

UNIVERSIDAD TÉCNICA DE COTOPAXI FACULTAD DE CIENCIAS DE LA INGENIERÍA Y APLICADAS CARRERA DE INGENIERÍA ELÉCTRICA

PROYECTO DE INVESTIGACIÓN

"ANÁLISIS DEL IMPACTO EN LA CONFIABILIDAD DE UN ALIMENTADOR CON LA UTILIZACIÓN DE ALMACENAMIENTO DISTRIBUIDO DE ENERGÍA"

Proyecto de Investigación presentado previo a la obtención del Título de Ingeniero Eléctrico en Sistemas Eléctricos de Potencia

Autores:

Llambo Salazar Henry Paul

Pallo Oña Cristian Israel

Tutor:

Ing. Edwin Lema G. MSc.

LATACUNGA – ECUADOR

FEBRERO 2019

DECLARACIÓN DE AUTORÍA

Nosotros, LLAMBO SALAZAR HENRY PAÚL Y PALLO OÑA CRISTIAN ISRAEL, declaramos ser autores del presente proyecto de investigación; "ANÁLISIS DEL IMPACTO EN LA CONFIABILIDAD DE UN ALIMENTADOR CON LA UTILIZACIÓN DE ALMACENAMIENTO DISTRIBUIDO DE ENERGÍA", siendo el Ing. MsC. Edwin Lema tutor del presente trabajo; y eximo expresamente a la Universidad Técnica de Cotopaxi y sus representantes legales de posibles reclamos o acciones legales.

Además, certificamos que las ideas, conceptos, procedimientos y resultados vertidos en el presente proyecto de investigación, son de exclusiva responsabilidad.

Llambo Henry

C.I.: 180436212-5

Pallo Cristian

C.I.: 050429711-0

AVAL DEL TUTOR DE PROYECTO DE INVESTIGACIÓN

En calidad de Tutor del proyecto de investigación sobre el tema:

"ANÁLISIS DEL IMPACTO EN LA CONFIABILIDAD DE UN ALIMENTADOR CON LA UTILIZACIÓN DE ALMACENAMIENTO DISTRIBUIDO DE ENERGÍA", de LLAMBO SALAZAR HENRY PAUL Y PALLO OÑA CRISTIAN ISRAEL, de la Carrera de Ingeniería Eléctrica, considero que dicho Informe Investigativo cumple con los requerimientos metodológicos y aportes Científicos-Técnicos suficientes para ser sometidos a la evaluación del Tribunal de Validación de Proyecto que el Consejo Directivo de la Facultad de Ciencias de la Ingeniería y Aplicadas de la Universidad Técnica de Cotopaxi designe, para su correspondiente estudio y calificación

Latacunga, febrero 2019

TUTOR:

Ing. Edwin Marcelo Lema Guamán MsC.

C.I.: 030226435-1

APROBACIÓN DEL TRIBUNAL DE TITULACIÓN

En calidad de Tribunal de Lectores, aprueban el presente Informe de Investigación de acuerdo a las disposiciones reglamentarias emitidas por la Universidad Técnica de Cotopaxi, y por la FACULTAD DE CIENCIAS DE LA INGENIERIA Y APLICADAS ; por cuanto, los postulantes: Llambo Salazar Henry Paul y Pallo Oña Cristian Israel, con el título de Proyecto de titulación: Análisis del impacto en la confiabilidad de un alimentador, con la utilización de almacenamiento distribuido de la energía, han considerado las recomendaciones emitidas oportunamente y reúne los méritos suficientes para ser sometido al acto de Sustentación de Proyecto.

Por lo antes expuesto, se autoriza realizar los empastados correspondientes, según la normativa institucional.

Latacunga, 07 de Febrero del 2019

Para constancia firman:

Lector 1 (Presidente) Nombre: MSc.: Gabriel Pesantez

CC: 030189388-9

Lector 2

Nombre: MSc.: Marco León Segovia

CC: 050230540-2

Lector 3

Nombre: MsC. Xavier Proaño

CC: 050268642-4

AGRADECIMIENTO

Agradezco a *Dios, a la virgen del Quinche*, por ser mis guías espirituales.

A *mis docentes* por ser parte de mi instrucción académica y personal.

A *toda mi familia*, por sus palabras de ánimo, consejos para salir adelante y ser una persona de bien.

A mis amigos *Cristian*, *Algenis*, *Bryan*, *Walter*, por formar parte de mi vida con altos y bajos y estar siempre ahí.

Henry Llambo

AGRADECIMIENTO

Agradezco a *Dios, a la virgen del Quinche*, a mis *Padres y Hermanos*, por la confianza puesta en mí.

A mis *profesores* que me formaron académicamente, siendo uno de los conocimientos para enfrentarme al mundo laboral.

A mis amigos/as, *Jorge*, *Algennis*, *Diana*, *Henry*, *Gloria*, *Darwin*, *Martha*, porque hemos compartido momentos alegres/tristes en el transcurso de mi carrera universitaria, y me enseñaron a que los amigos verdaderos están ahí sin pedirlo.

Al Ingeniero *Oswaldo García* que, con sus palabras emotivas y muy acertadas, dieron fe de tener mayor confianza en mí.

A la *familia García Lozano* y a la *señora Beatriz Herrera* que me enseñaron a que los sueños se los puede hacer realidad si se tiene un objetivo y meta trazada.

Cristian Israel

A nuestro tutor <i>Ing. Edwin Lema</i> , por el asesoramiento tan acertado en la realización de nuestro tema de investigación y haber compartido sus conocimientos con nosotros.
Al <i>Ing. Franklin Melo</i> que forma parte de la Empresa Eléctrica Ambato, por ayudarnos con información para la realización de este proyecto.
Henry, Cristian

DEDICATORIA

A mis padres *Luis y Martha* por el apoyo incondicional que me han brindado en todo mi trayecto académico y personal.

A mis *hermanas, tíos, primos y amigos* que me han brindado palabras de aliento en todo este tiempo, los cuales fueron motivación para terminar este objetivo.

A la memoria de mis *abuelitas Mercedes y Manuela y mi tía Magdalena*, que fueron parte importante de mi vida y que estuvieron en los momentos difíciles.

Henry Llambo

DEDICATORIA

A Dios, a la virgen del Quinche que fueron y seguirán siendo mis guías espirituales. A mis padres Luis y Mercedes que, con sus sanos consejos, experiencias y sus palabras de motivación me orientaron hasta el final de mi carrera universitaria, a mis hermanos Andy, Steven y Yuleysi que son y serán mis pilares primordiales en el trascurso de mi vida.

A mis abuelitos *José Oña* (+) *y Alegría Casa*, que me encaminaron hacia el bien.

Cristian Israel

ÍNDICE

1. INFORMACION GENERAL	5
2. DESCRIPCIÓN DEL PROYECTO	6
3. JUSTIFICACIÓN DEL PROYECTO	7
4. BENEFICIARIOS DEL PROYECTO	8
5. PROBLEMA DE INVESTIGACIÓN	9
6. OBJETIVOS	10
6.1. GENERAL	10
6.2. ESPECÍFICOS	10
7. ACTIVIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS OBJETIVOS PLANT 11	EADOS
8. FUNDAMENTACIÓN CIENTÍFICO TÉCNICA	12
8.1. CAPITULO I	12
8.1.1. FUNDAMENTACION TEORICA	12
8.1.2. SISTEMAS ELÉCTRICOS	12
8.1.3. CARACTERÍSTICAS GENERALES DE LOS SISTEMAS DE ENERGÍA ELÉC 13	TRICA
8.1.4. SISTEMAS DE TRANSMISIÓN Y DE DISTRIBUCIÓN	15
8.1.5. ALIMENTADOR PRIMARIO	16
8.1.6. CIRCUITOS SECUNDARIOS	16
8.1.7. CONFIABILIDAD EN UN SISTEMA ELÉCTRICO	20
8.1.8. PARÁMETROS DE CONFIABILIDAD	21
8.1.9. OPERACIÓN-FALLA-RECUPERACIÓN-OPERACIÓN (RENOVABLE)	22
8.1.9.1. TIEMPO DE OPERACIÓN <i>MTTF</i> (<i>mi</i>):	23
8.1.9.2. TIEMPO DE FALLAS <i>MTTR</i> (<i>ri</i>)	23
8.1.9.3. DISPONIBILIDAD FORZADA (A)	24
8.1.9.4. INDISPONIBILIDAD FORZADA(U)	24
8.1.9.6. TIEMPO PROMEDIO DE REPARACIÓN	25
8.1.9.7. TIEMPO FUERA DE SERVICIO ANUAL (INDISPONIBILIDAD)	25
8.1.10. INTERRUPCIONES	26
8.1.10.1. REGISTRO Y CLASIFICACIÓN DE LAS INTERRUPCIONES	26
8.1.11. ÍNDICES DE CALIDAD DEL SERVICIO ELÉCTRICO DE DISTRIBUCIÓN	28
8.1.12. ÍNDICES ORIENTADOS AL CONSUMIDOR:	32
8.2. TIPOS DE ALMACENADORES DE ENERGÍA	34

8.2.1. HIDRÓGENO - OXÍGENO
8.3. CAPITULO II
8.3.1. PRESENTACION, INTERPRETACION Y ANALISIS DEL ALIMENTADOR53
8.3.4. ALIMENTADOR PICAIHUA
8.3.5. DENSIDAD DEMOGRÁFICA55
8.3.7. DIVISION DEL ALIMENTADOR POR TRAMOS57
8.3.8. CAPACIDAD DE LOS TRANSFORMADORES DE ACUERDO AL NUMERO DE TRAMOS PROPUESTOS69
8.3.9. IDENTIFICACION DE INTERRUPCIONES
8.4. CAPITULO III
8.4.1. PROPUESTA
8.4.1.1. CALCULO DE LA CONFIABILIDAD EN LA CABECERA DEL ALIMENTADOR 70
8.4.2. DEMANDA ACTUAL Y PROYECCIÓN DE LA DEMANDA EN EL ALIMENTADOR 79
8.4.2.1. CONSUMO ANUAL DE POTENCIA Y ENERGÍA79
8.4.2.2. TASA DE CRECIMIENTO ANUAL
8.4.2.4. CARGA PROYECTADA EN EL TRANSFORMADOR 10161 EN kVA84
8.6. ESTUDIO COMPARATIVO SIN Y CON ALMACENAMIENTO DE ENERGIA119
9. HIPÓTESIS13
10. METODOLOGÍAS Y DISEÑO EXPERIMENTAL
10.1. DISEÑO EXPERIMENTAL 13
12. ANÁLISIS Y DISCUSIÓN DE RESULTADOS
13. CONCLUSIONES Y RECOMENDACIONES
14. BIBLIOGRAFIA
15. ANEXOS

ÍNDICE DE TABLAS

TABLA 1: DESCRIPCIÓN DE LAS ACTIVIDADES REALIZADAS	11
TABLA 2: CLASIFICACIÓN DE LOS ALIMENTADORES	29
TABLA 3: LÍMITES PARA LA CALIDAD DEL SERVICIO TÉCNICO – ÍNDICES GLOBALES	30
TABLA 4: CARACTERÍSTICAS DE LOS SISTEMAS UPS	49
TABLA 5: ESPECIFICACIONES TÉCNICAS DE LOS ALMACENADORES DE ENERGÍA	52
TABLA 6: CARACTERÍSTICAS DE LA DIVISIÓN DE CADA TRAMO	57
TABLA 7: CARGA INSTALADA (kVA) EN CADA TRAMO	62
TABLA 8: CARGA DESBALANCEADA POR FASE (A, B, C, ABC)	62
TABLA 9: CARGA BALANCEADA (kVA) EN CADA TRAMO	64
TABLA 10: POTENCIAS EN CADA FASE (A, B, C, ABC)	
TABLA 11: REGISTRO DE INTERRUPCIONES DEL ALIMENTADOR PICAIHUA	
TABLA 12: TTIK, FMIK Y ENS EN LOS AÑOS 2016, 2017, 2018	72
TABLA 13: INTERRUPCIONES EN EL TRAMO Nº 1	
TABLA 14: ÍNDICES DE INTERRUPCIONES POR ELEMENTOS EN EL TRAMO Nº 1	
TABLA 15: ÍNDICES GENERALES EN EL TRAMO Nº 1	77
TABLA 16: ÍNDICES DE CALIDAD Y CONFIABILIDAD EN LOS SIETE TRAMOS DEL	
ALIMENTADOR PICAIHUA EN SU ESTADO ACTUAL	
TABLA 17: CRECIMIENTO DE LA CARGA INSTALADA EN EL ALIMENTADOR EN LOS AÑO	
2016, 2017, Y 2018	
TABLA 18: ESTRATOS DE CONSUMIDORES RESIDENCIALES	
TABLA 19: VOLTAJES Y CORRIENTES DE CONSUMIDORES SEGÚN EL ESTRATO (A – B –	
TABLA 20: VOLTAJES Y CORRIENTES DE CONSUMIDORES SEGÚN EL ESTRATO (AB)	
TABLA 21: VOLTAJES Y CORRIENTES DE CONSUMIDORES SEGÚN EL ESTRATO (ABC)	
TABLA 22: RENDIMIENTO DE TRANSFORMADORES POR TRAMO (ACTUAL Y	02
PROYECTADO)	87
TABLA 23: ESTIMACIÓN DE LA POTENCIA DEL TRANSFORMADOR (2029)	
TABLA 24: DATOS PARA CÁLCULO DE LOS ÍNDICES DEL SISTEMA	
TABLA 25 DATOS PARA EL CÁLCULO DE LOS ÍNDICES DEL SISTEMA	
TABLA 26: ÍNDICES DE CALIDAD ENFOCADOS AL CONSUMIDOR	
TABLA 27: POTENCIA Y CAPACIDAD DEL ALIMENTADOR	
TABLA 28: NUMERO DE ALMACENADORES A SER UTILIZADO EN EL ALIMENTADOR	
TABLA 29: CANTIDAD DE ALMACENADORES POR TRAMO	
TABLA 30: CARGA INSTALADA CON LA INTRODUCCIÓN DE LOS SISTEMAS DE	
ALMACENAMIENTO DE ENERGÍA.	114
TABLA 31: CARGA INSTALADA EN CADA FASE (A, B, C, ABC)	114
TABLA 32: INTERRUPCIONES CON Y SIN LA INTRODUCCIÓN DE LOS ALMACENADORES	S DE
ENERGÍA EN EL TRAMO 1	
TABLA 33: ÍNDICES DE CALIDAD EN EL TRAMO 1 CON LA INTRODUCCIÓN DE LOS	
ALMACENADORES DE ENERGÍA	117
TABLA 34 XXIII-XLI: ÍNDICES CON AUTONOMÍA DE 15 MINUTOS	
TABLA 35 XXIII-XLI: ÍNDICES CON AUTONOMÍA DE 30 MINUTOS	
TABLA 36 XXIII-XLI: ÍNDICES CON AUTONOMÍA DE 1 HORA.	118

TABLA 37: ÍNDICES DE CALIDAD EN LA CABECERA DEL ALIMENTADOR CON LA	
INTRODUCCIÓN DE LOS ALMACENADORES DE ENERGÍA119	
TABLA 38: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 1	
TABLA 39: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 2	
TABLA 40: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 3	
TABLA 41: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 4	
TABLA 42: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 5	
TABLA 43: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 6	
TABLA 44: COMPARACIÓN DE ÍNDICES EN EL TRAMO Nº 7	
TABLA 45: RESUMEN DE LOS ÍNDICES DE CONFIABILIDAD CON LA INTRODUCCIÓN DE	
ALMACENADORES DE ENERGÍA Y CON UNA AUTONOMÍA DE 60 MINUTOS127	
TABLA 46: TÉCNICAS DE INVESTIGACIÓN	

ÍNDICE DE FIGURAS

FIGURA 1: REPRESENTACIÓN ESQUEMÁTICA DE UN SISTEMA DE ENERGÍA ELÉCTRICA.	15
FIGURA 2: SISTEMA DE TRANSMISIÓN	15
FIGURA 3: SISTEMA TIPO RADIAL.	17
FIGURA 4: SISTEMA TIPO ANILLO.	
FIGURA 5: SISTEMA TIPO RED O MALLADO	
FIGURA 6: COSTO DE LA INVERSIÓN EN LA CONFIABILIDAD.	20
FIGURA 7: DIAGRAMA DE SECUENCIA DE ESTADOS.	21
FIGURA 8: OPERACIÓN - FALLA -RECUPERACIÓN	22
FIGURA 9: SISTEMA DE ALMACENAMIENTO DE ENERGÍA ELÉCTRICA POR MEDIO DEL	
SISTEMA HIDROGENO – OXIGENO	
FIGURA 10: MOTOR Y TURBINA DE HIDRÓGENO (ROBUSTO Y SIN EMISIONES DE CO2)	35
FIGURA 11: ESTACIÓN DE ALMACENAMIENTO DE ENERGÍA POR MEDIO DE AIRE	
COMPRIMIDO	
FIGURA 12: PCM RELACIÓN TEMPERATURA – ENTALPÍA	
FIGURA 13: UPS STANDBY	
FIGURA 14: SISTEMA UPS DE LÍNEA INTERACTIVA	
FIGURA 15: UPS STANDBY - FERRO	
FIGURA 16: UPS, ONLINE DE DOBLE CONVERSIÓN	
FIGURA 17: UPS ON LINE DE CONVERSIÓN DELTA	46
FIGURA 18: ANALOGÍA DEL SISTEMA UPS DE DOBLE CONVERSIÓN VS UPS DE	
CONVERSIÓN DELTA	
FIGURA 19: MODELO DEL ALMACENADOR DE ENERGÍA PCS100 UPS-I Y PCS100 AVC	
FIGURA 20: MODELO DEL ALMACENADOR DE ENERGÍA PCS 100 MV UPS	
FIGURA 21: DIAGRAMA UNIFILAR DEL DISEÑO DE UN SISTEMA DE ALMACENAMIENTO	
DE ENERGÍA DE 2 MVA (PCS100).	
FIGURA 22: DIAGRAMA UNIFILAR, SUBESTACIÓN TOTORAS	
FIGURA 23: ALIMENTADOR PICAIHUA (RED TRIFÁSICA Y MONOFÁSICA)	
FIGURA 24: DIAGRAMA DEL ALIMENTADOR (ESTADO ACTUAL)	
FIGURA 25: DIAGRAMA UNIFILAR DEL ALIMENTADOR PICAIHUA EN EL ESTADO ACTUA	
DE LAS CARGAS	
FIGURA 26: DIAGRAMA UNIFILAR ALIMENTADOR PICAIHUA CON BALANCE DE CARGA	
FIGURA 27: LONGITUD DEL ALIMENTADOR POR MEDIO DEL PROGRAMA GOOGLE EAR	
~	
FIGURA 28: TTIK Y FMIK EN EL AÑO 2016 – 2017 - 2018	
FIGURA 29: IDENTIFICACIÓN DE INTERRUPCIONES EN EL TRAMO Nº 1	
FIGURA 30: DIAGRAMA UNIFILAR, PARA EL CÁLCULO DE LOS ÍNDICES DEL CONSUMID	
FIGURA 31: DIAGRAMA DE CONEXIÓN DE LOS UPS CON LA RED	
FIGURA 32: DIAGRAMA DE LOS ELEMENTOS DEL ALMACENADOR DE ENERGÍA	
FIGURA 33: CURVA DE PROFUNDIDAD DE DESCARGA DE LA BATERÍA CON RELACION A	
LA VIDA UTIL	
FIGURA 34: CURVA DE DEMANDA DIARIA DEL ALIMENTADOR PICAIHUA	
FIGURA 35: CURVA DE DEMANDA DIARIA AL CARGAR 31 ALMACENADORES	
FIGURA 36: CURVA DE DEMANDA DIARIA AL CARGAR 27 ALMACENADORES	. 110

