2: Determinación de los

Niveles de Ruido Ambiental, lo cual nos permitió establecer y sugerir los métodos y técnicas adecuados para su realización.

La metodología seguida, engloba desde la planificación del trabajo hasta la entrega de resultados. Para su mejor desarrollo, se han definido varias fases o etapas que se detallan a continuación.

- Etapa 1: Diseño del Programa de Monitoreo Acústico
- Etapa 2: Procesamiento de datos del Programa de Monitoreo Acústico
- Etapa 3: Realización del Mapa Estratégico de afectación y Dispersión Acústica

2.1.4.1. Diseño del Programa de Monitoreo Acústico

El Programa de Monitoreo Acústico que se estableció se sustentó en la Normativa Nacional TULSMA (acuerdo N°061) y norma INEN-ISO 1996-2. En esta etapa se analiza la información actual disponible con la finalidad de planificar las tareas a abordar durante el ensayo y los plazos previstos para las mismas. Por otro lado, se identifica las diferentes tareas y fases, y se elaboran las Fichas de campo para recogida de datos de parámetros sonoros.

- Objetivo del Programa: Conocer el grado de contaminación acústica del Centro Histórico de la ciudad de Latacunga.
- ➤ Técnico responsable: Margarita Alexandra Ronquillo Cando (tesista), realización del monitoreo de ruido ambiental y recopilación de información de campo.

Fotografía 1. Técnico Responsable

Fuente: Margarita Ronquillo

➤ Período de Monitoreo: El período de monitoreo fue diurno de lunes a viernes y en las franjas horarias en que se evidencia mayores niveles de ruido, correspondiendo a las horas "pico" identificadas como de mayor tráfico vehicular, luego de la realización de un ensayo previo al inicio de la campaña de monitoreo. Por lo que el horario que se estableció fue el siguiente:

Mañana: 07:01 - 08:30 horas

Medio Día: 12:01 – 13:30 horas

Tarde: 17:01 – 18:30 horas

> Selección y ubicación de Puntos de Monitoreo

Para la determinación de los puntos de monitoreo de ruido se tomó en cuenta criterios establecidos en la Normativa Nacional TULSMA (acuerdo N°061) y norma INEN-ISO 1996-2 se realizó un ensayo previo en las vías principales y secundarias del Centro Histórico, con el propósito de garantizar la calidad de los datos acústicos, teniendo en cuenta los siguientes criterios:

- a. Distancias entre puntos de 50m, se realizó la ubicación in situ de los puntos tomando en cuenta esta distancia en toda el área de estudio obteniendo un total de 150 puntos de monitoreo.
- b. Variaciones entre punto y punto no superiores o inferiores a 5 dB.
- c. Tomar en cuenta siempre un punto esquinero, el mismo que sirve de referencia para poder establecer los siguientes puntos entre las calles secundarias.
- d. Arrancar el muestreo teniendo en cuenta la sistemática de tres puntos vistos entre sí, así se garantiza el establecimiento de una rejilla uniforme en campo.

Fotografía 2. Ensayo de Monitoreo de Ruido Ambiental

Fuente: Margarita Ronquillo 2015

Equipo de Medición

El equipo de medición sonora, propiedad de la Universidad Técnica de Cotopaxi, compuesto por un sonómetro y calibrador acústico. El sonómetro marca (DELTA OHM), modelo HD2010UC/A Clase 2 cumple con los requisitos de las normas IEC 61672-1 del 2002 y de las normas IEC 60651 y IEC 60804 con tolerancia de clase 2 o bien clase 1. Los filtros de banda porcentual constante cumplen con las especificaciones de clase 1 de la norma IEC 61260 y el calibrador acústico cumple con las especificaciones de clase 2 o bien clase 1 IEC 60942.

Cumpliendo con la Norma de la Comisión Electrotécnica Internacional IEC 61672-1:2002 de acuerdo a lo establecido en el lit. **5.2.6 Requisitos de los Equipos de Medición** del TULSMA Libro VI anexo V (acuerdo 061).

Fotografía 3. Sonómetro Integrador HD2010UC/A Clase 2, calibrador y sus accesorios

Fuente: Margarita Ronquillo 2015

Accesorios

- a. Maletín de transporte
- b. Preamplificador HD2010PNE2,
- c. Calibrador HD9102,
- d. Micrófono UC52,
- e. Pantalla antiviento HDSAV,
- f. Cable prolongador para micrófono CPA/5.

Técnica de Medición

La técnica de medición queda establecida de la siguiente manera:

- a. Rejilla Uniforme: Variaciones inferiores a 5 dB en cada punto monitoreado
- b. Antes de iniciar la medición se procede a calibrar el equipo.
- c. Direccionamiento del micrófono con una inclinación de 90°

- d. Distancia de 0,50 m como mínimo entre el sonómetro y el técnico.
- e. Se mide la velocidad del viento con el anemómetro, si la velocidad es menor o igual a 5 m/s, se continuó con la medición de lo contrario no.
- f. Se utiliza una pantalla antiviento.
- g. Ubicación del sonómetro en los puntos establecidos, colocado sobre un trípode y ubicado a una altura de 1,5 m desde el suelo.
- h. Se mide en ponderación A tiempo y constante del tiempo lento "SLOW"
- i. Homologación de condiciones durante el monitoreo.
- j. El período de tiempo de la medición es de 10 min, evitando de esta manera cambios circunstanciales del ruido.
- k. De existir lluvia, truenos, etc., no se realizó la medición.

Fotografía 4. Estabilización del Trípode

Fotografía 5. Calibración del Sonómetro

Fotografía 6. Montaje del Sonómetro

Fotografía 7. Verificación de la altura del Trípode

Fotografía 8. Direccionamiento del micrófono a 90°

Fotografía 9. Verificación de la velocidad del viento con el Anemómetro

Fotografía 10. Inicio del Monitoreo de Ruido Ambiental

Gestión de datos

Durante la realización del monitoreo de ruido ambiental se registró todos los datos derivados de este la ficha de Monitoreo que contemplo los siguientes datos:

- a. Ubicación del punto de monitoreo.
- b. Hora y fecha de la medición
- c. Nivel de presión sonora continúo equivalente. $L_{Aeq}(T)$ obtenido
- d. Identificación de tipos de ruido que pueden influir en la medición esto se detalló en Observaciones.

Además se contó con un croquis del Centro Histórico de la ciudad, para ubicar cada punto en el mismo y posteriormente se los georreferencio.

2.1.4.2. Procesamiento de datos del Programa de Monitoreo Acústico

> Correcciones:

Los términos correctores tomados en cuenta para los resultados obtenidos se apegan a lo estipulado en la norma INEN-ISO 1996-2

Para poder establecer los términos correctores primero se diferenció las fuentes de ruido y las características del mismo y se estableció los siguientes criterios:

a. Cuando se registre un ruido impulsivo de alta energía como el ruido provocado por los aviones y de se pare la medición y se la vuelva medir después del suceso.

- b. De existir un ruido altamente impulsivo como ruidos de taladradoras de asfalto, armas de fuego, concreteras, etc., se detiene la medición. Estos ruido no se registraron durante la campaña de monitoreo
- c. Se entiende por ruido impulsivo normal a ruidos que no sean tan molestos como por ejemplo: portazos, caída de instrumentos, campanadas, etc., ruidos que si se identificaron.

De acuerdo a lo descrito se aplicó el debido término corrector teniendo en cuenta la siguiente tabla.

Tabla 7. Términos correctores típicos de nivel basados en las categorías de las fuentes sonoras y período del día

TIPO	ESPECIFICACIÓN	Nivel del término Corrector d B
Fuentes de sonido	Tráfico Vehicular	0
	Aeronaves	3 a 6
	Trenes	-3 a -6
	Industria	0
Característica de la fuente	Impulsivo normal	5
	Altamente Impulsivo	12
	Impulsivo de alta energía	Véase anexo B
	Tonos Predominantes	3 a 6
Período de tiempo	Tarde	5
	Noche	10
	Días de Fin de Semana	5

Elaborado por: Margarita Ronquillo

Fuente: ISO 1996-1 (Asociación Española de Normalización y Certificación (AENOR), 2005)

Ubicación y Georreferenciación de los Puntos de Monitoreo

Para la ubicación y georreferenciación de los puntos de monitoreo se trabajó en el software ArcGIS 10.2, con una Orto fotografía Satelital de la ciudad de Latacunga de acuerdo a los siguientes criterios:

- a. Se utilizó el croquis del centro histórico de la ciudad, para diseñar el contorno del mismo respetando los límites establecidos dentro del croquis.
- b. Se ubicó los puntos muestreados tomando en cuenta los criterios utilizados para la selección y ubicación de puntos de monitoreo en el Programa de Monitoreo Acústico y las referencias de ubicación de cada punto descritas en la Ficha utilizada para la gestión de datos.
- c. Se identifica el contorno de monitoreo que contienen puntos de monitoreo extras necesarios para el proceso de modelación del mapa estratégico de ruido

De esta manera se georreferenció cada punto de monitoreo y se obtuvo las coordenadas geográficas.