FIGURA 37: CURVA DE DEMANDA DIARIA AL CARGAR 21 ALMACENADORES	111
FIGURA 38: CURVA DE DEMANDA DIARIA AL CARGAR 8 ALMACENADORES	112
FIGURA 39: CURVA DE DEMANDA DIARIA AL CARGAR 4 ALMACENADORES	113
FIGURA 40: ELEMENTOS EN FALLA EN EL TRAMO 1.	116
FIGURA 41: TTIK EN LA CABECERA DEL ALIMENTADOR PICAIHUA	120
FIGURA 42: ENS EN LA CABECERA DEL ALIMENTADOR PICAIHUA	120
FIGURA 43: TTIK EN LOS 4 TRAMOS AFECTADOS	124
FIGURA 44: DIAGRAMA UNIFILAR ÍNDICES ESTADO ACTUAL	125
FIGURA 45: DIAGRAMA UNIFILAR DE LOS ÍNDICES DE CALIDAD CON LA INTROD	UCCIÓN
DE LOS ALMACENADORES DE ENERGÍA CON AUTONOMÍA DE 15, 30 Y 1 HORA	126

ÍNDICE DE ECUACIONES

TASA DE FALLA (1)	21
TASA DE REPARACIÓN (M) (2)	22
FRECUENCIA DE FALLA (F) (3)	
TIEMPO DE OPERACIÓN MTTF (m_i) (4)	
TIEMPO DE FALLAS MTTR (r_i) (5)	23
TIEMPO DE ANÁLISI (6)	
DISPONIBILIDAD FORZADA (A) (7)	24
INDISPONIBILIDAD FORZADA(U) (8)	24
TASA EQUIVALENTE DE FALLAS λ_s_(9)	25
TIEMPO PROMEDIO DE REPARACIÓN_(10)	25
TIEMPO FUERA DE SERVICIO ANUAL (INDISPONIBILIDAD) (11)	25
DETERMINACION DEL TIPO DE ALIMENTADOR (12)	28
FRECUENCIA MEDIA DE INTERRUPCIÓN POR CADA kVA INSTALADO (FMIK) (13)	29
TIEMPO TOTAL DE INTERRUPCIÓN POR kVA NOMINAL INSTALADO (TTIK) (14)	30
ENERGÍA NO SUMINISTRADA (15)	31
ENERGÍA PROMEDIO NO SUMINISTRADA POR CONSUMIDOR (ENSM (16)	31
ÍNDICE DE FRECUENCIA PROMEDIO DE INTERRUPCIÓN DEL SISTEMA (SAIFI)) (17)	
ÍNDICE DE DURACIÓN DE LA INTERRUPCIÓN PROMEDIO DEL SISTEMA (SAIDI) (18)	32
ÍNDICE DE FRECUENCIA DE INTERRUPCIÓN PROMEDIO DEL CLIENTE (CAIFI) (19)	33
ÍNDICE DE DURACIÓN DE INTERRUPCIÓN PROMEDIO DEL CLIENTE (CAIDI) (20)	33
ÍNDICE DE DISPONIBILIDAD DE SERVICIO PROMEDIO (INDISPONIBILIDAD) (ASAI) (21)	34
ÍNDICE DE DISPONIBILIDAD DE SERVICIO PROMEDIO (INDISPONIBILIDAD) (ASUI) _(22).	
TASA DE CRECIMIENTO GEOMÉTRICO (22)	79
CRECIMIENTO GEOMÉTRICO (23)	
TASA DE CRECIMIENTO ARITMETICO (24)	80
CRECIMIENTO ARITMETICO (25)	
POTENCIA PROYECTADA DEL TRANSFORMADOR (26)	84

ÍNDICE DE ANEXOS:

ANEXO I: USUARIOS EN EL TRANSFORMADOR Nº 10161	139
ANEXO II: TRANSFORMADOR TRIFÁSICO Nº 10161	139
ANEXO III: MEDICIÓN 1F EN MEDIDOR 3F USUARIO TIPO C Y D	140
ANEXO IV: MEDICIÓN EN MEDIDOR 1F USUARIO TIPO C, D, E	140
ANEXO V: MEDICIÓN EN MEDIDOR 2F USUARIO TIPO C	
ANEXO VI: SECTOR RECOLECTADO LAS MUESTRAS DE CORRIENTES Y VOLTAJES	3141
ANEXO VII: FACTOR DE DIVERSIDAD PARA N USUARIOS	142
ANEXO VIII: CARGA EN EL TRAMO Nº 1, Y RENDIMIENTO POR CADA TRANSFORM	IADOR.
ANEXO IX: CARGA EN EL TRAMO Nº 2, Y RENDIMIENTO POR CADA TRANSFORMA	DOR . 144
ANEXO X: CARGA EN EL TRAMO Nº 3, Y RENDIMIENTO POR CADA TRANSFORMA	DOR145
ANEXO XI: CARGA EN EL TRAMO Nº 4, Y RENDIMIENTO POR CADA TRANSFORMA	DOR .146
ANEXO XII: CARGA EN EL TRAMO Nº 5, Y RENDIMIENTO POR CADA TRANSFORM	ADOR 147
ANEXO XIII: CARGA EN EL TRAMO Nº 6, Y RENDIMIENTO POR CADA TRANSFORM	IADOR.
	148
ANEXO XIV: CARGA EN EL TRAMO N° 6, Y RENDIMIENTO POR CADA TRANSFORM	IADOR.
ANEXO XV: DIAGRAMA DEL ALIMENTADOR PICAIHUA CON BALANCE DE CARGA	
ANEXO XVI: INTERRUPCIONES EN EL AÑO 2016, 2017 Y 2018	
ANEXO XVII: TRAMO Nº 1 A) ESTADO ACTUAL B) BALANCEADO CARGAS	
ANEXO XVIII: TRAMO N° 2 A) ESTADO ACTUAL B) BALANCEADO CARGAS	
ANEXO XIX: TRAMO N° 3 A) ESTADO ACTUAL B) BALANCEADO CARGAS	
ANEXO XX: ESTADO ACTUAL A) TRAMO N° 4 B) TRAMO N° 5	
ANEXO XXI: TRAMO N° 6 A) ESTADO ACTUAL B) BALANCEADO CARGAS	
ANEXO XXII: TRAMO N° 7 A) ESTADO ACTUAL B) BALANCEADO CARGAS	
ANEXO XXIII: TABLA DE DATOS PARA LOS CÁLCULOS DE LOS ÍNDICES DE CALID	
CONFIABILIDAD EN LA CABECERA DEL ALIMENTADOR	
ANEXO XXIV: TRAMO N° 1 CON AUTONOMÍA DE 15 MINUTOS	
ANEXO XXV: TRAMO N° 1 CON AUTONOMÍA DE 30 MINUTOS	
ANEXO XXVI: TRAMO N° 1 CON AUTONOMÍA DE 60 MINUTOS (1H)	164
ANEXO XXVII: TRAMO N° 1 TABLA RESUMEN DE ÍNDICES CON DIFERENTES	
AUTONOMÍAS	
ANEXO XXVIII: TRAMO N° 2 CON AUTONOMÍA DE 15 MINUTOS	
ANEXO XXIX: TRAMO N° 2 CON AUTONOMÍA DE 30 MINUTOS	
ANEXO XXX: TRAMO N° 2 CON AUTONOMÍA DE 60 MINUTOS (1H)	
ANEXO XXXI: TRAMO N° 2 TABLA RESUMEN DE ÍNDICES CON DIFERENTES AUTO	
ANEXO XXXII: TRAMO N° 3 CON AUTONOMÍA DE 15 MINUTOS	
ANEXO XXXIII: TRAMO N° 3 CON AUTONOMÍA DE 30 MINUTOS	
ANEXO XXXIV: TRAMO N° 3 CON AUTONOMÍA DE 60 MINUTOS (1H)	169
ANEXO XXXV: TRAMO N° 3 TABLA RESUMEN DE ÍNDICES CON DIFERENTES	
AUTONOMÍAS	
ANEXO XXXVI: TRAMO N° 4 CON AUTONOMÍA DE 15 MINUTOS	
ANEXO XXXVII: TRAMO Nº 4 CON AUTONOMÍA DE 30 MINUTOS	171

ANEXO XXXVIII: TRAMO N° 4 CON AUTONOMÍA DE 60 MINUTOS (1H)	172
ANEXO XXXIX: TRAMO N° 4 TABLA RESUMEN DE INDICES CON DIFERENTES	
AUTONOMÍAS	173
ANEXO XL: TRAMO N° 5 ÍNDICES EN SU ESTADO ACTUAL	174
ANEXO XLI: TRAMO Nº 6 ÍNDICES DE CONFIABILIDAD	175
ANEXO XLII: TRAMO Nº 7 ÍNDICES DE CONFIABILIDAD	176
ANEXO XLIII: DATOS DE LOS COSTOS, PARA EL ANÁLISIS ECONÓMICO DE LOS SI	ISTEMAS
DE ALMACENAMIENTO.	178

UNIVERSIDAD TECNICA DE COTOPAXI UNIDAD ACADÉMICA DE CIENCIAS DE LA INGENIERÍA Y APLICADAS

TITULO: "ANÁLISIS DEL IMPACTO EN LA CONFIABILIDAD DE UN ALIMENTADOR

CON LA UTILIZACIÓN DE ALMACENAMIENTO DISTRIBUIDO DE ENERGÍA"

Autores: Llambo Salazar Henry Paul

Pallo Oña Cristian Israel

RESUMEN

En este estudio se analiza la comparación de los índices de confiabilidad del Alimentador

Picaihua, antes y después de introducir almacenadores distribuidos de energía. Además, se encontró diferentes tipos de almacenadores de energía de los cuales se seleccionó la fuente de potencia ininterrumpible que abastecerá al sistema de distribución. En este análisis se realiza diversos cálculos basados en los índices de confiabilidad del sistema, tales como TTIK, FMIK, SAIDI, SAIFI, CAIDI, tiempos de reparación, energía no suministrada y otros. Para realizar estos cálculos, al alimentador se dividió en siete tramos equitativamente, los mismos que fueron asignados dependiendo a la densidad de carga instalada. Seguidamente, se realizó cálculos de la demanda en cada transformador instalado, tomando como referencia a los estratos de los clientes que se encuentran conectados a los circuitos secundarios de los transformadores de distribución, procedemos a proyectar la demanda para un periodo de diez años para posteriormente dimensionar los bancos de baterías que vamos a necesitar para mejorar estos índices antes mencionados. Para finalizar con este tema de investigación acerca de los índices de calidad del servicio técnico de distribución, se realizó un estudio comparativo de confiabilidad entre el actual estado del alimentador, y el alimentador con la implementación de los almacenadores de energía, donde se concluye que al instalar los almacenadores que tienen diferentes tiempos de autonomía

Palabras claves: Confiabilidad, Autonomía, Almacenadores, Regulación.

encuentra dentro de los límites que exige el ARCONEL.

1

de 15 minutos, 30 minutos y una hora, se obtuvo que el TTIK reduce notablemente sus valores, lo

cual da a entender que el sistema obtuvo mayor confiabilidad en el periodo de análisis, aunque se

COTOPAXI TECHNICAL UNIVERSITY

ACADEMIC UNIT OF ENGINEERING SCIENCES AND APPLIED

TOPIC: "IMPACTS OF RELIABILITY DISTRIBUTION FEEDER INDICES WITH USE OF

DISTRIBUTED ENERGY STORAGE"

Authors: Llambo Salazar Henry Paul

Pallo Oña Cristian Israel

ABSTRACT

This study discusses the comparison of power supply reliability indexes Picaihua, before and

after introducing distributed storage systems of energy. It was found different types of energy

storage systems which selected by uninterruptible power supply to distribution system. Here

various calculations were carried out based over reliability indexes of the system, such as TTIK,

FMIK, SAIDI, SAIFI, CAIDI, times of service, non-supplied energy and others. To perform

these calculations, the feeder was divided into seven sections equally, they were assigned

depending of load installed density. The demand is, estimated on installed transformer, taking as

reference the strata of customers who are connected to the secondary circuits of distribution

transformers, it proceeds to project demand for a period of ten years later sized banks of batteries

that it needs to improve mentioned indexes. To end with this research about indexes of technical

quality service of distribution, a comparative study of reliability between the current state of the

power supply and the power supply with the implementation of storage energy systems, where is

concluded that when the storage devices were installed they have different times of 15 minutes,

30 minutes autonomy and one hour, the TTIK was obtained greatly reduces its values, which

implies that system achieved higher reliability in the period analysis, but it is within the

demanded limits by the ARCONEL.

Keywords: Reliability, Autonomy, Storages, Regulation.

2

CENTRO DE IDIOMAS

AVAL DE TRADUCCIÓN

En calidad de Docente del Idioma Inglés del Centro de Idiomas de la Universidad Técnica de Cotopaxi; en forma legal CERTIFICO que: la traducción del resumen del proyecto de investigación al idioma inglés presentado por los señores Egresados de la Carrera de Ingeniería Eléctrica de la Facultad CIYA: Llambo Salazar Henry Paul y Pallo Oña Cristian Israel, cuyo título versa "Análisis del impacto en la confiabilidad de un alimentador con la utilización de almacenamiento distribuido de energía", lo realizaron bajo mi supervisión y cumple con una correcta estructura gramatical del idioma.

Es todo cuanto puedo certificar en honor a la verdad y autorizo a los peticionarios hacer uso del presente certificado de la manera ética que estimaren conveniente.

Latacunga, Febrero del 2019

Atentamente,

Lic. MSc. Edison Marcelo Pacheco Pruna

DOCENTE DEL CENTRO DE IDIOMAS

C.I. 050261735-0

INTRODUCCION

El presente trabajo de tesis tiene como objetivo principal el estudio comparativo de la confiabilidad de los sistemas eléctricos, utilizando el almacenamiento distribuido de la energía como son los bancos de baterías, las variables que se deben tomar en cuenta son los índices de confiabilidad como son FMIK y TTIK, cálculos que se los realizara de acuerdo al alimentador Picaihua, en periodos mensuales y anuales de acuerdo a cada uno de los elementos que forman parte de este sistema. Eventos inesperados en los sistemas de distribución como cortocircuitos, caída de árboles, descargas atmosféricas, entre otros, pueden ocasionar interrupciones de diferente tipo a los consumidores, por ejemplo, un minuto sin energía eléctrica puede causar que se pierda la información de un computador, lo cual resulta evidentemente mucho menos severo que si se produce la parada de un grupo de motores y por tanto de toda una cadena de producción, por lo que se desea reducir estos tiempos de interrupción.

Por tanto, se basa en la fundamentación teórica que sustentan la propuesta de investigación, donde se aborda temas como son los diferentes tipos de sistemas eléctricos, tipos de almacenamiento distribuido de la energía, la clasificación de las interrupciones que existen, se repasara también las definiciones de los índices de confiabilidad y los índices de distribución, para concluir este capítulo se hace un recuento de los diferentes tipos de UPS.

En el alimentador en estudio existen problemas de continuidad de servicio eléctrico, lo cual requiere de dicho análisis de confiabilidad, donde se dimensionará los bancos de baterías de acuerdo a la proyección de la demanda que será calculada en este trabajo, tomando en cuenta los diferentes usuarios que se encuentran conectados a este sistema.

1. INFORMACIÓN GENERAL

Título del Proyecto:

Análisis del impacto en la confiabilidad de un alimentador con la utilización de almacenamiento distribuido de energía.

Fecha de inicio:

02 de abril de 2018

Fecha de finalización:

02 de febrero 2019

Lugar de ejecución:

Ambato - Tungurahua

Facultad que auspicia

Facultad de ciencias de la ingeniería y aplicadas.

Carrera que auspicia:

Ingeniería eléctrica

Equipo de Trabajo:

Tutor: Ing. Edwin Lema G. Msc.

Estudiantes: Llambo Salazar Henry Paul

Pallo Oña Cristian Israel

Área de Conocimiento:

07 Ingeniería, industria y	071 Ingenie	ía y	0713	Electricidad	У
construcción	profesiones afines		energía		

Línea de investigación:

Energías alternativas y renovables, eficiencia energética y protección ambiental

Sub líneas de investigación de la Carrera:

Explotación y diseño de sistemas eléctricos de potencia.

2. DESCRIPCIÓN DEL PROYECTO

La demanda de energía eléctrica aumenta significativamente en el sector residencial, comercial e industrial, la misma que ha sido causa de frecuentes interrupciones al paso del tiempo, dando lugar a inconvenientes en cada hogar de la zona. El propósito de este trabajo es analizar los principales cortes del servicio eléctrico con datos históricos de dos años, además la comparación de los índices de calidad (TTIK Y FMIK) calculados y los normalizados (ARCONEL), y en base a ello evaluar el estado de servicio eléctrico del alimentador.

A nivel nacional han ingresado nuevas centrales de generación por el impacto de las cocinas de inducción que fue impulsado por el estado ecuatoriano, este es el cambio de una cocina que utiliza el cilindro de gas a una que funcione con electricidad, ante este proyecto la provincia de Tungurahua cuenta con personas que adquirieron este servicio y las mismas requieren recibir el suministro eléctrico continuo, confiable y sin interrupciones, estos requerimientos estarán relacionados con el estudio de confiabilidad del alimentador y la manera de contrarrestar el impacto de las intermitencias será con la inclusión de unidades de almacenamiento de energía, de modo que la energía eléctrica sea almacenada en bancos de baterías, para que esta pueda ser utilizado en un momento posterior y con ello reducir las interrupciones que se presentan en el tiempo.

3. JUSTIFICACIÓN DEL PROYECTO

Un sistema de almacenamiento de energía eléctrica para una empresa de distribución o para sistemas aislados es de gran necesidad, lo cual este sistema ayuda a mejorar diferentes aspectos como es la confiabilidad del sistema, calidad de servicio y el funcionamiento del sistema eléctrico, ya que sin estos almacenadores dependiendo de cualquier tipo de tecnología se vería reflejado con interrupciones inesperadas.

Al realizar el estudio de los almacenadores de energía en puntos estratégicos que serán implementados, se mejorará la confiabilidad en los puntos de entrada a las cargas, es decir con los datos históricos de los índices de confiabilidad se encontrarán los sectores más vulnerables del alimentador y se determinará el lugar en donde se ubicará el sistema de almacenamiento distribuido de energía, en nuestro caso vamos a considerar los bancos de baterías, con todo esto se lograra un suministro continuo de energía eléctrica.

La necesidad de disponer de altos niveles de confiabilidad debido al sistema implementado por el gobierno el cual se basa en las cocinas de inducción, es de suma importancia para las empresas distribuidoras, puesto que estos deben proveer de un suministro de calidad, es decir que no tenga interrupciones, debido a que los usuarios de dicho alimentador que utilizan esta tecnología para la cocción de sus alimentos se alarman por dichas interrupciones imprevistas.

Los sistemas de almacenamiento ininterrumpidos (SAI), conocidos por sus siglas en ingles UPS Uninterruptible Power Supply, son dispositivos que ayudan a reducir tiempos de interrupciones por desconexiones, fallas, etc., actualmente estos dispositivos tienen un impacto directo en Estados Unidos. Este país, cuenta con una capacidad instalada de 1080 Mw desde el año 2013 – 2017, con 100 Mwh, se pretende implementar para el año 2018 una capacidad de energía con 1000 Mwh en crecimiento.

Este sistema de almacenamiento distribuido desde un punto de vista económico se puede decir que no es barato, pero de acuerdo a un estudio ya realizado en el país como es EEUU este sistema es factible debido a que al conectar estos equipos UPS damos más confiabilidad a un alimentador y disminuimos perdidas tanto técnicas como económicas, y los costos por perdidas que decrecieron se puede financiar a estos sistemas en muy poco tiempo.