Figura 18. Ubicación de los Puntos de Monitoreo en ArcGIS 10.2

2.1.4.3. Realización del Mapa Estratégico de Afectación y Dispersión Acústica.

Los datos básicos necesarios para la realización del mapa estratégico de ruido son los siguientes.

- o Datos básicos de cartografía.
- o Datos relativos a ruido ambiental.

> Datos Básicos Cartográficos.

Se necesitan datos de cartografía como son: división política del cantón, plano de la zona de estudio que diferencie, manzanas, calles, esquinas e identifiquen sitios de referencia, todos estos datos son suministrados en diferentes formatos según el tipo de fuente (DXF, SHAPE, GRID, texto, base de datos, etc.) y que son importados usando las herramientas de que dispone el SIG elegido. En el caso de ArcGIS 10.2, utiliza el formato Shapefile que es un formato multiarchivo, es decir está generado por varios ficheros informáticos con extensiones como shp, shx, dbf, así que los datos requeridos se obtuvieron en este formato.

También se contó con una ortofotografía aérea de la ciudad de Latacunga, en formato imagen (TIFF).

> Datos relativos a ruido ambiental.

Del Programa de Monitoreo Acústico se desprenden los datos de ruido ambiental levantados de acuerdo a los parámetros establecidos en el mismo para garantizar la calidad y veracidad de los resultados, los cuales se introdujeron en ArcGIS 10.2.

> Modelación de Isófonas

Se entiende por isófonas a las líneas imaginarias que unen puntos de igual valor de sonoridad, este caso unen puntos de igual valor de ruido.

Como deseamos conocer la distribución espacial de nuestra variable de estudio que es el ruido ambiental debemos recurrir a la interpolación, que partir de los valores de los puntos disponibles estima los valores para toda el área de trabajo mediante la proyección de isolíneas, esto se realizó en el programa ArcGIS 10.2.

Así se pudo distinguir como se dispersa el ruido y de acuerdo a esto se evidencia las diferentes zonas de afectación acústica dentro del centro histórico de la ciudad.

El levantamiento de isófonas requiere de dos datos muy importantes como son los respectivos niveles de ruido ambiental de cada punto de monitoreo y sus respectivas coordenadas.

Para verlas reflejadas en el Mapa se utilizan además datos cartográficos del lugar de estudio, que adjunto a la utilización de las diversas herramientas disponibles en ArcGIS 10.2, hicieron posible la consumación de la representación cartográfica planteada.

> Representación de los Mapas

De acuerdo a lo establecido en el TULSMA (acuerdo N°061, cap.7 lit. 7.1.7) Los mapas de niveles sonoros deberán elaborarse con la representación de curvas isofónicas que delimiten los siguientes rangos: <50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80> dB.

Por lo que la amplitud de representación de las isófonas se estableció en 5 dB ponderados entre cada una de ellas.

Respecto a los colores que se utilizan para pintar o colorear los mapas de ruido existen diferentes escalas normalizadas cada una de ellas asigna un color a un nivel o rango sonoro determinado. Sin embargo la más utilizada corresponde a la que figura en la Norma ISO-1996 (Bartí, 2010).

Es así que el color que se asignó para cada rango de dB representados en el mapa obedece a la escala normalizada ISO-1996 que se describen en la siguiente tabla.

Figura 19. Escala de colores según la Norma ISO-1996

COLOR NORMA ISO-1996	Leq dB(A)
Verde claro	< 35
Verde claro	35 - 40
Verde oscuro	40 - 45
Amarillo	45 - 50
Ocre	50 - 55
Naranja	55 - 60
Cian	60 - 65
Carmín	65 - 70
Violeta	70 - 75
Azul	75 - 80
Azul oscuro	80 - 85

Fuente: (Bartí, 2010)

Correspondiendo a la representación realizada los colores:

○ Ocre : Zona 1 rango de 50 – 55 dB

○ Naranja : Zona 2 rango de 55 – 60 dB

○ Cian : Zona 3 rango de 60 – 65 dB

o Carmín **■ Example :** Zona 4 rango de 65 – 70 dB

○ Violeta Zona 5 rango de 70 – 75 dB

Cumpliendo con todos estos parámetros debidamente normalizados, se presenta el Mapa Estratégico de Afectación y Dispersión Acústica en dos formas de representaciones.

La primera representación presenta las isófonas incorporadas a la planimetría del centro histórico de la ciudad de Latacunga, con una escala de 1: 2.000 se representó el Mapa Estratégico de Zonas Afectadas Acústicamente del Centro Histórico de la ciudad de Latacunga (Anexo 2).

La segunda representación corresponde a las isófonas empalmadas en la Ortofotografía de la ciudad de Latacunga, obviamente se seleccionó el fragmento

de la ortofotografía que corresponde al centro histórico de la ciudad, con una escala de 1: 1.800 se presentó el Mapa Estratégico de Zonas Afectadas Acústicamente "Ortofotografía del Centro Histórico de la ciudad de Latacunga" (Anexo 3).

CAPITULO III

3. MAPA ESTRATÉGICO DE AFECTACIÓN Y DISPERSIÓN ACÚSTICA

3.1.ANALISIS E INTERPRETACIÓN DE RESULTADOS

3.1.1. Introducción

Debido al desarrollo y crecimiento ineludible de las actividades económicas, educativas, sociales, deportivas, de ocio etc., de la cuidad de Latacunga que tiene como eje principal de concentración el Centro Histórico de la urbe; afronta varios problemas ambientales, siendo de los de mayor consideración el ruido ambiental, definido científicamente como Contaminación Acústica.

Consecuentes con los problemas crónicos que genera el ruido, especialmente en la salud de las personas, se han desarrollado tecnologías de medición y cuantificación del mismo tales como las sonometrías, con la finalidad de evaluar el ambiente de un lugar específico o de una localidad, basándose en parámetros o niveles máximos permisibles que a su vez se encuentran establecidos en normativas o legislaciones.

De acuerdo a lo que establece el Texto Unificado de Legislación Secundaria del Ministerio del Ambiente, en su Libro VI de la Calidad Ambiental, Anexo 5 NIVELES MÁXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES, reformado mediante acuerdo ministerial 097¹, que establece los límites permisibles del ruido ambiente según el uso o tipo de suelo, por lo cual a continuación se presenta una tabla comparativa de resultados, que contiene los niveles de presión sonara continuo equivalente corregidos (LKeq) de cada uno de los puntos muestreados, en contraste con los límites permisibles establecidos en la Tabla 1: NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO, del presente acuerdo, de esta manera se evidencia el cumplimiento o no de la Normativa Ambiental, así como también gracias al Mapa Estratégico de Ruido² que se generó con los resultados del monitoreo de ruido ambiental, se pudo tener una representación gráfica de los niveles sonoros existentes dentro del área de estudio, así como también evaluar la problemática de cada una de las zonas que se identificaron derivado de la exposición a distintos rangos de decibeles evidenciándose la existencia de 4 zonas que incumplen la Normativa Ambiental vigente, así como de una sola que se encuentra dentro de los límites permisibles de acuerdo al uso de suelo residencial que contempla el Centro Histórico de la ciudad por su valor cultural y patrimonial.

Esta herramienta permitirá evaluar de manera a priori la eficacia de las acciones y medidas urbanísticas y de ordenamiento territorial que se desee aplicar en el corto y mediano plazo.

-

¹ Acuerdo Ministerial MAE 097-A suscrito el 30 de julio de 2015

² Mapa diseñado para poder evaluar globalmente la exposición al ruido en una zona determinada, debido a la existencia de distintas fuentes de ruido, o para poder realizar predicciones globales para dicha zona. DIRECTIVA 2002/49/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 25 de junio de 2002 sobre evaluación y gestión del ruido ambiental.

3.1.2. Análisis

De acuerdo a los resultados obtenidos en el programa de monitoreo acústico establecido para el centro histórico de la ciudad de Latacunga, se tiene los siguientes niveles de presión sonora continuo equivalente corregido *LKeq* para el Horario Diurno de lunes a viernes, los cuales se representan en el Mapa de Ubicación de Puntos de Monitoreo (Anexo 1).

Tabla 8. TABLA COMPARATIVA DE RESULTADOS DE MONITOREO DE RUIDO AMBIENTAL DEL CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA HORARIO DIURNO

TABLA CO	TABLA COMPARATIVA DE RESULTADOS DE MONITOREO DE RUIDO AMBIENTAL DEL CENTRO HISTÓRICO DE LA CIUDAD DE LATACUNGA HORARIO DIURNO							
PUNTOS	COORDI	ENADAS	NIVEL DE	NIVELES	CUMPI	LIMIENTO	UBICACIÓN	
DE			PRESIÓN	MÁXIMOS				
MUESTRE			SONORA	DE RUIDO				
O	X	Y	CONTINUO	SEGÚN USO				
	11	-	EQUIVALEN	DE SUELO	SI	NO		
			TE	RESIDENCI	51	1,0		
			CORREGIDO	AL				
			LKeq (dB)	LKeq (dB)				
				07:01 - 21:00				
1	765343,418	9896435,89	63,50	55		X	Cl. Hnas. Páez Fachada lateral del Centro de	
							Salud	
2	765294,787	9896423,66	66,20	55		X	Cl. 2 de mayo Esq. C. de Salud diagonal al	
							Hospital General Latacunga	
3	765280,553	9896471,76	63,10	55		X	Cl. 2 de Mayo Frente a pileta Parque	
							Filantropía	

4	765326,878	9896501,92	63,60	55	X	Cl. Tarqui frente al Centro. de Salud diagonal BQ
5	765278,833	9896488,19	65,30	55	X	Esq. Cl. 2 de Mayo y Tarqui Frente al restaurant El Rey
6	765264,095	9896536,05	64,80	55	X	Cl. 2 de Mayo puerta de Servicio de Garaje
7	765249,123	9896583,76	67,20	55	X	Cl. 2 de Mayo a 10 m inter. Gral. Maldonado
8	765292,594	9896611,27	64,70	55	X	Fachada lateral ITVL frente a Radio 11 de N
9	765244,334	9896597,6	68,10	55	X	Esq. 2 de Mayo y Gral. Maldonado ITVL
10	765228,115	9896644,99	64,90	55	X	Cl. 2 de Mayo Fachado posterior ITVL
11	765212,597	9896692,49	66,40	55	X	Cl. 2 de Mayo ITVL a 15 m intersección. Padre M. Salcedo
12	765254,95	9896726,82	61,30	55	X	CL. Padre M. Salcedo frente ITVL diagonal al Pasaje Tovar
13	765206,818	9896712,67	66,20	55	X	Esq. 2 de Mayo y P. Manuel Salcedo frente ITVL
14	765192,404	9896760,56	65,30	55	X	Cl 2 de Mayo a 12m frente al Pasaje Evangelina H.
15	765180,043	9896809,03	62,60	55	X	Cl 2 de Mayo a 20m intersección Cl. Guayaquil
16	765220,75	9896848,58	65,70	55	X	Cl. Guayaquil frente al Banco del Litoral
17	765173,137	9896832,74	66,90	55	X	Esq. 2 de Mayo y Guayaquil diagonal Alambra
18	765158,024	9896880,48	65,30	55	X	Cl. 2 de Mayo frente a Calzado Calzacuba
19	765143,909	9896928,33	65,80	55	X	Cl. 2 de Mayo puerta del C. comercial Padilla
20	765184,519	9896972,23	66,40	55	X	Cl. Juan Abel Echeverría frente a Almacenes Don Pato
21	765135,588	9896961,63	70,10	55	X	Esq. 2 de Mayo y Juan Abel Echeverría
22	765126,881	9897010,93	66,80	55	X	Cl. 2 de Mayo frente a Arte y Confecciones
23	765116,518	9897059,91	67,40	55	X	Esq. 2 de Mayo en Confitería Colombina
24	765162,243	9897081,76	66,20	55	X	Cl. Félix Valencia a 20m del TIA

25	765113,454	9897069,65	67,20	55	X	Esq. 2 de mayo y Félix Valencia diagonal Movistar
26	765095,886	9897116,69	63,20	55	X	Cl 2 de Mayo al lado puerta Local de Manualidades
27	765183,304	9897133,52	63,80	55	X	Cl Belisario Quevedo frente a Bodegas del Tía
28	765195,581	9897090,55	67,80	55	X	Esq. Belisario Q. y Félix Valencia frente al TIA
29	765244,07	9897102,4	66,70	55	X	Cl. Félix Valencia frente al Hotel Makroz
30	765195,666	9897078,73	68,00	55	X	Cl. Belisario Quevedo Frente a Almacenes Japón
31	765208,914	9897030,4	66,10	55	X	Cl. Belisario Quevedo frente a Pollos Jimmy
32	765221,116	9896981,88	68,80	55	X	Esq. Belisario Q y J. Abel Echeverría frente a La Ganga
33	765269,681	9896994,35	67,30	55	X	Cl Juan. A. Echeverría en el Banco Solidario
34	765226,063	9896958,78	66,50	55	X	Cl. Belisario Quevedo frente a Súper Deportivo
35	765239,874	9896910,43	67,80	55	X	Cl. Belisario Quevedo puerta Almacén Agroquímicos
36	765254,744	9896862,53	68,20	55	X	Esq. Belisario Q. y Guayaquil Dulces y Detalles
37	765301,629	9896880,37	64,20	55	X	Cl. Guayaquil (Movistar) frente a Locales de Artesanías
38	765262,113	9896833,47	64,00	55	X	Cl. Belisario Quevedo (Cámara de Comercio)
39	765273,18	9896784,7	62,10	55	X	Cl. Belisario Quevedo frente a la Clínica del Celular
40	765286,189	9896736,45	59,80	55	X	Esq. Belisario Q y P. M Salcedo Psj. Tovar
41	765334,656	9896748,64	59,00	55	X	Pasaje Tovar Cajero de Produbanco
42	765290,803	9896715,73	63,70	55	X	Cl. Belisario Quevedo frente al ITVL
43	765304,685	9896667,47	64,40	55	X	Cl. Belisario Quevedo al lado de CNT frente al ITVL

44	765320,613	9896620,07	62,40	55	X	Esq. Belisario Q y Gral. Maldonado Correos del E
45	765370,14	9896630,02	58,10	55	X	Cl. Gral. Maldonado Cooperativa Oscus
46	765322,227	9896604,17	62,40	55	X	Cl. Belisario Quevedo al lado Restaurant Nelly
47	765335,927	9896556,05	64,20	55	X	Cl. Belisario Q. puerta de Servicio de Parqueo
48	765348,415	9896507,45	66,10	55	X	Esq. Belisario Quevedo y Tarqui
49	765396,165	9896522,16	64,00	55	X	Cl. Tarqui puerta del BIESS
50	765354,699	9896487,76	65,00	55	X	Cl. Belisario Quevedo. frente F Principal C. de Salud
51	765370,773	9896440,11	62,30	55	X	Esq. Belisario Quevedo y Hnas. Páez Plazoleta S Agustín
52	765419,266	9896452,67	57,90	55	X	Plazoleta San Agustín frente a la Iglesia
53	765445,982	9896457,63	62,30	55	X	Esq. Quito y Hnas Paez frente Plazoleta S Agustín
54	765495,429	9896466,78	60,40	55	X	Cl. Hnas. Paez cerca Marisquería
55	765435,24	9896506,49	65,20	55	X	Cl.Quito en Casa Guillo
56	765428,863	9896531,07	63,80	55	X	Esq. Quito y Tarqui Concejo Provincial
57	765477,123	9896544,01	59,40	55	X	Cl. Tarqui al lado Dep. Org, Territorial C Prov.
58	765416,614	9896579,5	64,20	55	X	Cl. Quito frente Servicio de Parqueo
59	765404,139	9896627,99	62,00	55	X	Cl. Quito (Catedral) frente a Mutualista Pichincha
60	765408,135	9896659,63	65,60	55	X	Esq. Quito y Gral. Maldonado Parque Vicente León
61	765456,873	9896671,21	61,70	55	X	Parque Vicente León frente al Banco de Fomento
62	765393,373	9896707,56	62,20	55	X	Cl. Quito Parque V. L frente a cajeros B Pichincha
63	765368,978	9896758,31	63,90	55	X	Esq. Quito y Padre M Salcedo P. Pagos B.