4. BENEFICIARIOS DEL PROYECTO

Los beneficiarios a este trabajo de investigación se detallan a continuación:

Barrios:

- San pedro de Picahiua
- La tarazana
- San Cayetano
- San Isidro
- Entrada techo propio
- Picaihua centro

Centros de educación:

- Colegio Nacional Picaihua
- Centro Educativo Basica Emilia Pardo Bazan
- Escuela Cristobal Vela
- Centro Educativo Inicial Los Vergeles

Hospitales:

• Centro de salud Picaihua

Estadios:

- Campo deportivo Picaihua centro
- Campo deportivo (Junto al mercado)
- Campo deportivo (junto al centro educativo inicial los vergeles)
- Campo deportivo

Otros:

- Tenencia política r. Civil
- Cementerio
- Mercado
- Templo religioso

5. PROBLEMA DE INVESTIGACIÓN

Con el ingreso al mercado comercial de las cocinas de inducción, cada empresa de distribución debe realizar estudios de confiabilidad de cada uno de sus alimentadores ya que, si estas redes primarias presentan interrupciones frecuentes, los usuarios que están conectados a la red de suministro con cargas de cocinas de inducción y en horas pico de utilización de las mismas, estos usuarios se verán en la necesidad de utilizar otro tipo de tecnología para cocción de alimentos.

Las salidas repentinas del servicio eléctrico han sido causas de pérdidas económicas en microempresas, locales comerciales artesanales, talleres, etc., ya que en dichos establecimientos sustentan su trabajo con máquinas, motores y variedad de equipos eléctricos, debido a variaciones o salidas de líneas que han ocasionado diferentes pérdidas ya sea en maquinaria o productos que necesitan del uso de refrigeración para un proceso continuo.

En la actualidad existen índices de calidad de energía eléctrica que aplica a todas la empresas de distribución, y que son controlados por la agencia de regulación y control de electricidad (ARCONEL) la cual hace referencia a el tiempo total de interrupción por kVA nominal instalado (TTIK) y la frecuencia media de interrupción por kVA nominal instalado (FMIK), si estos valores sobrepasan los límites admisibles que estableció la entidad controladora, las empresas tendrán sanciones económicas lo que perjudica a la institución sancionada en relación a los costos de ingreso y egreso de esta.

FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN:

Desconocimiento del impacto en la confiabilidad que tienen los sistemas de almacenamiento de energía dentro de un sistema de distribución, debido a que es una tecnología moderna y la gran parte de las empresas de distribución se enfocan en implementaciones de sistemas de protecciones para mejorar la fiabilidad de la red de suministro de electricidad.

6. OBJETIVOS

6.1. GENERAL

Determinar la confiabilidad de un alimentador con el uso de un sistema de almacenamiento distribuido de energía con el fin de abastecer un servicio eléctrico sin interrupciones y de calidad.

6.2. ESPECÍFICOS

- ✓ Estudiar las diferentes tecnologías del almacenamiento distribuido de energía que pueden ubicarse en el alimentador.
- ✓ Analizar los índices de calidad y confiabilidad para diagnosticar el estado actual del alimentador
- ✓ Determinar la ubicación de sistemas de almacenamiento distribuidos y evaluar el impacto de la confiabilidad en el sistema.

7. ACTIVIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS OBJETIVOS PLANTEADOS

Sistema de tareas en relación a los objetivos planteados

Tabla 1: Descripción de las actividades realizadas

Objetivo 1	Actividad	Resultado de la actividad	Descripción de la actividad
Estudiar las diferentes tecnologías del almacenamiento distribuido de energía que pueden ubicarse en el alimentador estudiado.	Investigar en páginas y libros bibliográficos de los almacenadores de energía.	Existen siete tipos de almacenadores de energía, en la cual el trabajo se basara en el almacenamiento de energía por baterías (UPS).	Se realizó un proceso de investigación procedente al objetivo propuesto y se analizó las tecnologías existentes para almacenar la energía eléctrica.
Analizar los índices de calidad y confiabilidad para diagnosticar el estado actual del alimentador	Ubicación optima de los sistemas de almacenamiento distribuido de energía.	Densidad de carga	Determinación de la densidad de carga de todo el trayecto del alimentador.
Determinar la ubicación de sistemas de almacenamiento distribuidos y evaluar el impacto de la confiabilidad en el sistema.	Análisis de los índices de calidad y confiabilidad TTIK, FMIK, SAIDI, SAIFI, CAIFI, CAIFI, CAIDI, ASAI, ASUI y la comparación del estado del alimentador sin almacenamiento de energía y el alimentador implementado los UPS.	Los índices de calidad se redujeron con la introducción de almacenadores de energía, y la confiabilidad del sistema es mejor para los usuarios conectados a la red.	Se realizara un estudio comparativo del alimentador tanto con introducción de almacenadores de energía y sin ellos.

8. FUNDAMENTACIÓN CIENTÍFICO TÉCNICA

8.1. CAPITULO I

8.1.1. Fundamentación teorica

8.1.2. SISTEMAS ELÉCTRICOS

Desarrollo de los sistemas de energía eléctrica

El descubrimiento del fenómeno de la inducción electromagnética por Faraday en el año de 1831, que tuvo lugar a un invento de gran prestigio como lo fue el generador eléctrico, cuyo punto está ligado íntimamente a los sistemas de energía eléctrica.

Sistemas de corriente continúa

Los sistemas de energía eléctrica generalmente se consideran que comenzaron su inicio desde el año 1881, con las instalaciones de Edison en Nueva York, aunque existían sistemas de iluminación utilizando lámparas de arco eléctrico.

En un principio se suministraba la energía eléctrica mediante corriente continua a baja tensión, utilizando un generador eléctrico conocido como dinamo que este fue un invento de Gramme en el año de 1870, a estos inicios la carga se comportaba por luminarias con filamentos de carbón, y en el año de 1884 empezaron a utilizar motores de corriente continua.

El transporte de corriente continua en baja voltaje fue limitado por razones económicas, la longitud a la que podía ser transmitida la energía eléctrica con una variación de voltaje aceptable.

Se considera a Marcel Deprez como el pionero del transporte de energía eléctrica en alto voltaje. En su informe presentado en la academia de ciencias de parís en 1881, enuncio la tesis de que elevando el voltaje se puede transportar con mayor facilidad la energía eléctrica de diferente potencia a distancias muy grandes, con pérdidas mínimas. Al año siguiente realizo un experimento en el que transmitió energía eléctrica de corriente directa a una distancia de 57 km, con 2000 V, y con una potencia de 1.5 kW.

El transporte de corriente directa a alta voltaje tuvo algunas aplicaciones industriales limitadas, donde la más reconocida fue el sistema Thury que consistía en instalar varios maquinas generadoras en serie de corriente continua con excitación serie, funcionando a corriente constante, este tipo de conexión se lo realizo para tener un voltaje que pueda ser trasportado conforme a la carga, que consistía en motores serie, conectados también en serie. Uno de estos sistemas funcionó en la región de Lyon (Francia), transmitiendo con una corriente constante de 75 A, a una tensión variable con un máximo de 60000 V.

Sistemas de corriente alterna

Gracias al invento en 1883 de Gaulard y Gibbs que fue el transformador, fue posible la elevación eficiente y económica del voltaje utilizando sistemas de corriente alterna. Por tal razón, el uso de corriente alterna para la generación y el transporte se cambió al de corriente continua, al transmitir grandes cantidades de energía eléctrica a longitudes muy extensas.

Los sistemas monofásicos fueron los primeros en corriente alterna. En 1884, Gaulard hizo un transporte de corriente alterna de una sola fase con una longitud de 40 km en Italia específicamente en la zona de Turín. [1].

8.1.3. CARACTERÍSTICAS GENERALES DE LOS SISTEMAS DE ENERGÍA ELÉCTRICA

Un sistema de energía eléctrica se basa en una diversidad de cargas eléctricas repartidas en una región en las centrales generadoras donde se produce la energía eléctrica que va a ser necesaria para el consumo de las cargas, una red de transmisión y de distribución para transportar este tipo de energía de las centrales generadoras a los nodos de consumo y todo el equipamiento complementario que se necesita para obtener que el abastecimiento de energía se ejecute con las características de continuidad de servicio, de variación de voltaje y de control de frecuencia necesarias.

Características de la carga.

La carga global de un sistema está compuesta de un número considerable de cargas individuales clasificadas en los tipos industrial, comercial y residencial.

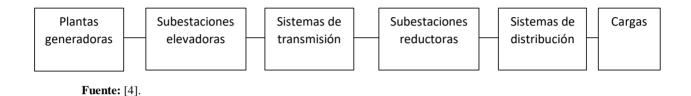
En general, una carga consume potencia activa y potencia reactiva; por ejemplo, de un motor de inducción. Naturalmente, las cargas puramente resistivas (lámparas incandescentes, calefactores eléctricos) las cuales consumen solo potencia activa.

La potencia distribuida en un tiempo determinado por un sistema es la sumatoria de la potencia consumida por las cargas más las pérdidas en el sistema.

Fuentes de energía eléctrica

La energía eléctrica distribuida por un sistema eléctrico surge de distintas fuentes primarias, entre ellas tenemos:

- Utilización de caídas de agua
- Combustibles fósiles (petróleo, gas natural, carbón)
- Fisión nuclear


Otras fuentes que tienen un aprovechamiento limitado hasta la actualidad son la energía geotérmica y la energía producida por las mareas. También se utilizan para generación de pequeñas cantidades de energía eléctrica en forma intermitente la fuerza del viento y la energía solar.

La localización de las centrales generadoras, en el caso de las plantas hidroeléctricas y mareomotrices o de las plantas geotérmicas, está determinada por el lugar donde se dan las condiciones naturales para realizar una conversión económica de la energía en energía eléctrica (incluyendo en la evaluación de la economía del proyecto el costo del transporte de la energía eléctrica hasta los lugares de consumo). En general, este tipo de desarrollos queda localizado lejos de los nodos de consumo y requiere una manera de transmisión de alta tensión para el transporte de la energía eléctrica.

8.1.4. SISTEMAS DE TRANSMISIÓN Y DE DISTRIBUCIÓN

A continuación, se representan esquemáticamente los principales elementos de un sistema de energía eléctrica.

Figura 1: Representación esquemática de un sistema de energía eléctrica.

En la figura N° 1, tenemos el diagrama unifilar simplificado, de la red de alta tensión de un sistema eléctrico, indicando también las plantas generadoras y las cargas.

Estas cargas están constituidas por las subestaciones del sistema de distribución, el cual alimenta a los distintos consumidores servidos por el sistema.

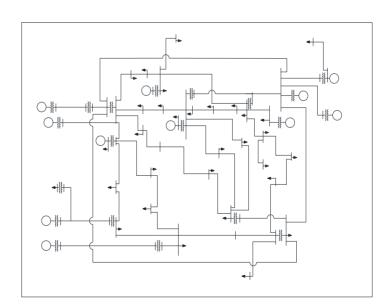


Figura 2: Sistema de transmisión.

Fuente: [4].

8.1.5. ALIMENTADOR PRIMARIO

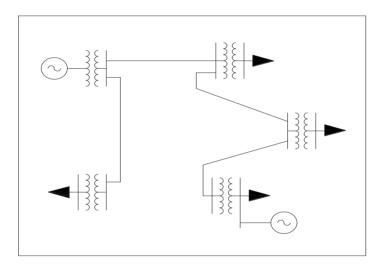
Es un conductor eléctrico encargado de suministrar potencia y energía eléctrica a una carga residencial, comercial o industrial, la corriente que transporta el conductor viaja desde la salida del transformador de potencia hasta el consumidor final para el correcto funcionamiento de artefactos, equipos, máquinas, etc.

Troncal. - Está conformado de tres conductores, generalmente de material con aleación de aluminio, montado sobre los aisladores, crucetas y postes. Este es el tramo de mayor capacidad de corriente que conforma un alimentador.

Ramal. – se forma hasta por dos conductores eléctricos, generalmente de material con aleación de aluminio, montado sobre los aisladores, crucetas y postes. Esta comprendido hasta dos nodos que parten desde la línea del troncal, hasta los transformadores de distribución.

8.1.6. CIRCUITOS SECUNDARIOS

Es el que transporta de todo el sistema de distribución, una menor capacidad de corriente eléctrica, generalmente está conformado de tres conductores en paralelo (con o sin aislamiento) o trenzado (con aislamiento).

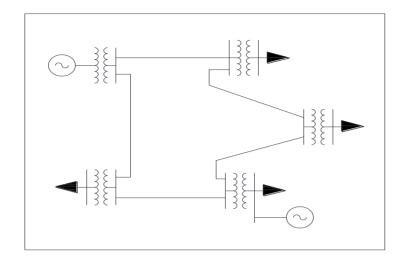

Para la distribución de la energía a los diferentes puntos de consumo como residencial, comercial e industrial tenemos un sistema de distribución tipo radial, anillo o red (mallado), como se detalla en las siguientes figuras.

Sistema radial. - En un sistema radial las cargas tienen una sola alimentación, de tal forma que una avería de un elemento deja fuera a todo el sistema.

Características:

- Tiene un solo camino para el flujo de potencia
- Tiene una baja calidad de producto.
- Tiene una baja calidad de servicio.
- Tiene bajo costo de construcción
- Utilizado para zonas cuya densidad de carga es baja, generalmente es utilizado para electrificación rural urbano.

Figura 3: Sistema tipo radial.

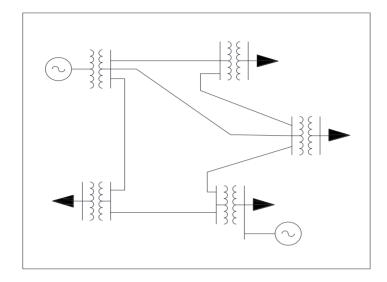

Fuente: [4].

Sistema en anillo. - Con este sistema se tiene un doble abastecimiento donde puede averiarse una de ellas sin causar un corte del suministro.

Características:

- Tiene al menos dos caminos para el flujo de potencia.
- Tiene una alta calidad de producto técnico.
- Tiene una alta calidad de servicio técnico
- Tiene un alto costo de construcción.

Figura 4: Sistema tipo anillo.


Fuente: [4]

Sistema tipo red o mallado. - Con un sistema en red o mallado se aumenta el número de interconexiones y consecuentemente la seguridad del servicio.

Características:

- Tiene varios caminos para el flujo de potencia.
- Tiene muy alta calidad de producto.
- Tiene muy alta calidad de servicio técnico.
- Costo muy elevado.
- Sectores urbanos con importancia estratégica.
- Sectores con densidad de carga muy alta.

Figura 5: Sistema tipo red o mallado.

Fuente: [4].

El incremento, decremento de voltaje y la interconexión de los distintos elementos del sistema se realizan en las subestaciones, que constituyen los nodos de la red cuyas ramas están compuestas por las líneas.

De acuerdo con la función que realizan, las subestaciones pueden clasificarse en:

- Subestaciones elevadoras de las centrales de generación
- Subestaciones de interconexión de las líneas de alto voltaje.
- Subestaciones reductoras para abastecer los sistemas de subtransmisión o de distribución

Los sistemas de distribución pueden adoptar diversas disposiciones, ya sea que la distribución se haga con líneas aéreas o subterráneas y diversos arreglos de la topología del sistema: radial, en anillo o en red (mallado).

Esto depende en gran parte de la concentración de carga en un área determinada y del tipo de carga.

8.1.7. CONFIABILIDAD EN UN SISTEMA ELÉCTRICO

La confiabilidad de un sistema eléctrico no es más que definir o evaluar el funcionamiento de dicho sistema, también se puede decir que es un análisis de la calidad de energía por consiguiente podremos decir si este sistema es rentable o no para prestar un servicio hacia los usuarios conectados.

Según la IEEE dice que la confiabilidad: Es la probabilidad de que un sistema de elementos o maquinas operen sin tener interrupciones.

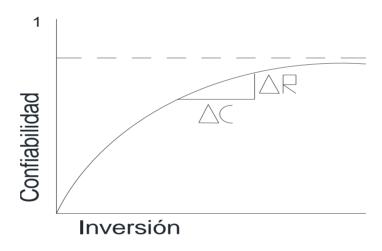


Figura 6: Costo de la inversión en la confiabilidad.

Fuente: [13].

Donde:

- Aumenta el costo de inversión ΔC
- Aumenta la confiabilidad ΔR

El costo para la compañía eléctrica incrementa cuando aumenta la confiabilidad.

8.1.8. PARÁMETROS DE CONFIABILIDAD

Para la evaluación de la confiabilidad, se requiere datos de cada uno de los componentes de la red de distribución y son: la tasa de falla y el tiempo de reparación. Es posible realizar una estimación de fallas y los tiempos de reparación para todos los equipos que componen un sistema de distribución, a partir de datos estadísticos y de registros de todas las suspensiones del servicio eléctrico.

ΣEstado
Disponible

μ

Figura 7: Diagrama de secuencia de estados.

Fuente: [14].

8.1.8.1. TASA DE FALLAS (Λ):

Es definida como (número de fallas en un período dado/ número de componentes expuestos a la falla). Además, se refiere a la cantidad de fallas de un componente del sistema en un periodo de observación (años) en que estuvo operando como se muestra en la siguiente ecuación. El inverso de la tasa de falla se le conoce como tiempo promedio entre fallas.

$$\lambda = \frac{Ni}{(tiempo\ total\ de\ operación)} \tag{1}$$

Dónde:

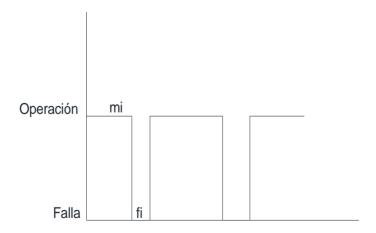
- $\lambda = tasa de fallas$
- Ni = numero de fallas

8.1.8.2. TASA DE REPARACIÓN (μ):

Es la cantidad de reparaciones de un componente del sistema en el periodo que estuvo siendo reparado. El inverso de la tasa de reparo se le conoce como tiempo de reparo (r).

$$\mu = \frac{\text{numero de reparos de un elemento}}{\text{Tiempo total que el elemento estuvo fallado}} \tag{2}$$

8.1.8.3. FRECUENCIA DE FALLA (F):


Es la cantidad de fallas de un componente del sistema en un periodo de observación (años).

$$f = \frac{\text{Número de fallas}}{\text{Tiempo i en el periodo de analisi}}$$
 (3)

8.1.9. OPERACIÓN-FALLA-RECUPERACIÓN-OPERACIÓN (RENOVABLE)

Todo elemento está sujeto a este ciclo, si se observa durante un tiempo suficientemente largo, es posible estimar los valores esperados.

Figura 8: Operación - falla -recuperación

Fuente: [14]

8.1.9.1. TIEMPO DE OPERACIÓN $MTTF(m_i)$:

Indica el tiempo en el que un elemento o sistema, funciono correctamente en un periodo determinado.

$$MTTF(\boldsymbol{m_i}) = \frac{\sum_{1}^{N} m_i}{N} = \frac{1}{\lambda}$$
 (4)

Donde:

- $MTTF(m_i) = Tiempo de operacion (horas).$
- $\sum_{1}^{N} m_{i} = tiempo \ de \ funcionamiento \ del \ equipo \ desde \ 1 \ hasta \ N \ (horas)$
- N = numero de operaciones del equipo o sistema en el periodo de analisis.