						Pichincha
64	765417,751	9896769,96	60,80	55	X	Cl. P Manuel Salcedo frente P.VL diagonal a New Fashion
65	765354,36	9896806,15	64,20	55	X	Cl. Quito frente a Shopping Center
66	765342,318	9896854,81	64,90	55	X	Cl. Quito Frente a Azuquítar Cañizares
67	765337,469	9896892,69	63,90	55	X	Esq. Quito y Guayaquil Plazoleta Santo Domingo
68	765384,307	9896910,24	59,20	55	X	Plazoleta Santo Domingo frente puerta Iglesia
69	765319,359	9896939,46	66,20	55	X	Cl. Quito frente a Fornace Pizzería
70	765304,4	9896987,17	68,90	55	X	Cl. Quito a 10m intersección Juan Abel Echeverría
71	765302,005	9897001,73	70,10	55	X	Esq. Quito y Juan Abel Echeverría Calzado Amazonas
72	765350,582	9897014,62	68,40	55	X	Cl. Juan Abel Echeverría frente a Súper Deportivo
73	765288,723	9897049,96	71,20	55	X	Cl. Quito cerca puerta Elvira Ortega
74	765275,172	9897098,29	71,70	55	X	Cl. Quito a 5m intersección Félix Valencia
75	765319,911	9897123,7	69,30	55	X	Cl. Félix Valencia puerta del IT V. Vásconez Cuvi
76	765271,951	9897109,71	71,80	55	X	Esq. Quito y Félix Valencia ITS V. Vásconez Cuvi
77	765260,3	9897147,89	67,10	55	X	Cl. Quito cerca de la puerta lateral ITS VVC
78	765360,04	9897166,04	62,00	55	X	Cl. Sánchez de Orellana frente VVC diagonal a la puerta del coliseo
79	765417,667	9897149,53	61,40	55	X	Cl. Félix Valencia frente antiguo Mascka
80	765371,06	9897127,6	66,30	55	X	Esq. Sánchez de Orellana y Félix V frente Elvira O
81	765384,488	9897076,72	63,70	55	X	Cl. Sánchez de Orellana frente puerta Elvira Ortega
82	765400,003	9897028,74	65,10	55	X	Esq. Sánchez O y J A Echeverría frente a Ferrocenter

83	765445,628	9897043,82	60,30	55		X	Cl. J A Echeverría al lado predio Iglesia Merced
84	765399,289	9897019,57	66,10	55		X	Cl. Sánchez de O Casa de los M(3 m intersección Cl. Juan Abel Echeverría)
85	765411,063	9896971,68	65,80	55		X	Cl. Sánchez de Orellana Casa de los Marqueses frente la primera ventana oficinas GADML de la Casona Santo Domingo
86	765424,345	9896923,5	63,70	55		X	Esq. Sánchez de Orellana y Guayaquil en la U.E. Sagrado Corazón de Jesús
87	765471,213	9896940,78	59,10	55		X	Cl. Guayaquil fachada lateral U.E. Sagrado Corazón de Jesús
88	765437,689	9896875,31	62,30	55		X	Cl. Sánchez de Orellana frente a Servipagos
89	765449,401	9896827,3	58,70	55	-	X	Cl. Sánchez de Orellana al lado Cooperativa Cámara de Comercio
90	765497,82	9896842,17	54,40	55	X		Pasaje Luis Fernando Vivero Hostal Café Triana
91	765462,551	9896770,44	62,70	55		X	Cl. Sánchez de Orellana al lado SRI
92	765477,215	9896722,61	61,40	55		X	Esq. Sánchez de Orellana y Ramírez Fita CACPECO
93	765528,743	9896736,74	60,40	55		X	Esq. Vicente Mártir y Ramírez frente Parque Salle
94	765490,325	9896672,76	62,70	55		X	Esq. Sánchez de Orellana y Gral. Maldonado GADM
95	765538,559	9896686,3	60,20	55		X	Esq. Gral. Maldonado Vicente Mártir Palacio GADM
96	765497,403	9896651,76	63,00	55		X	Cl. Sánchez de Orellana CACEC frente al ex Banco de Fomento
97	765510,079	9896603,3	63,70	55		X	Cl. Sánchez de Orellana frente Importadora RV
98	765523,427	9896555,14	62,50	55		X	Esq. Sánchez de Orellana y Tarqui frente Isidro A.
99	765570,779	9896571,21	57,90	55		X	Cl. Tarqui diagonal Const. antigua y nueva

							Isidro
100	765530,297	9896523,99	65,60	55		X	Cl. Sánchez de O frente Isidro a 10m aproximadamente de "Mi Parkeo"
101	765542,869	9896475,5	64,70	55		X	Esq. Sánchez de Orellana y Hnas. Páez
102	765592,144	9896484,49	64,00	55		X	Cl. Hnas. Páez frente a ARGO
103	765646,65	9896493,33	68,40	55		X	Esq. Quijano y Ordoñez y Hnas. Páez en la fachada principal de Papelería. Mega Popular
104	765695,8	9896502,36	63,80	55		X	Cl. Hnas. Páez frente a la ESPE
105	765753,884	9896513,44	58,90	55		X	Intersección Calles Napo y Hnas. Páez lindero ESPE
106	765801,932	9896517,64	55,00	55	X		Parqueadero de la ESPE frente a las Canchas Deportivas
107	765632,643	9896541,1	65,20	55		X	Cl. Quijano y Ordoñez a 5m de la puerta Escuela Isidro Ayora.
108	765623,012	9896590,08	60,60	55		X	Intersección Quijano y Ordoñez y Tarqui a lado restaurant Arupos
109	765610,964	9896638,58	62,70	55		X	Cl Quijano y Ordoñez al lado del ingreso a Parqueo
110	765598,262	9896686,86	62,80	55		X	Cl. Quijano y Ordoñez frente cajero del Banco Internacional
111	765595,219	9896702,74	60,10	55		X	Esq. Quijano y Ordoñez y Gral. Maldonado Plazoleta Salle
112	765642,976	9896717,55	56,20	55		X	Cl. Gral. Maldonado Centro de Catequesis S. Fran
113	765580,006	9896750,34	61,90	55		X	Cl. Quijano y Ordoñez frente al monumento a Bolívar
114	765562,173	9896786,13	64,20	55		X	Esq. Quijano y Ordoñez salida de la Salle
115	765521,638	9896774,7	58,60	55		X	Esq. Vicente Mártir Video edición frente parque
116	765546,641	9896833,57	63,10	55		X	Cl. Quijano y Ordoñez Peluquería Zebra
117	765542,064	9896853,25	59,00	55		X	Esq. Quijano y Ordoñez y L. F. Vivero frente

							al pasaje
118	765590,748	9896866,04	54,30	55	X		Cl. Luis F V a lado garaje Federación
							Deportiva de Cotopaxi
119	765529,166	9896901,93	59,40	55		X	Cl. Quijano y Ordoñez frente a Panadería
							Guazú
120	765514,614	9896955,93	59,70	55		X	Esq. Quijano y Ordoñez y Guayaquil frente
							Colegio Betlemitas.
121	765562,048	9896971,44	55,00	55	X		Cl. Guayaquil frente puerta Federación
							Deportiva
122	765505,427	9897005,09	62,10	55		X	Cl. Quijano y Ordoñez al lado ingreso a
							Centro Infantil Querubines
123	765499,501	9897060,44	63,20	55		X	Esq. Quijano y Ordoñez y Juan Abel
							Echeverría frente a la Plazoleta de La Merced
124	765548,607	9897069,75	59,60	55	_	X	Cl. Juan Abel Echeverría entre Quijano y
							Ordoñez y Hnos. Pazmiño
125	765490,611	9897109,65	65,10	55		X	Cl. Quijano y Ordoñez frente al camal de la
							Merced
126	765483,877	9897168,25	59,30	55		X	Esq. Quijano y Ordoñez y Félix Valencia
							frente FARMAREDS
127	765530,094	9897187,49	54,50	55	X		Cl. Félix Valencia entre Quijano y Ordoñez y
							Hnos. Pazmiño
128	765478,796	9897193,53	58,60	55		X	Cl. Quijano y Ordoñez aprox. a 25m de la
							esquina
129	765577,264	9897208,83	58,90	55	_	X	Esq. Hnos. Pazmiño y Félix Valencia
130	765603,529	9897216,76	54,80	55	X		Cl. Félix Valencia aproximadamente a 25m
							de la esquina.
131	765581,925	9897180,18	55,00	55	X		Cl. Hnos. Pazmiño diagonal a "Multicom"
132	765588,239	9897130,65	54,90	55	X		Cl. Hnos. Pazmiño frente (casa amarilla de 3
							pisos)
133	765596,926	9897081,31	54,70	55	X		Esq. Hnos. Pazmiño y Juan Abel Echeverría
134	765629,961	9897092,13	53,60	55	X		Cl. Juan Abel Echeverría entre Quijano y
							Ordoñez y Cl. Napo

135	765600,63	9897037,83	54,60	55	X		Cl. Hnos. Pazmiño frente a sucursal Banco Pichincha Mi Vecino GRECO
136	765607,416	9896988,34	54,00	55	X		Esq. Hnos. Pazmiño y Guayaquil
137	765653,85	9897002,47	58,40	55		X	Esq. Napo y Guayaquil
138	765662,634	9896983,74	59,70	55		X	Cl. Napo diagonal a la esquina frente Minimarket Liliana
139	765667,436	9896951,67	54,80	55	X		Cl Napo en el Pasaje Isla Genovesa
140	765660,782	9896933,43	59,60	55		X	Cl. Napo aprox. a 15 m del pasaje Isla Genovesa
141	765660,346	9896883,27	54,90	55	X		Esq. Napo y Luis Fernando Vivero en el pasaje
142	765678,919	9896836,49	58,70	55		X	Cl. Napo frente canchas de la Salle
143	765701,978	9896792,32	63,00	55		X	Cl. Napo en el pasaje Isla Baltra
144	765721,491	9896739,34	60,40	55		X	Cl. Napo y final Gral. Maldonado frente DINAPEN
145	765738,133	9896694,63	60,60	55		X	Cl. Napo aproximadamente a 20 de la intersección con la Oriente
146	765749,008	9896679,44	60,90	55		X	Y de la Cl. Napo y Av. Oriente
147	765761,513	9896663,1	63,20	55		X	Cl. Napo al lado del contenedor de basura
148	765756,609	9896613,49	65,60	55		X	Cl. Napo frente a Discoteca One Way
149	765756,08	9896563,48	62,10	55		X	Y Cl. Napo y Hnas. Páez
150	765786,904	9896573,9	64,10	55		X	Cl. Hnas. Páez puerta Colegio Primero de Abril

Elaborado por: Margarita Ronquillo 2015 Fuente: Programa de Monitoreo Acústico

Tabla 9. RESULTADOS DEL MONITOREO DE RUIDO AMBIENTAL

RESULTADOS DEL MONITOREO DE RUIDO AMBIENTAL							
Total de Puntos Monitoreados	Cumplen la Normativa	Incumplen la Normativa					
150	14	136					

Elaborado por: Margarita Ronquillo 2015

Figura 20. Porcentaje de Cumplimiento de la Normativa de Ruido de acuerdo a la Tabla 1: NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO

Elaborado por: Margarita Ronquillo 2015

Tabla 10. RESULTADOS SEGÚN EL RANGO DE DECIBELES

RESUMEN DE RESULTADOS SEGÚN EL RANGO DE DECIBELES	
ZONA Y RANGO DE dB	N° DE PUNTOS MONITOREADOS
Zona 1 50-55	14
Zona 2 55-60	23
Zona 3 60-65	66
Zona 4 65-70	42
Zona 5 70-75	5
	TOTAL
	150

Elaborado por: Margarita Ronquillo 2015

Figura 21 RESULTADOS POR RANGO DE DECIBELES Y ZONAS

Elaborado por: Margarita Ronquillo 2015

3.1.3. Interpretación

3.1.3.1. Resultados del Monitoreo de Ruido Ambiental

• La tabla 9 de resultados de acuerdo al cumplimiento de la Normativa Ambiental sobre ruido nos detalla que de los 150 puntos monitoreados en el Centro Histórico de la Ciudad de Latacunga solamente 14 puntos muestreados cumplen con el límite permisible establecido de acuerdo al uso de suelo "Residencial" que contempla un rango de 55 dB como máximo, en la fig.36 se puede evidenciar que apenas el 9% se encuentra dentro de los parámetros de cumplimiento, mientras que el 91% de los puntos monitoreados incumple la Normativa Ambiental

3.1.3.2. Resultados por Zonas y rangos de decibeles (dB) establecidos

• Los resultados establecidos en rangos de <50, 50-55, 55-60, 60-65, 65-70, 70-75, demuestran los porcentajes obtenidos por cada uno de ellos del universo de los 150 puntos muestreados correspondiente al 100% que se indican en la fig.37; evidenciándose estos resultados en el Mapa Estratégico de Zonas de Afectación Acústica (Anexo 2). De acuerdo a los resultados de la investigación se establecen cinco zonas correspondiendo cada una a un rango de decibeles específico, cuyas derivaciones se interpretan a continuación:</p>

• Zona 1 rango de 50-55 dB

La zona 1 es la única no contaminada que se puede definir como de confort acústico, se ha constatado que durante las horas pico del horario diurno específicamente el horario de 7: 01 a 8:30 am, itinerario establecido

para la realización del monitoreo de ruido ambiental, pues es la franja horaria en que instituciones aledañas como las Unidades educativas "San José La Salle" y "Sagrado corazón de Jesús" inician sus actividades, y existe un mayor aporte de ruido derivado del tráfico vehicular y peatonal. Sin embargo se observa que el tráfico es fluido y el aporte proveniente de otras fuentes es mínimo, sin duda la zona es eminentemente de uso residencial, se encuentra dentro de los límites permisibles de ruido establecidos en la Tabla 1 del Anexo 5 (acuerdo 097) del TULSMA de acuerdo al uso de suelo, esta zona abarca la manzana situada en la calle Hnos. Pazmiño ubicada entre Juan Abel Echeverría y Guayaquil (fotografía 11) y parte de las inmediaciones de la Federación Deportiva de Cotopaxi en su fachada posterior en la calle Guayaquil (fotografía 12).

Lastimosamente el porcentaje de extensión de la Zona 1, en comparación al total del área de estudio es mínimo pues es de un 9% de los valores obtenidos, reflejando un 91% de incumplimiento que se segmenta en las cuatro zonas restantes, lo que denota la existencia de un grave problema de contaminación acústica en el Centro Histórico de la ciudad de Latacunga.

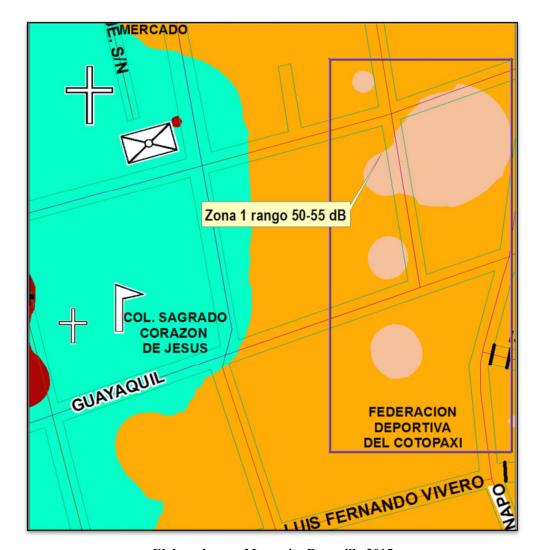


Figura 22. Mapa de Ubicación: Zona 1 rango de 50-55 dB

Elaborado por: Margarita Ronquillo 2015

Fuente: Bases INEC y Levantamiento de Información y Mapeo en base a datos de campo

Fotografía 11. Cl. Hnos. Pazmiño entre Juan Abel Echeverría y Guayaquil

Fotografía 12. Cl. Guayaquil detrás de la Federación Deportiva de Cotopaxi

• Zona 2 rango de 55-60 dB

Esta zona representa a un 16 % del total de la muestra, en esta zona se puede identificar como principales motivos del incremento de niveles de ruido, el tráfico que se genera por la ubicación de centros educativos como por ejemplo la "Unidad Educativa San José La Salle", varios centros de cuidado infantil, que en el inicio y término de su jornada incrementan la circulación vehicular y llega a detener el mismo, sin embargo fluye de mejor forma que en otras zonas como la zona 4 o 5, esto debido que al colindar con la zona 1, se utilizan sus calles como alternativa de la circulación vehicular en esta franja horaria.

Otro contribuyente es el ruido generado por sitios destinados a la recreación y deporte, se evidencia un tráfico significante en las proximidades de la Federación Deportiva de Cotopaxi, así como comercios, ventas ambulantes y ubicadas en sus inmediaciones. El mercado de la Merced también es un punto de concentración de ruido pues debido al comercio desarrollado en este lugar confluyen los niveles de ruido generados de sus actividades con el tráfico vehicular y peatonal

Se encuentran dentro de esta zona las inmediaciones de la Unidad Educativa San José La Salle (fotografía 13), La Federación Deportiva de Cotopaxi, el Sector de la Calle Luis Fernando Vivero (fotografía 14), la manzana cercana a las inmediaciones del Mercado de la Merced en la parada de Buses Calle Quijano de Ordoñez y Feliz Valencia.