8.1.9.2. TIEMPO DE FALLAS $MTTR(r_i)$

Indica el tiempo en el que un elemento o sistema, dejo de funcionar correctamente en un periodo determinado.

$$MTTR(r_i) = \frac{\sum_{1}^{N} r_i}{N} = \frac{1}{\mu}$$
 (5)

Donde:

- $MTTR(r_i) = Tiempo de fallas (horas).$
- $\sum_{i=1}^{N} r_i = Duracion de la falla del equipo desde 1 hasta N (horas)$
- N = numero de interupciones del equipo o sistema en el periodo de analisis.

$$T = m + r \tag{6}$$

• T = tiempo de analisis

8.1.9.3. DISPONIBILIDAD FORZADA (A)

La fracción del tiempo que el elemento está funcionando.

$$A = \frac{m}{T} = \frac{m}{m+r} \tag{7}$$

Donde:

- A = Disponibilidad forzada
- $MTTF(m_i) = Tiempo de operacion (horas).$
- $MTTR(r_i) = Tiempo de fallas (horas).$
- T = tiempo de analisis

8.1.9.4. INDISPONIBILIDAD FORZADA(U)

Es la fracción del tiempo que el elemento estuvo en el estado de falla.

$$U = (1 - A) = \left(\frac{r}{T}\right) = \left(\frac{r}{m + r}\right) \tag{8}$$

- U = indisponibilidad forzada
- A = Disponibilidad forzada
- $MTTR(r_i) = Tiempo de fallas en el periodo de análisis (horas)$
- $MTTF(m_i) = Tiempo de operacion (horas).$
- T = tiempo de analisis

8.1.9.5. TASA EQUIVALENTE DE FALLAS λ_s

$$\lambda_{S} = \sum_{i=1}^{n} \lambda_{i} \tag{9}$$

Donde:

- $\lambda_s = tasa \ equivalente \ de \ fallas.$
- $\lambda_i = tasa \ de \ falla \ en \ el \ tiempo \ i.$

8.1.9.6. TIEMPO PROMEDIO DE REPARACIÓN:

$$r_{s} = \frac{\sum_{i=1}^{n} \lambda_{i} * r_{i}}{\lambda_{s}} \tag{10}$$

Donde:

- $r_s = tiempo\ promedio\ de\ reparacion$
- $\lambda_s = tasa \ equivalente \ de \ fallas.$
- $\lambda_i = tasa de falla en el tiempo i.$

8.1.9.7. TIEMPO FUERA DE SERVICIO ANUAL (INDISPONIBILIDAD).

$$U_{S} = \sum_{i=1}^{n} \lambda_{i} * r_{i} \tag{11}$$

- $U_s = tiempo fuera de servicio anual$
- $\lambda_i = tasa de falla en el tiempo i.$

8.1.10. INTERRUPCIONES

Las interrupciones se definen como las salidas de elementos o equipos del sistema eléctrico dejando sin servicio a usuarios conectados a la red.

Para identificación de las interrupciones podemos tomar en cuenta los siguientes parámetros:

- Fecha y hora de inicio de la interrupción.
- Identificar origen de las fallas (internas o externas).
- Ubicación de la falla (en MV o BV).
- Identificar la causa de la interrupción.
- Localizar los elementos o equipos que quedaron fuera de servicio.
- Número de consumidores afectados.
- Número total de consumidores de la parte del sistema en análisis.
- Energía no suministrada.
- Fecha y hora de finalización de la interrupción.

8.1.10.1. REGISTRO Y CLASIFICACIÓN DE LAS INTERRUPCIONES:

El Distribuidor debe llevar, mediante un sistema informático, el registro histórico de las interrupciones correspondientes, por lo menos de los tres últimos años.

En el registro, las interrupciones se pueden clasificar de acuerdo a los parámetros que se indican a continuación, los que deberán tener un código para efectos de agrupamiento y de cálculos:

a) Por su duración

- Breves, las de duración igual o menor a tres minutos.
- Largas, las de duración mayor a tres minutos.

b) Por su origen

- Externas al sistema de distribución.
- Otro Distribuidor
- Transmisor
- Generador
- Restricción de carga
- Baja frecuencia
- Otras
- Internas al sistema de distribución.
- Programadas
- No Programadas

c) Por su causa

- Programadas.
- Mantenimiento
- Ampliaciones
- Maniobras
- Otras
- No programadas (intempestivas, aleatorias o forzadas).
- Climáticas
- Ambientales
- Terceros
- Red de alto voltaje (AV)
- Red de medio voltaje (MV)
- Red de bajo voltaje (BV)
- Otras

d) Por el voltaje nominal

- Bajo voltaje
- Medio voltaje
- Alto voltaje

8.1.10.2. INTERRUPCIONES A SER CONSIDERADAS

Para el cálculo de los índices de calidad, se considerarán todas las interrupciones del sistema con duración mayor a tres minutos, incluyendo las de origen externo, debidas a fallas en transmisión. No serán consideradas las interrupciones con duración igual o menor a tres (3) minutos.

8.1.11. ÍNDICES DE CALIDAD DEL SERVICIO ELÉCTRICO DE DISTRIBUCIÓN

Los índices se calcularán para toda la red de distribución (Rd), y para cada alimentador en medio voltaje (Aj), de acuerdo a lo siguiente:

8.1.11.1. DETERMINACIÓN DEL TIPO DE ALIMENTADOR.

Para la determinación al tipo de alimentador al que pertenece el sistema estudiado, se determinara de acuerdo a la siguiente expresión:

$$TA = \frac{kVA_{inst j}}{km_i} \tag{12}$$

Donde:

TA = tipo de alimentador (kVA/km)

 $kVA_{inst\;j}=$ potencia nominal instalada total de los transformadores de distribución del alimentador "j", expresado en kVA.

 $km_j = Sumatoria de la longitud de linea monofásica, bifásica y trifásica del alimentador "j", expresado en km.$

Los alimentadores serán clasificados, según la siguiente tabla:

Tabla 2: Clasificación de los alimentadores

Tipo de alimentador	Valor (kVA/km)
Baja densidad	TA < 50
Alta densidad	<i>TA</i> ≥ 50

Fuente: [5]

8.1.11.2. FRECUENCIA MEDIA DE INTERRUPCIÓN POR CADA kVA INSTALADO (FMIK)

Representa el número de veces que los kVA promedio sufrió una interrupción de servicio en un determinado periodo.

$$FMIK_{i} = \frac{KVA_{i}}{kVA_{Ti}}$$

$$FMIK = \sum_{i} FMIK_{i}$$
(13)

Donde:

- $FMIK_i$: Frecuencia Media de Interrupción por kVA nominal instalado por interrupción, expresada en fallas por kVA [9].
- $\sum_i FMIK_i$: Sumatoria de todas las interrupciones del servicio "i" con duración mayor a 3 minutos [9].
- kVA_i : Cantidad de kVA nominales fuera de servicio en cada una de las interrupciones.
- kVA_{Ti} : Cantidad de kVA nominales instalados [9].

8.1.11.3. TIEMPO TOTAL DE INTERRUPCIÓN POR kVA NOMINAL INSTALADO (TTIK)

Simboliza el tiempo medio en que el kVA promedio no tuvo servicio en un determinado periodo.

$$TTIK_{i} = \frac{kVA_{i} * T_{i}}{kVA_{Ti}}$$

$$TTIK = \sum_{i} TTIK_{i}$$
(14)

Donde:

- $TTIK_i$: Tiempo Total de Interrupción por kVA nominal instalado por interrupción, expresado en horas por kVA [9].
- kVA_i : kVA nominales fuera de servicio en el sistema de distribución debido a la interrupción i. [9].
- T_i : Tiempo de duración de la interrupción "i" [9].
- kVA_{Ti} : kVA nominales instalados en la red o alimentador registrados en el instatante de la interrupcion i.

Limites:

Tabla 3: Límites para la calidad del servicio técnico – índices globales

Índices	Red	Alimentador		
	Keu	Alta densidad	Baja densidad	
FMIK	6.0	7.0	9.5	
TTIK	8.0	10.0	16.0	

Fuente: [9].

8.1.11.4. ENERGÍA NO SUMINISTRADA:

Definido como la energía total no suministrada por el sistema, es decir que muestra la cantidad de energía en kWh que no fue suministrada debido a las interrupciones o fallas, se mide en kWh/año.

$$ENS = \sum kVAfs * Tfs$$
 (15)

Donde:

- ENS = energía no suministrada en el tiempo i (Kwh/Año)
- KVAfs = Potencia de salida en el tiempo i (KVA).
- Tfs = Tiempo de duración de la falla en el periodo de estudio (Horas)

8.1.11.5. ENERGÍA PROMEDIO NO SUMINISTRADA POR CONSUMIDOR (ENSM):

Energía promedio que no pudo ser suministrado por el sistema hacia el consumidor, esta se calcula por la siguiente expresión:

$$ENSM = \frac{\sum Cm*Ui}{\sum Ni} \text{ (kWh/consumidor)}$$
 (16)

- ENSM = Energia promedio no suminstrado por consumidor. (Kwh/consumidor)
- Cm = demanda promedio
- *Ui* = tiempo de duración de desconexiones en el periodo de analisis i. (horas)
- Ni = número de interrupciones en el punto de carga i.

8.1.12. ÍNDICES ORIENTADOS AL CONSUMIDOR:

8.1.12.1. ÍNDICE DE FRECUENCIA PROMEDIO DE INTERRUPCIÓN DEL SISTEMA (SAIFI):

Se define como el número promedio de interrupciones por consumidor servido por unidad de tiempo. (Fc en el Manual CIER, 1988).

$$SAIFI = \frac{\sum \lambda_i * N_i}{\sum N_i}$$
 (Interrupciones/consumidor) (17)

Donde:

- SAIFI =
 Índice de frecuencia promedio de interrupción del sistema (Interrupciones/consumidor)
- $\lambda_i = tasa de falla en el periodo de analisis i.$
- $N_i = numero de consumidores afectados en el punto de carga i$

8.1.12.2. ÍNDICE DE DURACIÓN DE LA INTERRUPCIÓN PROMEDIO DEL SISTEMA (SAIDI):

Se define como la duración promedio de la interrupción por consumidor servido por unidad de tiempo (Tc en el Manual CIER, 1988).

$$SAIDI = \frac{\sum U_i * N_i}{\sum N_i}$$
 (18)

- SAIDI = Indice de duracion de la interrupcion promedio del sistema (horas./consumidor)
- $U_i = Tiempo de duracion de desconexiones en el periodo de analisis i.$
- $N_i = numero de consumidores afectados en el punto de carga i$

8.1.12.3. ÍNDICE DE FRECUENCIA DE INTERRUPCIÓN PROMEDIO DEL CLIENTE (CAIFI):

se define como el número promedio de interrupciones por consumidor afectado.

$$CAIFI = \frac{\sum \lambda_i * N_i}{Total \ de \ consumidores \ afectados}$$
 (19)

Donde:

- CAIFI = Índice de frecuencia de interrupcion promedio del cliente (int./cons.afectados.)
- $\lambda_i = tasa de falla en el periodo de analisis i.$
- $N_i = numero de consumidores afectados en el punto de carga i$

8.1.12.4. ÍNDICE DE DURACIÓN DE INTERRUPCIÓN PROMEDIO DEL CLIENTE (CAIDI):

Se define como la duración promedio de la interrupción por consumidor interrumpido (Dc en el Manual CIER, 1998).

$$CAIDI = \frac{\sum U_i * N_i}{\sum \lambda_i * N_i}$$
 (20)

- CAIDI = Índice de duracion de interrupcion promedio del cliente (horas./ int.consum.)
- $U_i = Tiempo de duracion de desconexiones en el periodo de analisis i.$
- $\lambda_i = tasa de falla en el periodo de analisis i.$
- $N_i = numero de consumidores afectados en el punto de carga i$

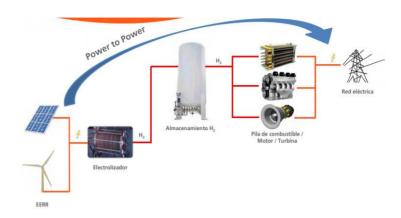
8.1.12.5. ÍNDICE DE DISPONIBILIDAD DE SERVICIO PROMEDIO (INDISPONIBILIDAD) (ASAI, ASUI)

$$ASAI = \frac{\sum (N_i * 8760) - \sum U_i * N_i}{\sum (N_i * 8760)}$$
 (21)

$$ASUI = 1 - ASAI \tag{22}$$

Donde:

- ASAI = indice de disponibilidad de servicio promedio
- ASUI = indice de indisponibilidad de servicio promedio
- $U_i = Tiempo de duracion de desconexiones en el periodo de analisis i.$
- $\lambda_i = tasa de falla en el periodo de analisis i.$
- N_i = numero de consumidores afectados en el punto de carga i


8.2. TIPOS DE ALMACENADORES DE ENERGÍA

Por su tecnología se clasifica de la siguiente manera:

8.2.1. HIDRÓGENO - OXÍGENO:

Este se describe como el combustible del futuro, la cual este tipo de almacenamiento de energía contempla en el marco de los sistemas químicos y permite el uso de la energía eléctrica a los consumidores, su procedimiento se muestra en la siguiente figura:

Figura 9: Sistema de almacenamiento de energía eléctrica por medio del sistema hidrogeno – oxigeno

Fuente: [5].

Este sistema lo comprende de los siguientes elementos:

- Sistema de generación por medio de energías renovables.
- Electrolizador para la generación de hidrógeno H₂.
- Almacenamiento de hidrógeno H₂
- Pila de combustible / motor / turbina de H₂

Sistema de generación por medio de energías renovables. - son de fácil acceso se aprovisionan constantemente y no afectan al medio ambiente ni a la vida, las cuales constan de la energía fotovoltaica (producida por medio de los rayos del sol), y eólica (producida por medio de la velocidad del viento).

Figura 10: Motor y turbina de hidrógeno (robusto y sin emisiones de co2)

Fuente: [5].

8.2.2. ACUMULACIÓN POR BOMBEO

Este tipo de tecnología de almacenamiento de energía es la más de todas, se ha utilizado desde los años veinte. Se basa en almacenar energía mediante el bombeo de agua desde un embalse inferior o río hasta un embalse superior. El desnivel adecuado debe ser por lo menos de 100 m entre los dos embalses para que este tipo de tecnología trabaje con eficiencia.

8.2.3. AIRE COMPRIMIDO

En el sistema de aire comprimido (CAES -COMPRESSED AIR ENERGY STORAGE), el aire a altas presiones, almacenado en reservorios bajo tierra naturales o artificiales como pueden ser: minas abandonadas, cavidades rellenas en soluciones minerales, acuíferos; esto se lo hace en horas valle donde tenemos una demanda mínima. Posteriormente, en las horas pico, el aire almacenado se expande, moviendo un turbo generador.

Este tipo de plantas están proyectadas para operar en un ciclo diario, donde se cargan durante la noche y su descargase la realiza durante el día.

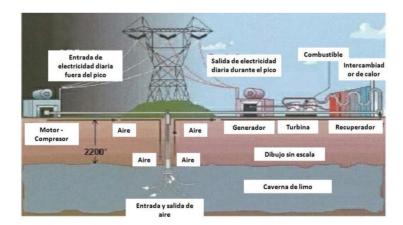


Figura 11: Estación de almacenamiento de energía por medio de aire comprimido

Fuente: [5]

8.2.4. ALMACENAMIENTO TÉRMICO

Es una técnica de acumulación de energía mediante la cual se aprovecha el calor, subiendo o bajando la temperatura de una sustancia, cambiando la fase de la sustancia o una combinación de ambos mecanismos.

solido

liquido

almacenamiento por calor latente

solido

temperatura (°C)

Figura 12: PCM relación temperatura – entalpía

Fuente: [10]

La alta capacidad de almacenamiento térmico lo convierte en una importante ventaja, para almacenamiento térmico similar se requiere cantidades de PCM, muy inferiores a los que necesitaría un material tradicional de almacenamiento térmico, dentro de un rango específico de temperatura.

8.2.5. SUPERCONDENSADORES

De acuerdo a los ingenieros eléctricos y químicos estos supercondensadores dan un enfoque alternativo prometedor para compensar las grandes demandas de energía de los sistemas de almacenamiento de energía y dispositivos electrónicos. Este tipo de tecnología se destaca por su alta concentración de potencia, capacidad para funcionar en temperaturas muy elevadas y millones de capacidades de ciclo de carga.

8.2.6. VOLANTES DE INERCIA

El volante de inercia es un elemento rotatorio capaz de almacenar energía cinética. Lo hace gracias a la inercia generada en su movimiento cuando se detiene el par motor que lo propulsa y al casi nulo rozamiento que se consigue con los cojinetes magnéticos. Empleando energía eléctrica para propulsar un disco metálico, éste genera energía cinética al girar y la almacena de manera que se puede utilizar como electricidad en el momento que se requiera [12].

8.2.7. BATERÍAS DE LITIO

Este tipo de batería también es conocido como Li-Ion, es considerado como un almacenador de energía eléctrica que es empleado como electrolito, su principio de funcionamiento se basa en una sal de litio que aporta iones necesarios para la reacción electroquímica reversible que es producida entre el ánodo y cátodo.

Las propiedades que tiene esta batería, es la ligereza de sus componentes, su elevada capacidad energética y resistencia a la descarga.

Ventajas

- Una elevada densidad de energía: Acumulan mucha mayor carga por unidad de peso y volumen.
- Son más livianas y ocupan menos volumen en comparación a los otros tipos de baterías.
- Durante la descarga de esta batería, no existe mucha variación en el voltaje, por lo que no es necesario de un circuito regulador.
- La tasa de autodescarga es muy baja en relación con los otros tipos de baterías.

Desventajas

- Su vida útil es muy corta dependiendo de la carga almacenada, como sabemos cualquier tipo de batería que se almacena sin carga se deteriora.
- Son más costosas que los otros tipos de baterías, aunque su precio va bajando de acuerdo a la penetración en el mercado.

8.2.8. FUENTE DE PODER ININTERRUMPIBLES (UPS)

La fuente de poder ininterrumpible denominado por sus siglas en inglés como *uninterruptible power supply* (UPS), que gracias a sus baterías de almacenamiento es posible suministrar de energía a un sistema eléctrico por un tiempo determinado, esto se lo utilizan cuando el servicio de energía es interrumpido por fallas en distintos equipos del sistema.

Partes de un UPS:

El Rectificador: este rectifica la corriente alterna que ingresa al sistema de almacenamiento de energía UPS, y luego provee de corriente continua hacia la batería, para que esta se mantenga en completa carga.

La Batería: tiene la función de suministrar energía eléctrica al sistema, en el caso de que esté presente interrupciones de fallas tanto atmosféricas como propias del sistema, el tiempo de duración para mantener a un sistema energizado depende de la capacidad del banco de baterías.

El inversor: Esta encargada de transformar corriente continua en corriente alterna, donde esta alimenta a los sistemas que se encuentren conectados a la salida de la UPS.

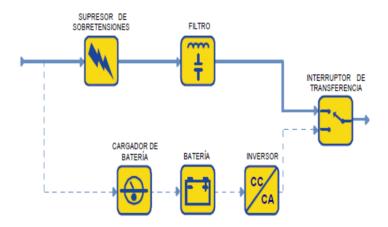
El Conmutador: Esta es de dos posiciones, donde permite conectar y desconectar la salida con la entrada del artefacto o en la salida del inversor y viceversa

Tipos de fuentes de poder ininterrumpibles (UPS).

Existe gran variedad de UPS, las más relevantes se nombran a continuación:

- Standby
- Línea interactiva
- Standby-ferro
- Online de doble conversión
- Online de conversión delta

8.2.8.1. SISTEMAS UPS STANDBY.


La UPS Standby es un sistema muy comúnmente utilizado es computadoras personales y de escritorio. En la ilustración de la figura 13, se divisa el diagrama de bloques, en el cual el interruptor de transferencia está automatizado para elegir la entrada de CA filtrada como fuente de energía eléctrica primaria, y conmutar hacia el modo de batería - inversor como fuente de energía para respaldo en el caso de que presente interrupciones o fallas la fuente primaria.

Cuando esto sucede, el interruptor de transferencia debe conmutar la carga a la fuente de energía de respaldo de batería - inversor (circuito con línea entre cortadas), el inversor solo se enciende cuando falla el circuito primario de la red, y entra a funcionar el sistema compuesto de baterías de ahí proviene el nombre Standby.

Las principales ventajas de este diseño de almacenamiento es el siguiente:

- Eficiencia a altos niveles.
- Tamaño pequeño
- Bajo costo
- Dispone de un circuito filtro y de sobretensión adecuado, estos sistemas además pueden brindar funciones apropiadas de filtrado de ruido.
- Supresión de sobretensiones.