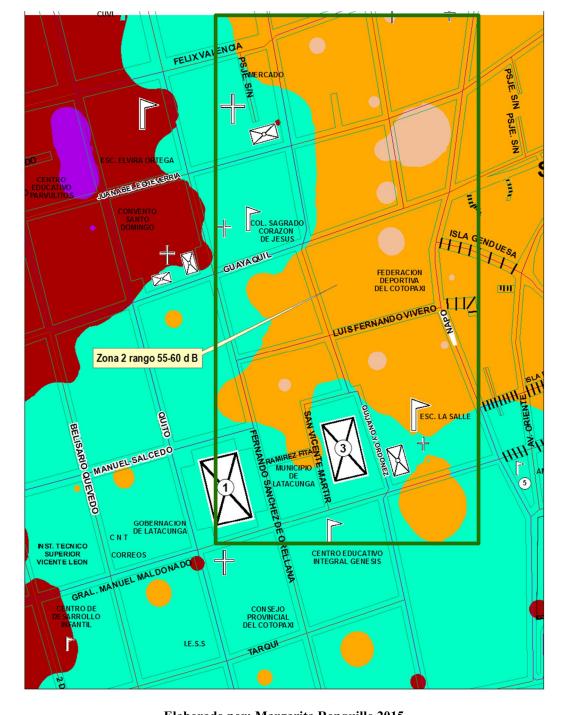
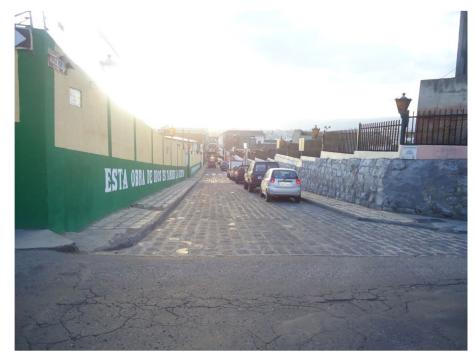



Figura 23. Mapa de Ubicación: Zona 2 rango de 55-60 dB

Elaborado por: Margarita Ronquillo 2015 Fuente: Bases INEC y Levantamiento de Información y Mapeo en base a datos de campo

Fotografía 13. Inmediaciones U. E. San José La Salle calle Luis Fernando Vivero

Fotografía 14. Federación Deportiva de Cotopaxi

Reviols to Control of the Control of

Fotografía 15. Sector Pasaje Luis Fernando Vivero

• Zona 3 rango de 60-65 dB

Es la zona de mayor extensión del estudio representa al 44% de los resultados obtenidos, dentro de esta extensión se encuentran centros educativos, de salud, religiosos, instituciones financieras, sitios de esparcimiento y recreación, así como espacios destinados al comercio; incrementando los niveles de ruido ambiente debido a que existe mayor parque automotor en horas de la mañana por el inicio de la jornada laboral como académica y en la tarde por la finalización de las labores de diferentes instituciones ubicadas en esta zona.

De igual manera las actividades de comercio son más evidentes en esta zona se observó que la utilización de publicidad sonora es moderada, caracterizándose por ser una zona en la que se dan a menudo eventos al aire libre.

Se sitúan las vecindades ubicadas dentro del perímetro de las calles: Guayaquil al norte, Hnas. Páez al sur, Quijano y Ordóñez al este y 2 de Mayo al oeste con sus respectivas transversales: Tarqui, encontramos el Centro de Salud (fotografía 16); Plazoleta de San Agustín (fotografía 17); Prefectura de Cotopaxi intersección (Quito y Tarqui) (fotogrfía 18), Gral. Manuel Maldonado, Padre Manuel Salcedo aquí destacamos sitios como: El conocido pasaje tobar (fotografía 20) Gobernación de Latacunga, Instituto Tecnológico Vicente León, Parque Vicente León, GAD Municipal de Latacunga (19), ubicándose dentro de este entorno varias entidades financieras como el Banco del Pichicha, Mutualista Pichincha, Cooperativas de Ahorro y Crédito como: El Sagrario, CAACPECO, 9 de Octubre, de igual manera se encuentra SERVIPAGOS en la calle Sánchez de Orellana y Guayaquil; ubicándose a partir de aquí dos manzanas específicas la primera en la que se sitúa la Unidad Educativa Sagrado Corazón de Jesús en su fachada posterior y finalmente la manzana en la que se encuentra la Iglesia de La Merced con su respectivo mercado hasta llegar a la calle Félix Valencia.

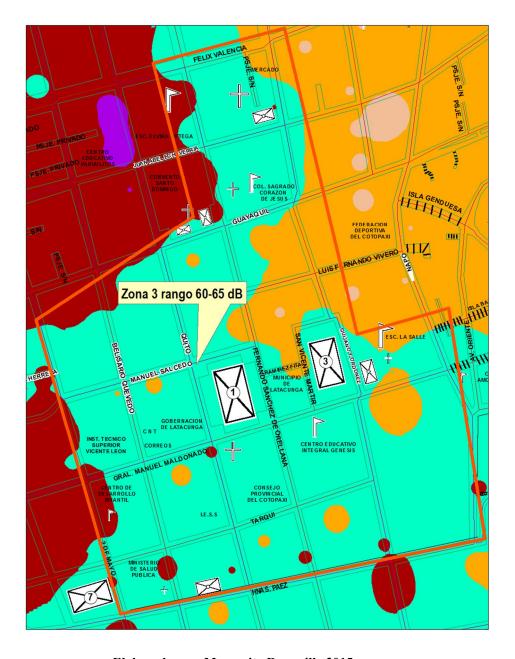


Figura 24. Mapa de Ubicación: Zona 3 rango de 60-65 dB

Elaborado por: Margarita Ronquillo 2015 Fuente: Bases INEC y Levantamiento de Información y Mapeo en base a datos de campo

Fotografía 16, Calle 2 de Mayo Centro de Salud de Latacunga

Fotografía 17. Plazoleta San Agustín

Fotografía 18. Intersección Calle Quito y Calle Tarqui

Fotografía 19. GAD Municipal del Cantón Latacunga

Fotografía 20. Pasaje Tobar

• Zona 4 rango de 65-70 dB

Representa al 28% de los resultados obtenidos, se define como una zona problemática y netamente comercial, aquí confluyen varios locales comerciales de diversa índole como:, Artefacta, Almacenes Japón (fotografía 21), La Ganga (fotografía 24), Almacenes Sampedro, PIKA, varias tiendas de ropa, zapatos, joyas, etc., en igual medida locales de expendio de alimentos, de igual manera existen lugares destinados a la prestación de innumerables servicios, por lo que esta zona alberga numerosos clientes y visitantes; generando el incremento de tráfico vehicular así como de la búsqueda de parqueo en las franjas demarcadas para este uso; situación que conlleva al retardo del circulamiento vehicular y por ende al uso excesivo del pito y a la activación de alarmas.

Esta zona se caracteriza por ser la que mayor índice de utilización de diversos sistemas de sonido como estrategia de publicidad y venta que tiene dentro del área de estudio, lo que confluye en la generación de ruido.

Dentro de esta zona se encuentran: El perímetro ubicado entre las calles: Félix Valencia al norte, Guayaquil al sur, Sánchez de Orellana al este y 2 de Mayo al oeste; con sus transversal Juan Abel Echeverría, Belisario Quevedo (fotografía 23), Quito (fotografía 22), contando con aproximadamente 6 manzanas. Como referencia tenemos la Iglesia y convento Santo Domingo .

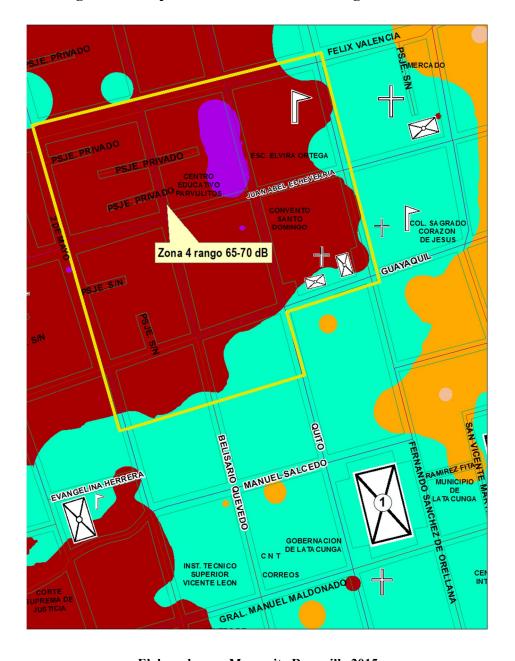


Figura 25. Mapa de Ubicación: Zona 4 rango de 65-70 dB

Elaborado por: Margarita Ronquillo 2015 Fuente: Bases INEC y Levantamiento de Información y Mapeo en base a datos de campo

Fotografía 21. Calle Félix Valencia y Belisario Quevedo

Fotografía 22. Calle Quito y Guayaquil

Fotografía 23. Calle Belisario Quevedo y Guayaquil.

Fotografía 24. "La Ganga" Cl. Belisario Quevedo y Juan A. Echeverría

• Zona 5 rango de 70-75 dB

Esta zona representa el 3% de los resultados obtenidos por rango de decibeles a pesar de que su extensión es mínima y puntual tiene el carácter de zona conflictiva y preocupante por los niveles sonoros obtenidos no aceptables para el uso de suelo residencial, en sus proximidades se ubican dos centros educativos importantes: Escuela Elvira Ortega e Instituto Victoria Vásconez Cuvi hoy conformando una sola Unidad Educativa.

Esta zona principalmente se ve afectada por el exceso de vehículos que transitan y el tráfico que se detiene como consecuencia de la movilidad que genera tanto el inicio como el término de la jornada de clases, resaltando que la Unidad Educativa "Victoria Vásconez Cuvi" cuenta con horario de asistencia matutino y vespertino, que se define como la franja horaria pico en este sector. Surgen varias molestias derivadas del uso descomunal del pito así como de bocinas o cornetas utilizadas por el transporte público que verdaderamente perturba la serenidad de los habitantes del sector incrementando el aporte de ruido los diversos comercios que se ubican en los alrededores, además un factor contribuyente es la proximidad con el sector del centro comercial popular "El Salto", se ubican ventas ambulantes que aprovechan esta franja horaria para vender sus artículos y utilizan megáfonos, altavoces, etc., para promocionar sus productos.