Figura 13: UPS STANDBY

Fuente: [11]

8.2.8.2. SISTEMAS UPS DE LÍNEA INTERACTIVA

El sistema de almacenamiento de energía UPS de línea interactiva, tiene un diseño exclusivamente utilizado en servidores de pequeñas empresas, web y oficinas. Con este diseño el conversor o inversor que va desde la batería a alimentación en CA, siempre estará conectado a la salida de este sistema.

La batería se cargará al accionar el inversor en reversa en momentos en que la alimentación CA de entrada es normal, como se detalla en la figura 14. Si la alimentación de entrada tiene interrupciones, el interruptor de transferencia se abre y el flujo de energía será producido desde la batería hasta la salida del sistema de almacenaje de energía (UPS).

El diseño del UPS de línea interactiva, cuando el inversor esta siempre activo y conectado a la salida, ofrece un filtrado adicional y produce transitorio de comunicación reducidos a comparación del diseño y topología del sistema UPS Standby.

Además, suele incorporar este sistema a un transformador con cambio de TAP. La cual agrega una función para la regulación de tensión mediante el cambio o ajuste de los TAPS del transformador, para lo cual esta variara la tensión de entrada, la regulación de la tensión o voltaje es una característica importante de un trasformador cuando se tiene condiciones de baja tensión,

sin ella, el sistema UPS transferiría la carga a la batería y con el pasar del tiempo caería la carga, con este uso se deterioraría el dispositivo prematuramente.

Sin embargo, el inversor de este sistema también puede diseñarse de tal forma que, aunque este dispositivo falle, este permita que la energía fluya con normalidad desde la entrada de CA hacia la salida, lo que elimina la posible existencia de puntos de falla únicos y establece dos circuitos de energía independientes. [11].

Los elevados niveles de eficiencia, el tamaño reducido, costo bajo y la alta confiabilidad, en combinación con la capacidad de corregir condiciones de tensión de línea alta o baja hacen que este tipo de sistema UPS sea la más usada por el usuario para el rango de potencia desde 0,5-5 kVA.

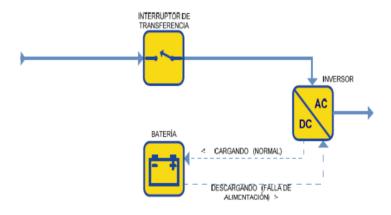


Figura 14: Sistema ups de línea interactiva

Fuente: [11]

8.2.8.3. SISTEMAS UPS STANDBY-FERRO

En un momento los UPS Standby – ferro, fueron los que más se usaban y dominaban para un rango de potencias de 3 – 15 kVA, este diseño depende de un transformador de saturación especial que este tiene tres devanados. la fuente principal de energía proviene desde el circuito primario CA, seguido por un interruptor de transferencia hasta llegar al transformador y de ahí a la salida. En el caso de interrupciones – fallas en el circuito principal (red), el interruptor de transferencia se abrirá y el inversor tomará a la carga de salida.

El inversor en el diseño de Standby – ferro, se encuentra en modo espera, y este se energiza cuando la alimentación de entrada tiende a fallar y el interruptor de trasferencia se abre, el trasformador tiene una capacidad "ferroresonante" que proporciona una regulación de voltaje limitada y corrección de la forma de onda en la salida.

En el transformador ferro, el aislamiento de los transitorios de la alimentación CA, es mejor que cualquier filtro, este en sí mismo crea una severa distorsión y transitorios en el voltaje de salida, por lo que es peor que una conexión de CA deficiente. La UPS Standby ferro genera gran cantidad de calor, ya que el transformador ferro resonante es inherentemente ineficiente.

Estos transformadores son de gran dimensión con relación a los transformadores de aislamiento habituales; por lo tanto, las UPS Standby-ferro suelen ser bastante grandes y pesadas [11].

Estos UPS Standby – ferro, suelen representar como sistemas online, aunque estos presentan un interruptor de transferencia, la cual el inversor opera en el modo espera, y estos sistemas registran la característica de trasferencia durante la interrupción en el suministro de corriente alterna CA.

La figura N° 15, ilustra la topología Standby-ferro.

TRANSFORMADOR

CARGADOR DE BATERÍA

BATERÍA

Figura 15: Ups standby - ferro

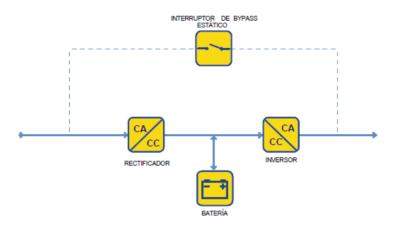
Fuente: [11]

Ventajas:

- Alta confiabilidad
- Excelente filtrado de línea

Desventajas:

 Nivel de eficiencia muy bajo combinado con inestabilidad cuando se lo utiliza con algunos generadores y novedosas computadoras con corrección de factor de potencia.
 [11].


En la actualidad los sistemas UPS Standby – ferro ya no se utilizan frecuentemente, debido a que estos sistemas pueden ser muy inestables cuando opera con la carga de la energía de una computadora moderna. Todos los servidores y routers de gran dimensión utilizan fuentes de alimentación con corrección del factor de potencia, y estos toman únicamente corriente sinusoidal de la red de energía eléctrica al igual que una lámpara incandescente, este consumo de corriente se logra con la utilización de capacitores, estos dispositivos ayudan a la conducción de la tensión.

Estos sistemas utilizan transformadores centrales pesados, que incorporan una característica inductiva, lo que indica que la intensidad retarda al voltaje. La combinación de estos dos elementos forma un circuito tanque, y la resonancia en este circuito causa altas corrientes lo que pone en riesgo la carga que está conectada.

8.2.8.4. UPS ONLINE DE DOBLE CONVERSIÓN

Este sistema UPS online de doble conversión es el más común para rangos de potencia superiores a los 10 kVA, en el cual se muestra en la figura N° 16 el diagrama de bloques, que es muy similar que el UPS Standby, excepto que en el circuito de energía primario es el inversor en lugar de la red de CA.

Figura 16: Ups, online de doble conversión

Fuente: [11]

El diseño del sistema UPS online de doble conversión, no provoca la activación del interruptor de trasferencia cuando existiere una interrupción en el suministro de energía en CA, debido a que la alimentación de CA entrante, está conectado directamente a la batería de respaldo, la cual esta se está cargando constantemente, de modo que esta batería alimenta al inversor de CC a CA.

Por lo tanto, en el momento de presentarse una interrupción de energía eléctrica en la entrada de CA, la operación online no registra tiempo de transferencia, la cual el rectificador CA/CC y el inversor CC/CA convierten el flujo de alimentación de la carga con este diseño del sistema, la cual esta implica una eficiencia reducida y la mayor generación de calor asociada.

Ventajas:

• Desempeño ideal en la salida eléctrica.

Desventajas:

- Desgaste de los componentes de potencia, la cual tiende a reducir la confiabilidad a comparación de los otros diseños de sistemas de almacenamiento de energía (UPS).
- Energía consumida por la ineficiencia de la alimentación eléctrica.
- La potencia de entrada tomada por el rectificador CA/CC, suele ser no lineal y puede causar problemas con los generadores de emergencia en edificios.

8.2.8.5. UPS on line de conversión delta

Estos sistemas almacenadores de energía, son tecnologías novedosas con una antigüedad de 18 años, este tipo de tecnología fue desarrollada para eliminar las desventajas de diseño de los sistemas UPS online de doble conversión, y cuenta con rangos de potencia de entre 5 kVA y 1.6 Mw.

Este tipo de almacenador de energía es muy similar al diseño del sistema UPS online de doble conversión, los UPS online de conversión delta, cuenta con un inversor que siempre aportara el suministro de voltaje a la carga, como se detalla en la figura N° 17, en el caso de existir una falla o perturbaciones en el sistema de suministro de energía, el conversor delta aporta energía a la salida del inversor.

TRANSFORMADOR
DELTA

CA
CC
CONVERSOR DELTA

INVERSOR PRINCIPAL

BATERÍA

Figura 17: Ups on line de conversión delta

Fuente: [11]

Una manera simple para entender la eficiencia de la energía con el diseño de la conversión delta, es considerar la energía requerida para llevar una caja del cuarto piso hacia el quinto piso de una edificación, como se muestra en la figura N° 18, la cual el sistema de almacenamiento de energía eléctrica (UPS) de conversión delta ahorra energía recorriendo con la caja solamente la diferencia de distancia entre el punto de salida y el punto de llegada, es decir que la UPS online de doble conversión pasa la alimentación a la batería y de regreso, mientras que el conversor delta lleva los componentes de la alimentación de la entrada hacia la salida.

El sistema de almacenamiento de energía ininterrumpible (UPS – on line de conversión delta) tiene doble propósito, la primera es que controla las características de la alimentación de entrada, toma potencia en forma senoidal, para reducir los armónicos que lo producen las redes eléctricas y tener compatibilidad entre la red eléctrica y el sistema generador. El segundo propósito del conversor delta, es controlar la corriente de entrada para regular la carga del sistema de baterías.

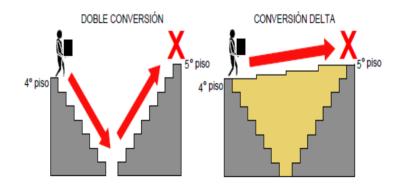


Figura 18: Analogía del sistema ups de doble conversión vs ups de conversión delta

Fuente: [11]

Ventajas:

- ✓ Controla las características de la alimentación de entrada.
- ✓ La unidad de entrada activa toma potencia en forma senoidal, lo que minimiza las armónicas reflejadas en la red eléctrica, con estas se garantiza una óptima y mejorable compatibilidad entre la red de energía eléctrica y el sistema generador, lo que reduce el calentamiento y el desgaste del sistema.
- ✓ Para regular la carga del sistema de baterías se controla la corriente de entrada.
- ✓ Este sistema brinda una entrada con corrección del factor de potencia y para el control dinámico sin necesariamente el uso ineficiente de bancos de filtros asociados con las soluciones tradicionales.
- ✓ Reducción significativamente en las pérdidas de energía.
- ✓ Durante condiciones de estado estable, permite a la UPS suministrar potencia a la carga el conversor delta con una eficiencia significativamente mayor que el diseño de los sistemas de doble conversión.

El control de la alimentación de entrada, hace que la UPS sea compatible con todos los grupos electrógenos y minimiza la necesidad de sobredimensionamiento del cableado y generador. [11].

Desventajas:

El diseño del sistema UPS online de conversión, es la única en la actualidad está protegida por patentes, y es muy poco probable que esta se amplié,

8.2.9. CARACTERÍSTICAS DE LOS UPS.

En la tabla 4, se detallan las características más relevantes de los almacenadores de energía (UPS), como la eficiencia que cada sistema presenta. La implementación y la calidad de fabricación tienen mayor impacto debido a la confiabilidad, estas características se presentan a continuación.

Tabla 4: Características de los sistemas UPS

Tipos	Rango de potencia para aplicación práctica (kVA)	Acondicionamiento de la tensión	Costo por VA	Eficiencia	Inversor con funcionamiento constante
Standby	0-0,5	Bajo	Bajo	Muy alta	No
Línea interactiva	0,5-5	Según diseño	Medio	Muy alta	Según diseño
Standby ferro	3-15	Alto	Alto	Baja - Media	No
Online de doble conversión	5-5000	Alto	Alto	Baja - Media	Si
Online de conversión delta	5-5000	Alto	Medio	Alto	Si

Fuente: [5].

8.2.9.1. MODELOS DE LOS UPS EN MEDIO VOLTAJE

Para el caso de estudio tenemos los siguientes tipos de almacenadores de energía:

8.2.9.2. PCS 100 MEDIO VOLTAJE UPS

• Empresa constructora: ABB

- Conversión única robusta:
 - Elección natural para medio voltaje, ya que las pérdidas son extremadamente bajas.
- Admite la carga cuando el voltaje esta fuera.
 - o Proporciona protección de energía limpia, confiable y eficiente

- Protección dirigida a:
 - o Tensiones de voltaje
 - o Voltaje aumenta
 - o Cortes cortos y largos

8.2.9.3. PCS100 UPS-I y PCS100 AVC

Figura 19: Modelo del almacenador de energía PCS100 UPS-I y PCS100 AVC.

FUENTE: [15]

Características:

- Plataforma industrial de baja tensión para protección eléctrica.
- Más de 1000 unidades en todo el mundo.
- Más de 800 MVA de potencia instalada.

8.2.9.4. PCS100 MV UPS

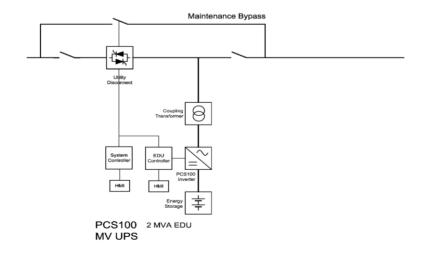
Figura 20: Modelo del almacenador de energía PCS 100 MV UPS

Fuente: [15]

Características:

- Extensión de la plataforma LV probada a nivel MV
- Inversores PCS100 altamente confiables
- Almacenamiento avanzado de energía PCS100

Especificaciones técnicas:


Tabla 5: Especificaciones técnicas de los almacenadores de energía.

Clasificación.	2 MVA	4 MVA	6 MVA	
Voltaje nominal	4.16 KV, 6 KV, 6.6 KV.			
Utilidad de desconexión de la corriente nominal.	600 A.			
Eficiencia	>99.5 %			
Autonomía	Por encima de los 15 minutos			
Capacidad de sobrecarga de utilidad de desconexión.	150 % (900 A) para 50 segundos. 200 % (1200 A) para 6 segundos. 300 % (1800 A) para 400 milisegundos.			
Tiempo típico de transferencia.	≤ 1.8 ms			
Paso sin almacenamiento de energía.	12 m ²	19.2 m ²	26.4 m ²	
Dimensiones (ancho X lago)	6.0 X 2.0 m	9.6 X 2.0 m	13.2 X 2.0 m	

Fuente: [15]

8.2.9.5. PCS100 MEDIO VOLTAJE UPS

Figura 21: Diagrama unifilar del diseño de un sistema de almacenamiento de energía de 2 MVA (PCS100).

Fuente: [15]

8.3. CAPITULO II

8.3.1. PRESENTACION, INTERPRETACION Y ANALISIS DEL ALIMENTADOR

8.3.2. EMPRESA ELÉCTRICA AMBATO REGIONAL CENTRO NORTE S.A. (EEASA).

La empresa eléctrica Ambato regional centro norte s.a., se encuentra ubicado en la provincia de Tungurahua, con su matriz en el cantón Ambato Av. 12 de noviembre y espejo esquina. Esta compañía se dedica a la generación, transmisión y distribución de energía eléctrica a los consumidores residenciales, comerciales e industriales.

Su jurisdicción son las provincias de Tungurahua, Pastaza y Morona Santiago, siendo así una de las empresas de mayor cobertura en el Ecuador.

8.3.3. SUBESTACION TOTORAS.

la subestación eléctrica Totoras se encuentra ubicada en el barrio el Mirador de la Parroquia Totoras, este cuenta con seis Alimentadores (Picahiua, Totoras, Palahua, Salasaca, San Francisco, EMAPA) y sirven de energía eléctrica a los habitantes de Picaihua, San Francisco, Totoras, Palagua, Salasaca y el área industrial del cantón Pelileo.

La subestación cuenta con un transformador de 16/20 megavoltiamperios (Mva) a un nivel de tensión de 69/13.8 kilovoltios (Kv). Recibe energía proveniente de las hidroeléctricas de Paute (Azuay) y Agoyán (Tungurahua).

.

89-A35 | 52-A32 | 89-A15 | 52-A12 | 89-A11 | 89-

Figura 22: Diagrama unifilar, subestación Totoras

Fuente: Empresa eléctrica Ambato.

8.3.4. ALIMENTADOR PICAIHUA:

El alimentador Picaihua cuenta con una potencia instalada de 2997.5 kVA, comprende una red trifásica de 7.34 km desde la subestación Totoras, y una red monofásica de 9.38 km desde el final de la red trifásica hasta el final de su recorrido.

Se encuentra dentro de los alimentadores rurales existentes en la empresa eléctrica Ambato regional centro norte s.a.

Ambalo

Turqurahua

Turqurahua

Google Earth
Tree College Col.

Factors of movered Strand Col.

Factor of movered Strand Col.

Factor of movered Strand Col.

Factor o

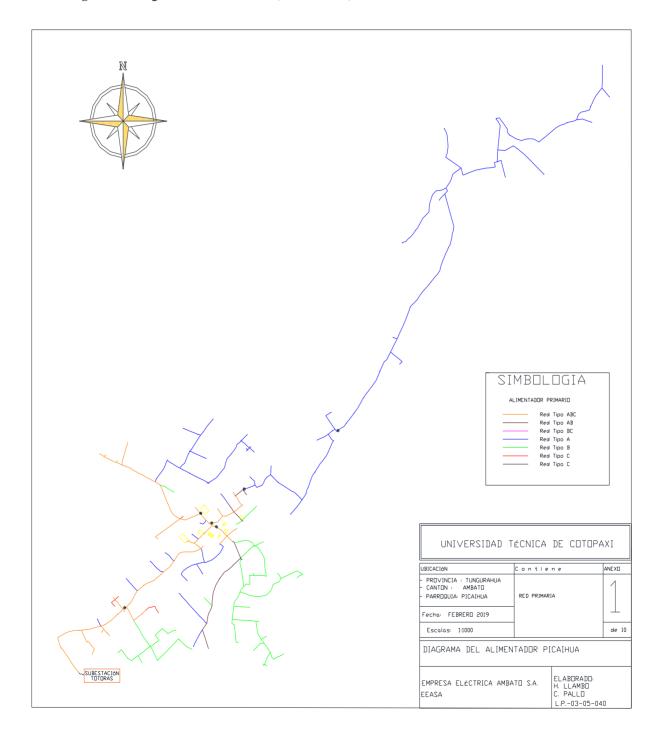
Figura 23: Alimentador Picaihua (red trifásica y monofásica)

Fuente: Google Earth.

En la figura 23, se observa la red eléctrica del alimentador Picaihua, donde la red (roja) corresponde a la línea trifásica, y la red (amarilla) a la monofásica.

8.3.5. DENSIDAD DEMOGRÁFICA:

Se considerará la siguiente clasificación referida a la densidad demográfica, dentro del área geográfica que corresponde a la prestación del servicio.


- Densidad demográfica alta: mayor o igual a 15 consumidores/Km²
- Densidad demográfica media: desde 5 hasta 15 consumidores/Km²
- Densidad demográfica baja: menor a 5 consumidores/Km²

Este alimentador comprende una densidad de carga media y baja, es decir comienza con una parte rural, seguidamente urbano y finaliza con otra parte rural.

8.3.6. DIAGRAMA DEL ALIMENTADOR (ESTADO ACTUAL)

El alimentador Picaihua sirve a la parte rural de Ambato y la parte central de la parroquia Picaihua, A continuación, se grafica el diagrama del alimentador:

Figura 24: Diagrama del alimentador (estado actual)

En la figura 24, se observa como está constituido el alimentador Picaihua, desde la salida de la subestación totoras, hasta el final de su trayectoria. Para el análisis de su potencia instalada se realizó un barrido de información por medio del programa ArcGis, que permite la extracción de datos de un elemento o equipo.

El alimentador cuenta con un desbalance de carga en las tres fases primarias (A, B, C), como lo muestra la tabla N° 8.

8.3.7. DIVISION DEL ALIMENTADOR POR TRAMOS

La metodología de división por tramos se realiza específicamente para un mejor entendimiento de la capacidad de carga conectada, interrupciones, potencias (kVA), distancias de tramo a tramo en la trayectoria del alimentador. Para el caso de este sistema se procederá a la división de toda la longitud del alimentador en siete tramos.

Tabla 6: Características de la división de cada tramo

Código Tramo	Tipo de Red	Capacidad instalada (kVA)	Longitud del tramo (km)
Tramo N° 1	Trifásica (ABC)	390	1.58
Tramo N° 2	Trifásica (ABC)	522.5	1.94
Tramo N° 3	Trifásica (ABC)	487.5	0.52
Tramo N° 4	Monofásica (A)	280	2.32
Tramo N° 5	Monofásica (A)	295	7.10
Tramo N° 6	Trifásica (ABC)	442.5	1.67
Tramo N° 7	Trifásica (ABC)	580	1.63
Tota	al	2997.5	16.73

La longitud corresponde solamente al primario (ABC) y a la línea monofásica (A) – (Figura 23).

Para las modificaciones que conlleva al balance de cargas en el alimentador, se optara por la opción más rentable y de menor tiempo en la reestructuración de la red eléctrica. A continuación, se detalla los trabajos a realizarse en cada uno de los tramos del alimentador.

Tramo N 01:

Este tramo comprende una distancia de 1.58 km, desde la salida de la subestación, hasta llegar al primer seccionador tipo cuchilla.

Se puede observar en las dos figuras correspondientes en el anexo XVII, donde; a) muestra al sistema en su estado actual, y en b) el circuito balanceado. Las modificaciones que se realizaron en este tramo son las siguientes:

• El transformador N° 11141 de 25 kVA, en anexo XVII, a) se conecta a la línea C, y en b) se transfiere esta potencia a la línea B, para el balance de cargas respectivo.

Tramo N° 02:

Este tramo comprende una distancia de 1.94 km, desde el primer seccionador tipo cuchilla, hasta llegar al segundo seccionador tipo cuchilla.

Se puede observar las dos figuras en el anexo XVIII, que en a) se observa al sistema en su estado actual, y en la b) el circuito balanceado. Las modificaciones que se realizaron en este tramo son las siguientes:

- Los transformadores N° 11224, N° 7687, N° 5797 de 25 kVA cada uno, en el anexo XVIII, a) se conecta a la línea A, y en b) se transfiere esta potencia a la línea C, para el balance de cargas respectivo.
- Los transformadores N° 5811, N° 496 de 25 kVA cada uno, en el anexo XVIII, a) se conecta a la línea B, y en b) se transfiere esta potencia a la línea C, para el balance de cargas respectivo.

Tramo N° 03:

Este tramo comprende una distancia de 0.52 km, desde el segundo seccionador tipo cuchilla, hasta llegar al tercer seccionador tipo cuchilla.

Se puede observar en las figuras del anexo XIX, se puede observar la trayectoria del alimentador en el tercer tramo, en la a) se observa al sistema en su estado actual, y en la b) el circuito balanceado. Las modificaciones que se realizaron en este tramo son las siguientes:

- Los transformadores N° 11224, N° 7687, N° 5797 de 25 kVA cada uno, en el anexo XIX,
 a) se conecta a la línea A, y en b) se transfiere esta potencia a la línea C, para el balance de cargas respectivo.
- Los transformadores N° 5811, N° 496 de 25 kVA cada uno, en el anexo XIX, a) se conecta a la línea B, y en b) se transfiere esta potencia a la línea C, para el balance de cargas respectivo.

Tramo N° 04:

Este tramo comprende una distancia de 2.32 km, desde el tercer seccionador tipo cuchilla, hasta llegar al cuarto seccionador tipo cuchilla.

Se detalla en el anexo XX, y en este tramo no se realiza ninguna modificación, ya que desde este tramo empieza una línea monofásica A, que alimentara a los consumidores que se encuentren en ese sector.

Tramo N° 05:

Este tramo comprende una distancia de 7.06 km, desde el tercer seccionador tipo cuchilla, hasta llegar al cuarto seccionador tipo cuchilla.

Se muestra en el Anexo XX, y no se realiza ninguna modificación, ya que comienza desde el seccionador cuatro hasta el final del circuito, a este tramo se considera una línea monofásica A, comprende la parte rural de la ciudad de Ambato.

Tramo N° 06:

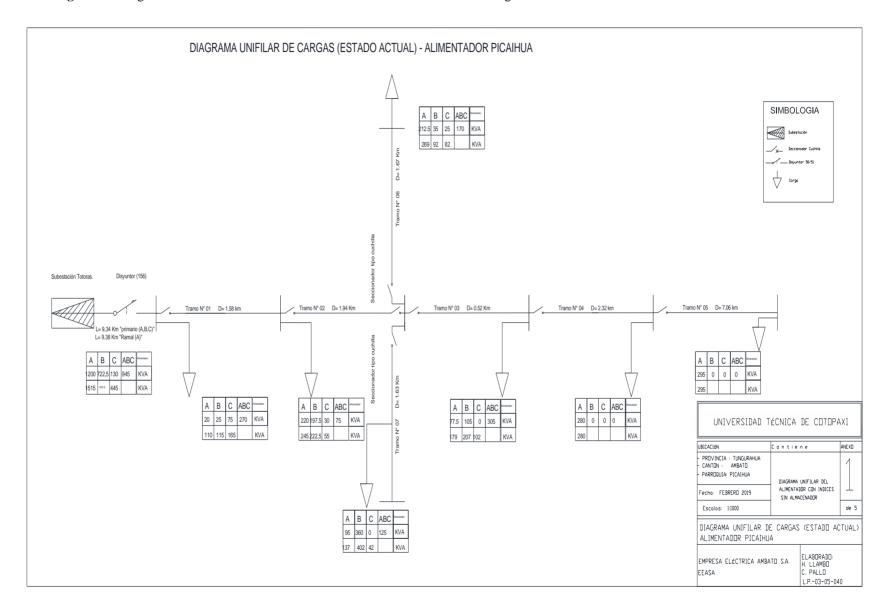
Este tramo comprende una distancia de 1.67 km, desde el tercer seccionador tipo cuchilla, hasta llegar al final de la trayectoria.

Se puede observar en las dos figuras del anexo XXI, la trayectoria del alimentador en el sexto tramo, en la figura a) se observa al sistema en su estado actual, y en la b) el circuito balanceado. Las modificaciones que se realizaron en este tramo son las siguientes:

- Una parte de la red A, se transforma en red trifásica, red monofásica en B, Y C. para asi balancear la cargabilidad en la fase A.
- Los transformadores que están conectados a la red antigua, se modificaran según la transformación que se presente en los cambios.

Tramo N° 07:

Este tramo comprende una distancia de 1.63 km, desde el tercer seccionador tipo cuchilla, hasta llegar al final de la trayectoria.


Se puede observar en las dos figuras que se muestran en el anexo XXII, la trayectoria del alimentador en el séptimo tramo, en la figura a) se observa al sistema en su estado actual, y en la b) el circuito balanceado. Las modificaciones que se realizaron en este tramo son las siguientes:

- Una parte de la red bifásica AB, se transforma en red trifásica.
- Se realiza la extensión de la red bifásica BC.
- La red bifásica AB, se convierte en red monofásica A.
- Se modifica la red B, y la cargabilidad (95 kVA) pasa a la red C.
- El transformador 934, 8611, 11408, 490, 11413, 3410, 933, se conectan a la red C.

8.3.7.1. DIAGRAMA UNIFILAR DEL ALIMENTADOR POR TRAMOS

Un diagrama unifilar permite observar e interpretar de mejor manera un sistema eléctrico, esto se presenta de la siguiente manera.

Figura 25: Diagrama unifilar del alimentador Picaihua en el estado actual de las cargas

El alimentador Picaihua en la actualidad, su cargabilidad en cada una de las fases (A, B, Y C) se encuentra desbalanceado (tabla N° 7). Un sistema eléctrico para que funcione correctamente debe estar equilibrado entre fases, para que el sistema no disponga de problemas futuros.

La configuración que tiene este alimentador en su estado actual es el siguiente:

Tabla 7: Carga instalada (kVA) en cada tramo

N° de Tramo	Carga Instalada (kVA) – fase A	Carga Instalada (kVA) – fase B	Carga Instalada (kVA) – fase C	Carga Instalada (kVA) – fase ABC	Carga instalada total
Tramo N° 1	20	25	75	270	390
Tramo N° 2	220	197.5	30	75	522.5
Tramo N° 3	77.5	105	0	305	487.5
Tramo N° 4	280	0	0	0	280
Tramo N° 5	295	0	0	0	295
Tramo N° 6	212.5	35	25	170	442.5
Tramo N° 7	95	360	0	125	580
Total	1200	722.5	130	945	2997.5

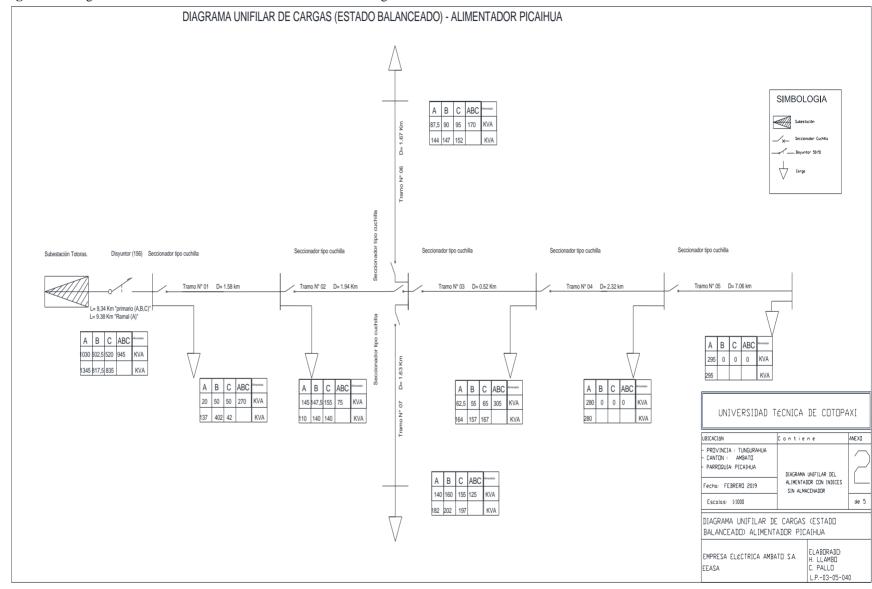

Su configuración por cada fase es el siguiente:

Tabla 8: Carga desbalanceada por fase (A, B, C, ABC)

Código de fases	A	В	C	ABC
Carga (kVA)	1200	722.5	130	945
Carga (kVA) – cada fase	1515	1037,5	445	

En tabla N° 8 se puede observar que el desbalance comprende entre las fases A y C, es decir entre estas dos líneas existe una diferencia de potencia muy considerable, por consiguiente, se procederá a realizar el balance de carga para equilibrar el sistema de distribución (Pag. 57 – 60)

Figura 26: Diagrama unifilar alimentador Picaihua con balance de cargas

Realizando las modificaciones correspondientes en el alimentador con respecto a la carga conectada en cada fase y en cada uno de los siete tramos, se obtiene su nueva carga en cada línea de media tensión.

Tabla 9: Carga balanceada (kVA) en cada tramo.

N° de Tramo	Carga Instalada (kVA) – fase A	Carga Instalada (kVA) – fase B	Carga Instalada (kVA) – fase C	Carga Instalada (kVA) – fase ABC	Carga instalada total
Tramo N° 1	20	50	50	270	390
Tramo N° 2	145	147.5	155	75	522.5
Tramo N° 3	62.5	55	65	305	488.5
Tramo N° 4	280	0	0	0	280
Tramo N° 5	295	0	0	0	295
Tramo N° 6	87.5	90	95	170	443.5
Tramo N° 7	140	160	155	125	581
Total	1030	502.5	520	945	2997.5

Su nueva configuración en cargas por cada fase, será el siguiente:

Tabla 10: Potencias en cada fase (A, B, C, ABC)

Código de fases	A	В	С	ABC
Carga (kVA)	1030	502.5	520	945
Carga (kVA) – cada fase	1346	818.5	836	

Si comparamos las dos tablas de las potencias en cada una de las fases, hay una reducción notable en el sistema de distribución. Estos últimos datos se pueden utilizar para realizar el cálculo del rendimiento del alimentador con la potencia que utilizan los consumidores en su hora valle.

8.3.8. CAPACIDAD DE LOS TRANSFORMADORES DE ACUERDO AL NUMERO DE TRAMOS PROPUESTOS

Por medio del sistema de información geográfica (ArcGis), se puede extraer la información correspondiente a transformadores por medio de la base de datos de la empresa eléctrica Ambato, se obtiene las siguientes capacidades.

Tramo N° 01:

- Numero de transformadores: 13
- Transformadores trifásicos:
 - o 4 transformadores de 30 kVA c/u
 - o 3 transformadores de 50 kVA c/u
- Transformadores monofásicos:
 - o 4 transformadores de 25 kVA c/u
 - o 2 transformadores de 10 kVA c/u

Tramo N° 02:

- Numero de transformadores: 27
- Transformadores trifásicos:
 - o 1 transformador de 30 kVA.
 - o 1 transformador de 45 kVA.
- Transformadores monofásicos:
 - 1 transformador de 5 kVA.
 - o 6 transformadores de 10 kVA c/u
 - 8 transformadores de 15 kVA c/u
 - o 9 transformadores de 25 kVA c/u
 - 1 transformador de 37.5 kVA.

Tramo N° 03:

- Numero de transformadores: 13
- Transformadores trifásicos:
 - o 2 transformadores de 100 kVA c/u.
 - 1 transformador de 75 kVA.
 - o 1 transformador de 30 kVA.
- Transformadores monofásicos:
 - 1 transformador de 10 kVA.
 - o 4 transformadores de 15 kVA c/u
 - o 3 transformadores de 25 kVA c/u
 - o 1 transformador de 37.5 kVA.

Tramo N° 04:

- Numero de transformadores: 13
- Transformadores monofásicos:
 - 1 transformador de 5 kVA.
 - 1 transformador de 10 kVA.
 - o 6 transformadores de 15 kVA c/u
 - 2 transformadores de 25 kVA c/u
 - o 2 transformadores de 37.5 kVA c/u.
 - 1 transformador de 50 kVA.

Tramo N° 05:

- Numero de transformadores: 27
- Transformadores monofásicos:
 - o 7 transformadores de 5 kVA c/u.
 - o 12 transformadores de 10 kVA c/u
 - o 6 transformadores de 15 kVA c/u
 - 2 transformadores de 25 kVA c/u

Tramo N° 06:

- Numero de transformadores: 20
- Transformadores trifásicos:
 - o 1 transformador de 45 kVA.
 - o 1 transformador de 50 kVA.
 - o 1 transformador de 75 kVA.
- Transformadores monofásicos:
 - o 9 transformadores de 10 kVA c/u
 - o 3 transformadores de 15 kVA c/u
 - 4 transformadores de 25 kVA c/u
 - 1 transformador de 37.5 kVA.

Tramo N° 07:

- Numero de transformadores: 31
- Transformadores trifásicos:
 - o 1 transformador de 30 kVA.
 - o 1 transformador de 45 kVA.
 - 1 transformador de 50 kVA.
- Transformadores monofásicos:
 - 1 transformador de 5 kVA.
 - o 13 transformadores de 10 kVA c/u.
 - 8 transformadores de 15 kVA c/u
 - 3 transformadores de 25 kVA c/u
 - o 2 transformadores de 37.5 kVA c/u.
 - o 1 transformador de 50 kVA.

8.3.9. IDENTIFICACION DE INTERRUPCIONES

La empresa eléctrica Ambato regional centro norte s.a., registra las interrupciones que acontecen en el día a día de los elementos y equipos de todo el sistema. Esta compañía registra de la siguiente manera:

Tabla 11: Registro de interrupciones del alimentador Picaihua

Añ o	CÓDIGO DE INTERRUPC IÓN	ALIMENT ADOR PRIMARI O	PROVI NCIA	CANT ÓN	SECTOR	ORÍGEN DE LA INTERRU PCIÓN	CATÁLOG O DE INTERRUP CIONES	CATÁLOG O DE INTERRUP CIONES	TIPO DE PROTEC CIÓN QUE ACTÚO	INSTALACI ÓN EQUIPO DONDE SE PRESENTO LA INTERRUP CIÓN DEL SERVICIO	NUM ERO EQUI PO	NIVE L DE TENS IÓN KV	POTENCI A NOMINA L INSTALA DA ALIMENT ADOR (kVA)	POTE NCIA NOMI NAL FUER A DE SERVI CIO (kVA)	Fecha Inicio de Interru pción (dd:m m:ay)	Hora Inicio de Interru pción (hh:m m)	Fecha Fin de Interru pción (dd:m m:ay)	Hora Fin de Interru pción (hh:m m)
	MANUAL				MANUAL (13).		CAMBIO DE CAUSA	CAUSA FINAL	MANUA L	SERVICIO			(1.07.1)	(1.67.1)				
20 16	AMB.2016. 01.0064	DAMA01 1 (Picaihua)	Tungur ahua	Cant ón Amb ato	PICAIHUA, B.SAN ISIDRO	INTERNA NO PROGRA MADA	DESCONOC IDAS	Desconoci da	Fusible	Transform adores	422	13,8	2635	15	09/01/ 2016	19:42:0 0	09/01/ 2016	21:10:0
20 16	AMB.2016. 06.0077	DAMA01 1 (Picaihua)	Tungur ahua	Cant ón Amb ato	SECTOR SHUYURC O TAIGAICH E	INTERNA PROGRA MADA	MANTENI MIENTO	Programad as para mantenimi ento correctivo	Fusible	Red de media tensión	1444	13,8	2730	442,5	10/06/ 2016	9:15:00	10/06/ 2016	17:00:0 0
20 17	AMB.2017. 09.078	DAMA01 1 (Picaihua)	Tungur ahua	Cant ón Amb ato	AV. BOLIVARI ANA	INTERNA NO PROGRA MADA	ARBOLES, VEGETACIÃ "N	Arboles (sin incluir podas)	Disyunt or	Red de media tensión	PICAI HUA	13,8	2897,5	2897, 5	13/09/ 2017	14:24:0 0	13/09/ 2017	15:27:0 0
20 17	AMB.2017. 09.083	DAMA01 1 (Picaihua)	Tungur ahua	Cant ón Amb ato	PICAIHUA, SAN JUAN	INTERNA NO PROGRA MADA	ARBOLES, VEGETACIÃ "N	Arboles (sin incluir podas)	Fusible	Red de media tensión	1442	13,8	2897,5	1062, 5	13/09/ 2017	14:31:0 0	13/09/ 2017	15:30:0 0
20 18	AMB.2018. 02.129	DAMA01 1 (Picaihua)	Tungur ahua	Cant ón Amb ato	QUILLA LAS PLAYAS	INTERNA NO PROGRA MADA	LLUVIAS	Lluvia	Fusible	Transform adores	2423	13,8	2922,5	15	19/02/ 2018	17:40:0 0	19/02/ 2018	23:30:0 0

Fuente: Empresa eléctrica Ambato.

8.3.9.1. INTERRUPCIONES EN EL AÑO (2016, 2017, 2018).

Por medio de sistema de información georeferenciado ArcGis, el programa Autocad y las interrupciones anteriormente detalladas en la tabla N° 11, se procede a buscar y graficar las fallas del año 2016 para la realización de los índices de calidad del año antes mencionado (Anexo XVI).

En el año 2016, se registran un total de 68 interrupciones, en el 2017 un total de 53y en el 2018 con corte hasta julio que alcanzan las 53 interrupciones a lo largo del alimentador, la mayoría de fallas se da en transformadores, pero las más críticas están en la cabecera (disyuntor) y redes eléctricas primarias del alimentador.

8.4. CAPITULO III

8.4.1.PROPUESTA

8.4.1.1. CALCULO DE LA CONFIABILIDAD EN LA CABECERA DEL ALIMENTADOR

ÍNDICES DE CALIDAD TTIK, FMIK Y LA ENERGÍA NO SUMINISTRADA.

Los índices de calidad TTIK, FMIK no deben superar los límites que establece la regulación No. ARCONEL 005/18 – calidad del servicio eléctrico de distribución y comercialización de energía eléctrica, si los valores calculados sobrepasan los límites, las empresas eléctricas de distribución tendrían sanciones económicas por parte de la agencia de regulación y control de electricidad (ARCONEL).