En definitiva los altos niveles sonoros existentes van en desmedro del vecindario afectando el normal desenvolvimiento de las actividades cotidianas de sus habitantes que no solo pueden presentar molestias auditivas sino que está demostrado que el ruido repercute en problemas de conducta, comportamiento, de orden psicológico y fisiológico, inclusive trastornos de personalidad que pueden degenerar en conductas extremas (agresividad y violencia).

Dentro de esta zona se encuentran el vecindario de la calle Quito entre Félix (fotografía 25) Valencia y Juan Abel Echeverría mismas que también presentan altos niveles de ruido.

FELIX VALENCIA PRIVADO MERCADO Zona 5 rango 70-75dB PSJE. PRIVADO ESC. ELVI PSJE. PRIVA JUAN ABEL ENHEVERRIA CENTRO COL. SAG CORAZ DE JES **GUAYAQUIL**

Figura 26. Mapa de Ubicación: Zona 5 rango de 70-75 dB

Elaborado por: Margarita Ronquillo 2015

Fuente: Bases INEC y Levantamiento de Información y Mapeo en base a datos de campo

Fotografía 25. Esquina calle Quito y Félix Valencia

Fotografía 26. Calle Félix Valencia

3.2. CONCLUSIONES Y RECOMENDACIONES

3.2.1. Conclusiones

- Es de suma importancia la realización de un Ensayo previo a la ejecución del Monitoreo de Ruido Ambiental pues la ubicación y distancias entre los puntos de monitoreo son primordiales para obtener resultados que avalen la realidad de las circunstancias en campo.
- El porcentaje de cumplimiento de la Normativa Nacional en lo referente a ruido de acuerdo al uso de suelo residencial es ínfimo correspondiendo solamente a un 9% de los resultados obtenidos mientras que el 91% incumple la Normativa vigente, siendo preocupante los niveles de ruido obtenidos tomando en cuenta que se trata de un sitio de relevancia histórica, cultural, turística y residencial.
- La realización del mapa estratégico de ruido que abarca Zonificación de la unidad de estudio en cinco zonas de acuerdo al rango de decibeles (dB) obtenidos, contribuyó con la determinación de la problemática de cada zona que sin duda ayudó a identificar que el mayor aporte de ruido proviene de las fuentes móviles que conforma la malla vial del lugar y que se ve agravada o disminuida de acuerdo a las actividades comerciales, industriales, institucionales, educativas y de servicios existentes en cada una de estas zonas.
- La Zona 1, con un rango de 50-55 dB se encuentra bajo los parámetros establecidos por la Normativa Ambiental Nacional, cumpliendo con lo establecido en el TULSMA, Anexo 5, Tabla1. "NIVELES MÁXIMOS DE EMISIÓN DE RUIDO (LKeq) PARA FUENTES FIJAS DE RUIDO" de acuerdo al uso de suelo residencial. Representa al 9% del total de la

extensión del estudio lo que nos indica que la contaminación acústica es alta.

- La Zona 2 representa al 16% del total del estudio, presenta niveles de 55-60 dB, debido principalmente al flujo vehicular en inicio y salida de la jornada estudiantil de las Unidad Educativa "San José la Salle" institución que labora en dos jornadas matutina y vespertina lo que influye en el incremento del flujo vehicular, igualmente se presenta flujo vehicular considerable en las inmediaciones de la "Federación Deportiva de Cotopaxi" a la cual acuden un sinnúmero de niños y jóvenes. Se evidencia mayor presencia de locales comerciales en comparación a la zona 1 contribuyendo a la elevación de los niveles sonoros.
- La Zona 3 que presenta niveles de ruido con un rango de 60-65 dB, es la de mayor extensión dentro del estudio representa al 44% de la extensión del estudio y se define como una zona de prestación de servicios debido principalmente a que se ubican varias instituciones financieras como el Banco Pichincha, Cooperativa CACPECO, Mutualista Pichincha, así como dependencias públicas: GAD Municipal, SRI Gobernación de Cotopaxi, Prefectura de Cotopaxi, instituciones educativas como el Instituto Vicente León, instituciones dedicadas al cuidado de la salud como el Centro de Salud del cantón por citar algunas lo que influye directamente en incremento del tráfico vehicular, que se identificó es la fuente principal de ruido en la zona.
- La Zona 4 ubicada dentro del rango de 65-70 dB es una zona eminentemente comercial, aquí se ubican varios establecimientos de diversa índole que provocan que el tráfico vehicular se vea obstruido y muchas veces se vuelva insostenible. En esta zona se puede visualizar que hay una presencia substancial de fuentes fijas que contribuyen en el

incremento del ruido, pues cada local comercial dispone de diversos sistemas de amplificación de sonido utilizados como estrategias de publicidad, lo que genera una problemática de ruido que va en aumento.

• La zona 5, corresponde al 3% de la extensión del estudio. Es una zona puntual que presenta los niveles de ruido más elevados con un rango de 70-75 dB, que debe está problemática a un hecho exacto que es la ubicación de la escuela Elvira Ortega y el Instituto "Victoria Vásconez Cuvi" que conforman actualmente una sola Unidad Educativa, los altos niveles de ruido se presentan en la franja horaria de inicio y término de la jornada estudiantil, puntualizado que contempla dos horarios de trabajo matutino y vespertino, lo que genera un enorme problema de tránsito, proveniente tanto de vehículos particulares como de aquellos destinados al servicio de transporte escolar que se ve mucho más agravado pues por esta zona circula transporte público que aún más sumada la presencia de la multitud de alumnado, se determinó es la causa de la existencia de niveles caóticos de ruido.

3.2.2. Recomendaciones

- De acuerdo a lo establecido en el Anexo 5 del Libro VI del TULSMA suscrito mediante Acuerdo Ministerial N° 097 del 30 de julio de 2015, que determina "(...)Usos de Suelo-Uso Residencial (R1) El nivel máximo de emisión para uso residencial también aplica al uso de suelo destinado a resguardar el patrimonio cultural, el cual se refiere al suelo ocupado por áreas, elementos o edificaciones que forman parte del legado histórico o con un valor patrimonial que requieren preservarse y recuperarse." y tomado en cuenta que uno de los resultado de la presente investigación determina que la Zona 5 presenta niveles sonoros de 70 a 75 dB los cuales son incompatibles con el uso de suelo determinado para esta zona, (residencial de máximo 55 dB), especificando que esta incompatibilidad es causada principalmente por las actividades relacionadas con el funcionamiento de la Unidad Educativa "Victoria Vásconez Cuvi". Se recomienda la realización de un Estudio que reestructure los límites del Centro Histórico de la Ciudad de Latacunga, considerando la exclusión del área que ocupa la Unidad Educativa "Victoria Vásconez Cuvi". Recomendando que se la puede considerar zona Industrial 1 (101), lo cual es coherente con las actividades desarrolladas en este sector, acotando que esta recomendación se realiza con la finalidad de que se te tomen medidas viables que se puedan concretar y con el compromiso de fomentar un ambiente menos ruidoso en concordancia con la Normativa Ambiental.
- Se debe considerar la creación de un plan de movilidad para "Unidad Educativa Victoria Vásconez" que principalmente aplique para el servicio de transporte escolar y autos particulares con la finalidad de disminuir los altos los altos niveles sonoros (70 a 75 dB) que se determinaron en la investigación.
- Es factible declarar a la Zona 5 como restringida al acceso vehicular durante la franja horaria de entrada y salida de clases de la Unidad

Educativa "Victoria Vásconez Cuvi" apegándose a lo estipulado en el TULSMA Anexo 5 NIVELES MAXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES Y NIVELES MÁXIMOS DE VIBRACIÓN Y METODOLOGÍA DE MEDICIÓN (acuerdo 097) que contempla en sus Consideraciones Generales literal h) Los GAD Municipales en función del grado de cumplimiento de esta norma podrá señalar zonas de restricción temporal o permanente de ruido, con el objetivo de mejorar la calidad ambiental

- Se recomienda que durante el proceso de matriculación vehicular se inspeccione y monitoree la utilización de pitos, cornetas o algún dispositivo que tengan instalado principalmente los vehículos de servicio o transporte humano a fin de determinar que se cumpla con los límites permisibles de ruido dentro de la ciudad, de acuerdo a lo establecido en el TULSMA Anexo 5 NIVELES MAXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES Y NIVELES MÁXIMOS DE VIBRACIÓN Y METODOLOGÍA DE MEDICIÓN (acuerdo 097) que contempla en sus Consideraciones Generales literal g) Los GAD Municipales deben controlar el uso de alarmas en vehículos y edificaciones, así como el uso de bocinas, campanas, sistemas de amplificación de sonido, sirenas o artefactos similares.
- Se debe controlar el ruido emitido por fuentes fijas como parlantes, sistemas de sonido, altavoces, etc., ubicados en varios locales comerciales del Centro Histórico de la ciudad así como de aquellos vehículos que utilizan altavoces como estrategias de publicidad, en base a lo estipulado en el TULSMA Anexo 5 NIVELES MAXIMOS DE EMISIÓN DE RUIDO Y METODOLOGÍA DE MEDICIÓN PARA FUENTES FIJAS Y FUENTES MÓVILES Y NIVELES MÁXIMOS DE VIBRACIÓN Y METODOLOGÍA

DE MEDICIÓN (acuerdo 097) que contempla en sus Consideraciones Generales literal i) Los GAD Municipales regularán el uso de sistemas de altavoces fijos o en vehículos, con fines de promocionar la venta o adquisición de cualquier producto.