Determinación del tipo de alimentador:

Para el cálculo del tipo de alimentador se realizará a partir de la siguiente formula:

•
$$TA = \frac{kVA_{inst j}}{km_j}$$

Donde:

- TA = tipo de alimentador (kVA/km)
- $kVA_{inst\ j} = potencia\ nominal\ instalada\ total\ de\ los\ transformadores\ de$ distribuciondel alimentador "j", expresado en kVA.
- $km_j = Sumatoria de la longitud de linea monofásica, bifásica y trifásica del alimentador "j", expresado en km.$

Para obtener la longitud de las redes de media tensión, como en trifásicas, bifásicas y monofásicas, se realiza el trazado desde el programa Google Earth.

Bluscar

Bluscar

Bluscar

Copple Heldes core de execuperto de Entra

Cobrer instructions Historia

Lugares

Checer instructions Historia

Lugares

Check in the Modern Ch

Figura 27: Longitud del alimentador por medio del programa Google Earth

Fuente: Google Earth

La potencia instalada en todo el alimentador es de 2997.5 kVA, y la longitud de la línea de media tensión es de 38.71 km en las redes monofásicas, bifásicas y trifásicas. A continuación, se realiza el cálculo del tipo de alimentador al que pertenece.

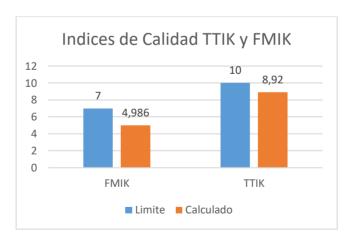
$$\bullet \quad TA = \frac{kVA_{inst j}}{km_j}$$

•
$$TA = \frac{2997.5 \, kVA}{38.71 \, km}$$

•
$$TA = 77.34 \, kVA/km$$

El alimentador picaihua, pertenece a los alimentadores con alta densidad según la tabla N° 2 (*Límites para la calidad del servicio técnico – índices globales*)

Para el cálculo de los índices TTIK y FMIK del alimentador Picaihua, se utilizó las formulas (13) y (14), y con las tablas presentadas en el anexo XXIII, se procede al cálculo de los indicadores que se detalla en la tabla a continuación.


Tabla 12: TTIK, FMIK Y ENS en los años 2016, 2017, 2018

A = 0	TTIK	FMIK	ENS	
Año	(Horas/Año))	(Interrupciones/Año)	(kWh/Año)	
Limite	10.0	7.0		
2016	12.75	4.12	34953.82	
2017	8.87	5.59	25697.93	
2018	4.81	4.39	14165.07	
Promedio	8.920	4.986	24938.94	

En la tabla 11 (*TTIK*, *FMIK Y ENS en los años 2016*, 2017, 2018), se observa los índices de calidad TTIK, FMIK, y la energía no suministrada en el periodo de estudio, estos índices (promedio) no superan los límites establecidos por la agencia de regulación y control ARCONEL, donde el límite TTIK Y FMIK para un alimentador con alta densidad es de 10.0 y 7.0 respectivamente.

Estos índices están representados en la cabecera del alimentador, a continuación, se presenta la figura correspondiente para la tabla N° 11.

Figura 28: TTIK Y FMIK en el año 2016 – 2017 - 2018

8.4.1.2. CALCULO DE LOS INDICES POR TRAMOS

Para un mejor entendimiento, al alimentador se le divide en siete tramos, para realizar los cálculos como: tasa de falla, tasa de reparación, tiempo de operación, tiempo promedio de falla en el año, número de usuarios afectados por cada interrupción, y la energía no suministrada en cada uno de los tramos.

Se realizará el procedimiento de cálculo de los índices para el tramo N° 1, para evaluar el estado en que se encuentra actualmente el alimentador con respecto a los índices de calidad y confiabilidad, los cálculos para los tramos desde el dos hasta el último tramo que es el siete serán resueltos con el mismo criterio con el cual se resuelve con el tramo N° 1.

Tabla 13: Interrupciones en el Tramo Nº 1

Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio	Usuarios sin servicio	Tiempo de duración de la falla	Tiempo de operación
1450	Red de media tensión	Fusible	60	84	1,633	8758,367
2020	Transformadores	Fusible	50	25	1,883	8758,117
3802	Transformadores	Fusible	80	50	1,066	8758,934
11071	Transformadores	Fusible	50	39	3,816	8756,184
11156	Transformadores	Fusible	25	8	1,3	8758,7
Red 1	Red de media tensión	Disyuntor	2887,5	2816	0,083	8759,917
Red 2	Red de media tensión	Disyuntor	2887,5	2816	0,799	8759,201
Red 3	Red de media tensión	Disyuntor	2897,5	2816	1,05	8758,95
Red 4	Red de media tensión	Disyuntor	2917,5	2816	0,133	8759,867
Red 5	Red de media tensión	Disyuntor	2922,5	2816	0,249	8759,751
Red 6	Red de media tensión	Disyuntor	2922,5	2816	0,5	8759,5
Red 7	Red de media tensión	Disyuntor	2922,5	2816	1,099	8758,901
Red 8	Red de media tensión	Disyuntor	2927,5	2816	1,383	8758,617

Fuente: Empresa eléctrica Ambato

0503 ABC M A 10 kva 13Usua. 8603 ABC 30 kVA 14Usua. SIMBOLOGIA 1 Usua. 28Usua Usua. 25 KVA Usua UNIVERSIDAD TÉCNICA DE COTOPAXI UBESTACIÓN TOTORAS Fecha: FEBRERO 2019 INTERRUPCIONES EN EL TRAMO Nº 1 EMPRESA ELÉCTRICA AMBATO S.A. EEASA

Figura 29: Identificación de interrupciones en el tramo N° 1

En la tabla 13 (Interrupciones en el Tramo N° 1) y en la figura 29 (Identificación de interrupciones en el tramo N° 1), se detallan las interrupciones registradas en el periodo de análisis, en este tramo se registran 13 fallas.

Para la demostración del procedimiento para calcular los índices por tramos, se obtendrá a partir de las ecuaciones 1 (tasa de falla), 2 (tasa de reparación), 4 (MTTF – tiempo de operación), 5

(MTTR – tiempo de reparación), 13 (Frecuencia media de interrupción por kVA nominal instalado), 14 (TTIK – tiempo total de interrupciones por kVA nominal instalado), 15 (ENS – energía no suministrada).

El alimentador Picaihua tiene una potencia instalada en transformadores de 2997.5 kVA. Se utilizará la información que se detalla en la tabla 13 (Interrupciones en el Tramo N° 1).

Código de elemento: 1450

Frecuencia media de interrupción por kVA nominal instalado (FMIK)

$$FMIK_{i} = \frac{KVA_{i}}{kVA_{Ti}}$$

$$FMIK_i = \frac{60 \, kVA}{2997.5 \, kVA}$$

$$FMIK_i = 0.020016681 \ Int./año$$

Tiempo total de interrupción por kVA nominal instalado (TTIK)

$$TTIK_i = \frac{kVA_i * T_i}{kVA_{Ti}}$$

$$TTIK_i = \frac{60 \ kVA * 1.633 \ h.}{2997.5 \ kVA}$$

$$TTIK_i = 0.032687239 \ h./año$$

Energía no suministrada (ENS)

$$ENS = \sum kVAfs * Tfs$$

$$ENS = 60 \ kVA * 1.633 \ h.$$

$$ENS = 97.98 \, kVA$$

Número de usuarios afectados

84 usuarios sin servicio eléctrico

Tabla 14: Índices de interrupciones por elementos en el tramo N° 1

Código del equipo	FMIK _i (Int./año)	$TTIK_i$ (h. / a ñ o)	$ENS_i(kWh)$	Usuarios sin servicio
1450	0,020016681	0,032687239	97,98	84
2020	0,016680567	0,031409508	94,15	25
3802	0,026688907	0,028450375	85,28	50
11071	0,016680567	0,063653044	190,8	39
11156	0,008340284	0,010842369	32,5	8
Red 1	0,963302752	0,079954128	239,6625	2816
Red 2	0,963302752	0,769678899	2307,1125	2816
Red 3	0,966638866	1,014970809	3042,375	2816
Red 4	0,973311093	0,129450375	388,0275	2816
Red 5	0,974979149	0,242769808	727,7025	2816
Red 6	0,974979149	0,487489575	1461,25	2816
Red 7	0,974979149	1,071502085	3211,8275	2816
Red 8	0,976647206	1,350703086	4048,7325	2816

Para obtener los índices generales en el tramo N° 1, se realizará con la siguiente expresión:

$$FMIK = \sum_{i} FMIK_{i}$$

$$FMIK = \sum_{i} 0.020 + 0.016 + 0.026 + 0.016 + 0.0083 + 0.963 + 0.963 + 0.966 + 0.973 + 0.974 + 0.974 + 0.974 + 0.976$$

FMIK = 7.856547123 Int./año

$$TTIK = \sum_{i} TTIK_{i}$$

$$TTIK = \sum_{i} 0.032 + 0.031 + 0.028 + 0.063 + 0.010 + 0.079 + 0.769 + 1.014 + 0.129 + 0.242 + 0.487 + 1.071 + 1.350$$

TTIK = 5,313561301 h./año

Tabla 15: Índices generales en el tramo N° 1

FMIK (Int./año)	TTIK (h./año)	ENS (kWh)	Usuarios sin servicio
7.857	5.314	15927.40	1748.75

Tiempo de fallas:

•
$$MTTR(r_i) = \frac{\sum_{i=1}^{N} r_i}{N} = \frac{1}{\mu}$$

•
$$MTTR(r_i) = \left(\frac{(1,633 + 1,883 + 1,066 + 3,816 + 1,3 + 0,083 + 0,799 + 1,05 + 0,133 + 0,249 + 0,5)}{+1,099 + 1,383)}\right)$$

• $MTTR(r_i) = 1.153 h.$

Tiempo de operación:

•
$$MTTF(\boldsymbol{m_i}) = \frac{\sum_{1}^{N} m_i}{N} = \frac{1}{\lambda}$$

•
$$MTTF(\mathbf{m}_i) = \begin{pmatrix} 8758,367 + 8758,117 + 8758,934 + 8756,184 + 8758,7 + 8759,917 + 8759,201 \\ + 8758,95 + 8759,867 + 8759,751 + 8759,5 + 8758,901 + 8758,617 \\ & 13 \end{pmatrix}$$

• $MTTF(\mathbf{m}_i) = 8758,85 h.$

Tasa de reparación:

$$\bullet \quad \ \mu = \frac{\text{numero de reparos de un elemento}}{\text{Tiempo total que el elemento estuvo fallado}}$$

•
$$\mu = \frac{13 \text{ fallas}}{13.279 \text{ h.}}$$

• $\mu = 0.867013472 \text{ h.}$

Tasa de falla:

•
$$\lambda = \frac{Ni}{(elementos\ en\ operacion\ *\ tiempo\ total\ de\ operación)}$$

•
$$\lambda = \frac{13 \text{ fallas}}{6 \text{ elementos} * 8760 \text{ h.}}$$

• $\lambda = 0.001484214$ fallas al año

Disponibilidad forzada:

•
$$A = \frac{m}{T} = \frac{m}{m+r}$$

•
$$A = \frac{8758.85 \, h.}{8758.85 \, h. + 1.153 \, h.}$$

•
$$A = 0.999868335 h$$
.

Indisponibilidad forzada:

•
$$U = (1 - A) = \left(\frac{r}{T}\right) = \left(\frac{r}{m+r}\right)$$

•
$$U = (1 - 0.999868335 h.)$$

•
$$U = 0.000131665 h$$
.

Tabla 16: Índices de calidad y confiabilidad en los siete tramos del alimentador Picaihua en su estado actual

Código de tramo	FMIK (Int. /año)	TTIK (h. /año)	ENS (kWh)	Usuarios sin servicio	Tiempo de fallas $MTTR(r_i)$	Tiempo de operación $MTTF(\boldsymbol{m_i}) - horas$	Tasa de reparación $(\mu) - f/a$ ño	Tasa de falla(λ) - f/a ño	Disponibilidad forzada (A)	Indisponibilidad forzada (U)
Tramo N° 1	7.862	5.314	15000,96	1748.75	1.153	8758,85	0,867013472	0,000247336	0,999868335	0,000131665
Tramo N° 2	4,1841	13,7686	31381,8388	384.33	2.24	8757.76	0,445656163	0,000306417	0,999743849	0,000256151
Tramo N° 3	1.204	1,4881	1062,45	111.62	2.36	8757.64	0,423728814	0,000304414	0,999730594	0,000269406
Tramo N° 4	6,4870	11,394	5974,227	254,211	1,7540000	8758,1670526	0,570125428	0,000361492	0,99979977	0,00020023
Tramo N° 5	1,8983	11,242	959.824	40	5,9817778	8754,0182222	0,167174381	0,0001868	0,999317149	0,000682851
Tramo N° 6	3,3439	15,487	2667,6995	94	3,0303704	8756,9696296	0,329992667	0,000308219	0,999654067	0,000345933
Tramo N° 7	5,7206	17,46	10333,47	140	2,1562576	8757,8437424	0,463766487	0,000179387	0,999753852	0,000246148

En la tabla 16, se muestra los resultados obtenidos mediante el cálculo, de los índices de calidad y confiabilidad en el estado actual del alimentador Picaihua. Las interrupciones registradas por la empresa eléctrica Ambato de los tramos restantes (dos – siete) se muestran en el anexo XIV - XLII,

8.4.2. DEMANDA ACTUAL Y PROYECCIÓN DE LA DEMANDA EN EL ALIMENTADOR

Para el cálculo de la proyección de la demanda, se tomará en cuenta la potencia aparente que un usuario consuma según al que pertenezca, para la realización de proyección se realizará de la siguiente manera.

8.4.2.1. CONSUMO ANUAL DE POTENCIA Y ENERGÍA

Para proceder con el cálculo de la tasa de falla, se tomará en cuenta la potencia instalada en todo el alimentador en los años 2016, 2017, y 2018 (tabla N° 17), y seguidamente se procederá a realizar el cálculo correspondiente a la tasa de crecimiento anual.

Tabla 17: Crecimiento de la carga instalada en el alimentador en los años 2016, 2017, y 2018

	Año 2016	Año 2017	Año 2018
Carga Instalada	2887.5	2917.5	2997.5
(kVA)	2007.3	2)17.3	2771.3

8.4.2.2. TASA DE CRECIMIENTO ANUAL

Para realizar la tasa de crecimiento anual, nos basaremos en los datos de la tabla N° 17. Existen dos métodos para calcular la tasa de crecimiento y son las siguientes:

Tasa de crecimiento geométrico está dada por:

$$r = \sqrt[n]{\frac{Dn}{Do}} - 1 \tag{23}$$

$$Dn = Do * (r+1)^n$$
 (24)

O por, la tasa de crecimiento aritmético:

$$r = \frac{\left(\frac{Dn}{Do} - 1\right)}{n} \tag{25}$$

$$Dn = Do * (1 + (r * n))$$
 (26)

Donde:

- r = tasa de crecimiento geométrico/aritmético.
- Dn = demanda proyectada a n años.
- Do = Demanda actual
- n = tiempo en años a proyectarse la demanda.

Para este cálculo de la tasa de crecimiento, utilizaremos (23), debido a que esta fórmula se utiliza cuando tenemos datos consecutivos.

Tasa de crecimiento para un año (2016 - 2017):

•
$$r = \frac{\left(\frac{Dn}{Do} - 1\right)}{n}$$

•
$$r = \frac{\binom{2917.5}{2887.5} - 1}{1}$$

•
$$r = 0.0104$$

Tasa de crecimiento para un año (2017 – 2018):

•
$$r = \frac{\left(\frac{Dn}{Do} - 1\right)}{n}$$

•
$$r = \frac{\binom{2997.5}{2887.5} - 1}{1}$$

•
$$r = 0.0381$$

De las dos tasas de falla que se calcularon anteriormente, estas se promediaran para tener una sola tasa de falla y que servirá para posteriormente en el cálculo de la proyección de la demanda.

•
$$r = \left(\frac{r_1 + r_2}{n}\right)$$

•
$$r = \left(\frac{0.0104 + 0.0381}{2}\right)$$

•
$$r = 0.02425$$

8.4.2.3. PROYECCIÓN DE LA DEMANDA PARA 10 AÑOS.

Se utilizará la proyección geométrica, Utilizando (23), esta ecuación se usa cuando no tenemos años consecutivos.

Los usuarios que se conectan a las redes eléctricas de distribución, están clasificados según su consumo y potencia por medio de estratos. En la siguiente tabla se muestra a los consumidores según al estrato que estos pertenecen:

Tabla 18: Estratos de consumidores residenciales

Estratos de consumidores	Energía mínima de consumo al mes (kWh).	Energía máxima de consumo al mes (kWh).	Energía media de consumo (kWh).
A	270	500	385
В	161	270	215.5
С	11	160	135
D	81	110	95.5
Е	10	80	45

Fuente: Empresa eléctrica Ambato.

Para hacer más verídicos los cálculos de consumo según los estratos de los usuarios, escogimos aleatoriamente al transformador N°10161, trifásico con 50 usuarios, y estrato tipo C y D. donde se recepto las muestras de cada usuario (Anexo VII).

Tabla 19: Voltajes y corrientes de consumidores según el estrato (A – B – C)

Voltajes y corrientes monofásicas (A-B-C)							
	C D E						
V (voltios)	127	127	127				
I (amperios)	6,8	4,76	2,86				
S (aparente)	0,864	0,605	0,363				

Tabla 20: Voltajes y corrientes de consumidores según el estrato (AB)

Voltajes y corrientes bifásicas (AB)						
C D E						
V (voltios)	240	240	240			
I (amperios)	6,7	4,69	3,28			
S (aparente) 2,274 1,592 1,113						

Tabla 21: Voltajes y corrientes de consumidores según el estrato (ABC)

Voltajes y corrientes trifásicas (ABC)						
C D E						
V (voltios)	340	340	340			
I (amperios) 15,5 10,85 7,59						
S (aparente)	9,128	6,39	4,47			

Para este método se evaluará con el crecimiento de la demanda por medio del número de usuarios que se encuentren conectados a la red del transformador de distribución, hemos escogido aleatoriamente un transformador para el ejemplo del proceso de cálculo.

• Numero de transformador: 10161

• Número de usuarios: 25

Estratos de usuarios:

Conexión monofásica:

o Usuarios tipo C: 9

o Usuarios tipo D: 1

• Conexión bifásica:

Usuarios tipo C: 5

• Conexión trifásica:

Usuarios tipo C: 8

o Usuarios tipo D: 2

Para proyectar el crecimiento de la demanda utilizaremos la tasa de crecimiento anteriormente calculado, y a los usuarios según el estrato, que al final será el crecimiento en números de usuarios en el trasformador. El crecimiento de la demanda lo haremos por el método geométrico (23).

$$Dn = Do * (r+1)^n$$

Número de usuarios monofásicos tipo C:

• $D(10 \ a\tilde{n}os) = Do * (1+r)^{10}$

• $D(10 \text{ años}) = 9 * (1 + 0.02425)^{10}$

• D(10 años) = 11 usuarios

Número de usuarios monofásicos tipo D:

• $D(10 \text{ años}) = Do * (1+r)^{10}$

• $D(10 \ a\tilde{n}os) = 1 * (1 + 0.02425)^{10}$

• D(10 anos) = 1 usuarios

Número de usuarios bifásicos tipo C:

•
$$D(10 \ a\tilde{n}os) = Do * (1+r)^{10}$$

•
$$D(10 \ a\tilde{n}os) = 5 * (1 + 0.02425)^{10}$$

•
$$D(10 \text{ años}) = 6 \text{ usuarios}$$

Número de usuarios trifásicos tipo C:

•
$$D(10 \ a\tilde{n}os) = Do * (1+r)^{10}$$

•
$$D(10 \text{ años}) = 8 * (1 + 0.02425)^{10}$$

•
$$D(10 \text{ anos}) = 10 \text{ usuarios}$$

Número de usuarios trifásicos tipo D:

•
$$D(10 \ a\tilde{n}os) = Do * (1+r)^{10}$$

•
$$D(10 \ a\tilde{n}os) = 2 * (1 + 0.02425)^{10}$$

•
$$D(10 \text{ anos}) = 3 \text{ usuarios}$$

Total, de usuarios proyectados para el año 2029

- Usuarios estrato tipo C = 27
- Usuarios estrato tipo D = 4
- Total, de usuarios = 31

8.4.2.4. CARGA PROYECTADA EN EL TRANSFORMADOR 10161 EN kVA

Se realizará por medio de la siguiente formula.

$$S = \left(\frac{(S_u * n)}{F. de \ diversidad}\right) \tag{27}$$

Donde:

- S = potencia aparente según el estrato del consumidor (Va o Kva).
- $Su = Potencia aparente unitaria (tabla N^{\circ} 14)$
- N = número de usuarios, según al estrato que pertenezca.
- $F.div = Factor de diversidad según el número de usuario y estrato (anexo <math>N^{\circ}$ 7).