- Se recomienda realizar un estudio de la cantidad y eficacia de estacionamientos disponibles en la Zona 4 que evalué la disposición y ubicación de los mismos así como la necesidad de reubicarlos o de la creación de nuevos sitios de ser el caso, como ejemplo se puede citar la calle Antonio Clavijo entre las calles Antonio José de Sucre y Calixto Pino, que podría albergar dos franjas de estacionamiento pues es una calle de mayor amplitud y sin mayor movilidad, lo cual favorecería al descongestionamiento de la zona 4 generado por falta de sitios disponibles para estacionamiento durante franjas horarias pico.
- El Sistema Municipal Tarifado de Estacionamiento de Latacunga (SIMTEL) debería incorporar mayor personal en la zona 4 definida como de carácter problemático por la detención del tráfico vehicular existente con el objetivo de mejorar el flujo vehicular ya que un mayor número de personal podrá ayudar a que se aproveche de mejor manera las plazas de estacionamiento existentes en la zona.

3.3.BIBLIOGRAFIA Y REFERENCIAS BIBLIOGRAFICAS

3.3.1. Libros

- Bartí, R. D. (2010). *Acústica Medioambiental* (Vol. II). España: Club Universitario.
- Miyara, F. (1999). Control de Ruido. Rosario, Argentina: ASOLOFAL.

3.3.2. Legislación

- GAD Municipal del Canton Latacunga. (2013). Diágnostico del Plan de Desarrollo del Cantón Latacunga.
- Ministerio del Ambiente del Ecuador. (2015). *Texto Unificado de Legislación Secundaria del Ministerio del Ambiente Libro VI* (Especial 316 del 04 de mayo de 2015 ed.). Quito, Ecuador: Registro Oficial.
- Ministerio del Ambiente de Perú. (2012). *Protocolo Nacional de Ruido Ambiental*. Ministerio del Ambiente de Perú, Lima.
- Asociación Española de Normalización y Certificación (AENOR). (2005). *UNE-ISO 1996-1*. Recuperado el 12 de 06 de 2015, de https://es.scribd.com/doc/293361896/ISO-1996-1

3.3.3. Tesis

Gavilanes Álvarez, G. F., & López Granja, M. I. (08 de 2012). Desarrollo de una Metodología para la Ejecución de Modelos Matemáticos de Atenuación de Ruido, en Medio Atmosférico, para Fuentes Industriales Fijas Simples o Complejas. Escuela Politécnica Nacional: Proyecto previo a la Obtención del Título De Ingeniero Ambiental. Quito, Pichincha, Ecuador.

3.3.4. Documentos web

- Aparici, P. V. (2010). *Método y Evaluación de la incertidumbre en Acústica Ambiental*. Recuperado el 12 de 05 de 2015, de https://riunet.upv.es/bitstream/handle/10251/9223/PFCPabloVicente.pdf
- Arce Mesén, R. (Junio de 2001). *Interpolación Espacial*. Recuperado el 2011, de http://www.gisits.com/docs/Interpolacion_espacial.PDF
- Asinsten, J. C. (10 de 07 de 2006). *El sonido*. Recuperado el 18 de 03 de 2015, de educar:

- http://coleccion.educ.ar/coleccion/CD13/contenidos/materiales/archivos/sonido.pdf
- Brüel & Kjær Sound & Vibration Measurement A/S. (31 de 08 de 2000). *Ruido Ambiental*. Recuperado el 14 de 07 de 2014, de Brüel & Kjær: http://www.bksv.com/doc/br1630.pdf
- Sarría, F. A. (12 de 02 de 2006). *Sistemas de Información Geográfica*. Recuperado el 22 de 07 de 2015, de SIGMUR: http://www.um.es/geograf/sigmur/sigpdf/temario.pdf
- Segués, F. (14 de 03 de 2007). *Conceptos Básicos del Ruido Ambiental*.

 Recuperado el 24 de 03 de 2015, de

 http://infodigital.opandalucia.es/bvial/bitstream/10326/720/1/conceptos%2
 0b%C3%A1sicos%20ruido%20ambiental.pdf
- STEE EILAS. (12 de 05 de 2001). *Jornada Critrios Acústicos en el Diseño de Centros Docentes*. Recuperado el 17 de 01 de 2015, de Parte I Fundamentos del Ruido y su Caracterización: http://zaharra.steilas.eus/dok/arloak/lan_osasuna/udakoikas/acust/acus2.pd f
- Viro, G. (23 de 02 de 2002). Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Obtenido de http://www.fceia.unr.edu.ar/acustica/biblio/protoc-fiuba.pdf

3.3.5. Revistas

Universidad Técnica de Cotopaxi. (2007). Determinación de la Contaminación Acústica y levantamiento de curvas isosónicas en centros poblados de Latacunga y Quito. Dirección de Proyectos Productivos, Latacunga

3.3.6. Sitios web

- Comité Científico Interdiciplinario de Ecológía y Ruido. (12 de 12 de 2000). *Qué es el ruido*. Recuperado el 8 de 04 de 2015, de http://www.fceia.unr.edu.ar/acustica/comite/indcomit.htm
- Departamento de Territorio y Sostenibilidad de Catalunya. (2015). *Mapas estratégicos de ruido*. Recuperado el 21 de 06 de 2015, de http://mediambient.gencat.cat/es/05_ambits_dactuacio/atmosfera/contamin acio_acustica/gestio_ambiental_del_soroll/mapes_de_soroll/mapes_estrate gics_de_soroll/

- González Saro, G., Blázquez, A., Pérez, A. L., Martínez, M., & Blaya Andreu, R. (s.f.). ¿Qué es el Sonido? Recuperado el 12 de 04 de 2015, de Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado: http://www.ite.educacion.es/formacion/materiales/60/cd/02_elsonido/inde x.html
- Miyara, F. (27 de 09 de 2015). *Niveles sonoros*. Recuperado el 21 de 10 de 2015, de Laboratorio de Acústica y Electroácústica: http://www.fceia.unr.edu.ar/acustica/biblio/niveles.htm
- Organización Mundial de la Salud (OMS). (04 de 1999). *Guías para el ruido*. (B. Berglund, T. Lindvall, & D. Schwela, Edits.) Recuperado el 04 de 05 de 2015, de https://www.google.com/search?q=+http%3A%2F%2Fwww.cepis.opsoms.org%2Fbvsci%2Fe%2Ffulltext%2Fruido%2Fruido2.pdf&ie=utf-8&oe=utf-8
- PCP files. (11 de 08 de 2005). *ondas sonoras*. Recuperado el 10 de 04 de 2015, de pcpaudio:

 http://www.pcpaudio.com/pcpfiles/doc_altavoces/ondas_sonoras/ondas_sonoras.html
- Pecorelli, S. (09 de 04 de 2014). *Manual Laboratorio de Higiene Industrial I.*Recuperado el 12 de 05 de 2015, de SlideShare:
 http://es.slideshare.net/matiastorrejon/manual-laboratorio-ruidos-1
- Pérez de Siles Marín, A. C. (09 de 2001). *Aplicación informática orientada a la formación y evaluación de riesgos derivados de la exposición al ruido en ambientes industriales*. Recuperado el 26 de 03 de 2015, de Universidad de Córdoba, Escuela Politécnica Superior: http://rabfis15.uco.es/lvct/tutorial/1/paginas%20proyecto%20def/presentac i%C3%B3n.htm
- Sistema de Información sobre Contaminación Acústica (SICA). (2015). *Los Mapas de Ruido*. Recuperado el 21 de 06 de 2015, de http://sicaweb.cedex.es/mapas-intro.php
- TrasguNET. (2015). *Cómo se hace un mapa de ruido*. Recuperado el 24 de 06 de 2015, de el ruido.com: http://www.elruido.com/portal/web/trasgunet/mapa-de-ruido1
- Viro, G. (23 de 02 de 2002). Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Obtenido de http://www.fceia.unr.edu.ar/acustica/biblio/protoc-fiuba.pdf

ANEXOS