Conexión con líneas de bajo voltaje entre una fase y un neutro (monofásica).

Usuarios con conexión monofásica tipo C.

- $S = \left(\frac{(S_u * n)}{F.de \ diversidad}\right)$
- $S = \left(\frac{(0.846*11)}{1.83}\right)$
- $S = 5.19 \, kVA$

Usuarios con conexión monofásica tipo D.

- $S = \left(\frac{(S_u * n)}{F.de \ diversidad}\right)$
- $S = \left(\frac{(0.605*1)}{1.04}\right)$
- $S = 0.582 \, kVA$

Conexión con líneas de bajo voltaje entre dos fases y un neutro (bifásica).

Usuarios con conexión bifásica tipo C.

- $S = \left(\frac{(S_u * n)}{F.de \ diversidad}\right)$
- $S = \left(\frac{(2.274*6)}{1.48}\right)$
- $S = 9.22 \, kVA$

Conexión con líneas de bajo voltaje entre tres fases y un neutro (trifásica).

Usuarios con conexión trifásica tipo C.

•
$$S = \left(\frac{(S_u * n)}{F.de \ diversidad}\right)$$

•
$$S = \left(\frac{(9.128*10)}{1.75}\right)$$

•
$$S = 52.16 \, kVA$$

Usuarios con conexión trifásica tipo D.

•
$$S = \left(\frac{(S_u * n)}{F.de \ diversidad}\right)$$

$$\bullet \quad S = \left(\frac{(6.39*3)}{1.27}\right)$$

•
$$S = 15.09 \, kVA$$

Capacidad conectada en el transformador:

•
$$S_T = 5.19 + 0.582 + 9.22 + 52.16 + 15.09$$

•
$$S_T = 82.242 \text{ kVA}$$

Rendimiento del transformador

•
$$\eta = \frac{S_T * 100\%}{S_{Transformador}}$$

•
$$\eta = \frac{82.242*100\%}{50}$$

•
$$\eta = 164.48 \%$$

Con la proyección de la demanda podemos ver que los usuarios conectados en el trasformador 10161 aumentan y el equipo en el año 2029 estará sobrecargado, por lo que la empresa eléctrica cambiaría el/los transformador/es por otro/s de más potencia, se evaluara la capacidad de los transformadores en todo el sistema para comprobar su rendimiento con la proyección de la demanda en el periodo de análisis en los próximos diez años, los equipos que sobrepasen con más del 130% de rendimiento se generara en la tabla N° 22.

Tabla 22: Rendimiento de transformadores por tramo (actual y proyectado)

TRAMO S	N° de Transformador es	N° de Usuarios actual	N° de Usuarios proyectado s (10 años)	Carga instalada del tramo (actual) kVA	Capacidad conectada en el tramo (actual) kVA	Capacidad conectada en el tramo (2029) kVA	Rendimien to por tramo (actual) %	Rendimien to por tramo (2029) %
Tramo 1	13	229	290	390	248.5	310.01	63.72	79.4897
Tramo 2	27	677	861	522.5	404.8	508.71	77.47	97.3607
Tramo 3	13	134	169	488.5	102.71	121.53	21.068	24.9292
Tramo 4	13	372	476	280	224.42	286.84	80.15	102.4428
Tramo 5	27	323	408	295	147.66	186.82	50.05	63.3288
Tramo 6	20	456	568	443.5	278.93	348.8	63.04	78.8248
Tramo 7	31	567	801	581	474.58	609.71	81.82	105.1224

En la tabla (N° 22) se puede verificar los rendimientos que encontramos en cada uno de los tramos proyectados para diez años, donde se puede observar que cinco de los siete tramos se encuentran en condiciones normales de operación y algunos de los transformadores no tendrán que ser remplazados, mientras tanto que dos de los siete tramos deberán ser repotenciados.

Los siguientes transformadores que a continuación se detallara, deberán ser repotenciados en su capacidad, debido a que en diez años estarán sobrecargados por el incremento de la demanda eléctrica que generara en el sector.

Tabla 23: Estimación de la potencia del transformador (2029)

Tramo	Código del transformador	Potencia del transformador	Potencia proyectada de los usuarios	Potencia de incremento del transformador
Tramo 1	8603	30	51.24	75
Tramo 1	10503	30	36.45	37.5
Tramo 1	10161	50	83.82	100
Tramo 1	11071	50	59.76	75
Tramo 2	6501	10	12.1	15

	Cédico del	Potencia del	Potencia	Potencia de
Tramo	Código del		proyectada de	incremento del
	transformador	transformador	los usuarios	transformador
Tramo 2	3615	10	12.93	15
Tramo 2	422	25	27.49	30
Tramo 2	5797	25	33.28	37.5
Tramo 2	2049	45	78.44	100
Tramo 2	5325	15	22.39	25
Tramo 2	5644	10	26.02	30
Tramo 2	6097	15	23.85	25
Tramo 2	7009	15	20.48	25
Tramo 2	5321	5	10.89	15
Tramo 2	5331	15	22.96	25
Tramo 2	2529	15	29.9	30
Tramo 2	9189	15	28.75	30
Tramo 3	502	25	36.91	37.5
Tramo 3	874	15	22.30	25
Tramo 4	8033	5	5.45	10
Tramo 4	4406	15	25.48	30
Tramo 4	4409	15	29.73	30
Tramo 4	4064	15	47.52	50
Tramo 4	3127	15	29.04	30
Tramo 4	4387	15	16.05	25
Tramo 4	3630	15	30.42	37.5
Tramo 4	4407	25	35	37.5
Tramo 4	4405	37.5	39.15	45
Tramo 5	2423	5	7.5	10
Tramo 5	10633	5	12.57	15
Tramo 5	8891	10	14.52	15

Tramo	Código del transformador	Potencia del transformador	Potencia proyectada de los usuarios	Potencia de incremento del transformador
Tramo 5	554	10	12.34	15
Tramo 5	9239	10	12.1	15
Tramo 5	4404	15	22.39	25
Tramo 5	511	25	33.8	37.5
Tramo 6	5505	10	10.89	15
Tramo 6	1487	10	11.75	15
Tramo 6	5785	15	15.13	25
Tramo 6	527	15	17.55	25
Tramo 6	3215	25	30.25	37.5
Tramo 6	10785	50	59.43	75
Tramo 6	4390	15	22.29	25
Tramo 6	730	10	16.34	25
Tramo 6	1997	25	46.06	50
Tramo 7	3376	10	10.29	15
Tramo 7	3646	10	12.1	15
Tramo 7	8613	30	37.22	37.5
Tramo 7	8612	45	168.95	2 x 100
Tramo 7	8371	50	139.17	2 x 75
Tramo 7	4803	10	19.97	25
Tramo 7	490	10	10.63	15
Tramo 7	10664	10	16.34	25
Tramo 7	492	15	23.29	25
Tramo 7	6910	10	13.38	15

8.4.2.5. ÍNDICES DE CALIDAD Y CONFIABILIDAD ORIENTADOS A LOS CONSUMIDORES

Con los datos ya encontrados, podemos calcular los índices de calidad del consumidor (SAIFI, SAIDI, CAIDI, ASAI, ASUI), que presenta el alimentador Picaihua.

Figura 30: Diagrama unifilar, para el cálculo de los índices del consumidor

DIAGRAMA UNIFILAR - ALIMENTADOR PICAIHUA

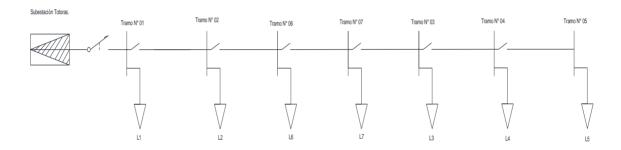


Tabla 24: datos para cálculo de los índices del sistema

Línea	λ f/año	r horas	Punto de Carga	Número de consumidores	Promedio de carga (kW)
1	0,00049486	2,37602778	L1	229	228.62
2	0,00194221	6,73418403	L2	677	372.42
6	0,00102833	7,4209	L6	456	256.62
7	0,00125699	5,37265	L7	567	436.61
3	0,00030481	2,80511111	L3	134	94.49
4	0,000723506	1,84931944	L4	372	206.88
5	0,00068603	11,6963417	L5	323	135.85
				2758	1731.49

TASA DE FALLA

•
$$\lambda = \sum_i \lambda_i$$

•
$$\lambda_1 = 0.00049486$$

•
$$\lambda_2 = 0.00049486 + 0.00194221 = 0.00243707$$

•
$$\lambda_6 = 0.00243707 + 0.00102833 = 0.0034654$$

•
$$\lambda_7 = 0.0034654 + 0.00125699 = 0.00472239$$

•
$$\lambda_3 = 0.00472239 + 0.00030481 = 0.00502719$$

•
$$\lambda_4 = 0.00502719 + 0.000723506 = 0.005750700$$

•
$$\lambda_5 = 0.005750700 + 0.00068603 = 0.006436732$$

TASA DE REPARACIÓN

•
$$r = \frac{\sum_{i} \lambda_{i} r_{i}}{\sum_{i} \lambda_{i}}$$

•
$$r = \frac{\sum_{i} \lambda_{i} r_{i}}{\sum_{i} \lambda_{i}}$$

• $r_{1} = \frac{0,00049486*2,37602778}{0,00049486} = 2,37602778$

•
$$r_2 = \frac{(0,00049486*2,37602778) + (0,00194221*6,73418403)}{0,00243707} = 5,84924156$$

$$r_6 = \frac{ {\scriptstyle (0,00049486*2,37602778) + (0,00194221*6,73418403) + } }{ {\scriptstyle (0,00102833*7,4209)}} = 6,31561413$$

•
$$r_7 = \frac{(0,00049486*2,37602778) + (0,00194221*6,73418403) +}{(0,00102833*7,4209) + (0,00125699*5,37265)} = 6,0646192$$

$$r_3 = \frac{(0,00049486*2,37602778) + (0,00194221*6,73418403) +}{0,00102833*7,4209) + (0,00125699*5,37265) + (0,00030481*2,80511111)}{0,00502719} = 5,86699066$$

$$(0,00049486*2,37602778) + (0,00194221*6,73418403) + \\ (0,00102833*7,4209) + (0,00125699*5,37265) + (0,00030481*2,80511111)$$

•
$$r_4 = \frac{\frac{+(0,001235387,4265)}{(0,00123509583,37263)}(0,0003040182,0031111)}{0,005750700} = 5,36152003$$

•
$$r_5 = \frac{+(0,000723506*1,84931944) + (0,00068603*11,6963417)}{0,006436732} = 6,03669067$$

INDISPONIBILIDAD FORZADA (U):

$$U = \sum_{i} \lambda_{i} r_{i}$$

$$U_1 = 0.00049486 * 2.37602778 = 0.0011758$$

$$U_2 = 0.00243707 * 5.84924156 = 0.01425502$$

$$U_6 = 0.0034654 * 6.31561413 = 0.02188612$$

$$U_7 = 0.00472239 * 6.0646192 = 0.02863948$$

$$U_3 = 0.00502719 * 5.86699066 = 0.0294945$$

$$U_4 = 0.005750700 * 5.36152003 = 0.03083249$$

$$U_5 = 0.006436732 * 6.03669067 = 0.03885656$$

$$L = \lambda_i N_i$$

$$L_1 = 0.00049486 * 229 = 0.1133225$$

$$L_2 = 0.00243707 * 677 = 1.64989795$$

$$L_6 = 0.0034654 * 456 = 1.58022199$$

$$L_7 = 0.00472239 * 567 = 2.677594$$

$$L_3 = 0.00502719 * 134 = 0.67364397$$

$$L_4 = 0.005750700 * 372 = 2.13926039$$

$$L_5 = 0.006436732 * 323 = 2.07906454$$

$$L_T = 10,9130053$$

$$L_i = U_i N_i$$

$$L_1 = 0.0011758 * 229 = 0.2692574$$

$$L_2 = 0.01425502 * 677 = 9.65065164$$

$$L_6 = 0.02188612 * 456 = 9.98007232$$

$$L_7 = 0.02863948 * 567 = 16.2385879$$

$$L_3 = 0.0294945 * 134 = 3.95226287$$

$$L_4 = 0.03083249 * 372 = 11.4696874$$

$$L_5 = 0.03885656 * 323 = 12,5506695$$

$$L_T = 64,1111891$$

$$L_i = L_i U_i$$

$$L_1 = 228,62 * 0,0011758 = 0,2688106$$

$$L_2 = 372,42 * 0,01425502 = 5,30885625$$

$$L_6 = 256,62 * 0,02188612 = 5,61641701$$

$$L_7 = 436,61 * 0,02863948 = 12,5042855$$

$$L_3 = 94,49 * 0,0294945 = 2,78693522$$

$$L_4 = 206,08 * 0,03083249 = 6,37862617$$

$$L_5 = 135,85 * 0,03885656 = 5,27866395$$

$$L_T = 38,1425947$$

Tabla 25 Datos para el cálculo de los índices del sistema

Punto de Carga	́Л f/año	r horas	U h/año	$\lambda_j N_i$	U_iN_i	L_iU_i
L1	0,0004949	2,3760278	0,001176	0,1133225	0,2692574	0,2688106
L2	0,0024371	5,8492416	0,014255	1,64989795	9,65065164	5,30885625
L6	0,0034654	6,3156141	0,021886	1,58022199	9,98007232	5,61641701
L7	0,0047224	6,0646192	0,028639	2,677594	16,2385879	12,5042855
L3	0,0050272	5,8669907	0,029494	0,67364397	3,95226287	2,78693522
L4	0,0057507	5,3615200	0,030832	2,13926039	11,4696874	6,37862617
L5	0,0064367	6,0366907	0,038857	2,07906454	12,5506695	5,27866395
				10,9130053	64,1111891	38,1425947

Índice de frecuencia promedio de interrupción del sistema (Interrupciones/consumidor) (SAIFI):

•
$$SAIFI = \frac{\sum_{i} \lambda_{i} N_{i}}{\sum_{i} N_{i}}$$

•
$$SAIFI = \frac{10,9130053}{2758} = 0,003956855 \frac{int}{consum}$$

Índice de duración de la interrupción promedio del sistema (SAIDI):

•
$$SAIDI = \frac{\sum_{i} U_{i} N_{i}}{\sum_{i} N_{i}}$$

•
$$SAIDI = \frac{64,1111891}{2758} = 0,023245536 \ h/consum$$

Índice de duración de interrupción promedio del cliente (CAIDI):

•
$$CAIDI = \frac{\sum_{i} U_{i} N_{i}}{\sum_{i} \lambda_{i} N_{i}}$$

•
$$CAIDI = \frac{\sum_{i} U_{i} N_{i}}{\sum_{i} \lambda_{I} N_{i}}$$

• $CAIDI = \frac{64,1111891}{10,9130053} = 5,874751015 \ h/int. \ consum$

Índice de disponibilidad de servicio promedio (ASAI):

•
$$ASAI = \frac{\sum_{i}(N_i*8760) - \sum_{i}U_iN_i}{\sum_{i}(N_i*8760)}$$

•
$$ASAI = \frac{\sum_{i}(N_i*8760) - \sum_{i}U_iN_i}{\sum_{i}(N_i*8760)}$$

• $ASAI = \frac{(2758*8760) - 64,1111891}{(2758*8760)} = 0,999997346$

Índice de indisponibilidad de servicio promedio (ASUI):

•
$$ASUI = 1 - ASAI$$

•
$$ASUI = 1 - 0.999997346 = 0.000002653$$

Tabla 26: Índices de calidad enfocados al consumidor

	SAIFI	SAIDI	CAIDI	ASAI	ASUI
Sin Almacenador	0,003956855	0,023245536	5,874751015	0,999997346	2,6536E-06

En la tabla N° 26, se describe los índices de calidad para el consumidor, sin la introducción de los almacenadores.

8.4.3. DIMENSIONAMIENTO SISTEMA DE ALMACENAMIENTO DISTRIBUIDO DE ENERGÍA

Un dimensionamiento adecuado de la batería asegurará que la autonomía tiene la duración adecuada para la carga suministrada. El usuario debería decidir primero qué autonomía de batería se requiere y después seleccionar la configuración y los armarios adecuados. [16]

- Elegir la potencia y el tipo del Sistema de almacenamiento ininterrumpible (SAI).
- Definir la autonomía requerida
- Elegir la batería común o separada.
- Comprobar las tablas de autonomía para una configuración de las baterías apropiada y armarios de baterías compatibles.
- Comprobar las especificaciones técnicas de los armarios de baterías seleccionados para más información.

Para el dimensionamiento de los almacenadores, seguiremos los cinco procesos que antes se mencionó, para el primer ítem "elegir la potencia y el tipo del sistema de almacenamiento ininterrumpible SAI", tendremos que utilizar la capacidad proyectada de la demanda de potencia que consumen los usuarios, entre esta tenemos lo siguiente:

Tabla 27: Potencia y capacidad del alimentador.

Tramo	Carga instalada del tramo (kVA)	Capacidad de carga según los usuarios (2029) (kVA)	Capacidad de carga según los usuarios (2029) (kW)
Tramo N° 1	390	310.01	285.21
Tramo N° 2	522.5	508.71	468.01
Tramo N° 3	488.5	121.53	111.81
Tramo N° 4	280	286.84	263.89
Tramo N° 5	295	186.82	263.87
Tramo N° 6	443.5	348.8	320.90

		Capacidad de	Capacidad de carga	
Tramo	Carga instalada	carga según los	según los usuarios	
1102210	del tramo (kVA)	usuarios (2029)	(2029) (kW)	
		(kVA)		
Tramo N° 7	581	609.71	560.93	

En la tabla N° 27, se observa la potencia según la capacidad de los usuarios, en la que vamos a seleccionar según las potencias disponibles de los almacenadores de energía.

Una vez seleccionada la potencia necesaria para abastecer a todo el primario del alimentador, debemos proceder con el segundo ítem, "definir la autonomía requerida".

La autonomía que se utilizará será en base a tres escenarios.

- Escenario 1; baterías de potencia que dispongan de una duración de 15 minutos.
- Escenario 2; baterías de potencia que dispongan de una duración de 30 minutos.
- Escenario 3; baterías de potencia que dispongan de una duración de 60 minutos.

Se crea estos tres escenarios para ver el impacto de las baterías con relación a las curvas de los índices de calidad (TTIK Y FMIK) y la energía no suministrada (ENS).

En el tercer ítem "Elegir la batería común o separada", para el caso del alimentador Picaihua, se considerará baterías separadas.

Para el ítem cuatro y cinco "comprobar las tablas de autonomía para una configuración de las baterías apropiada y armarios de baterías compatibles" y "comprobar las especificaciones técnicas de los armarios de baterías seleccionados para más información", se procede a evaluar las especificaciones técnicas del sistema de almacenamiento *Conceptpower DPA 500*, que esta se detalla a continuación.

ESPECIFICACIONES TÉCNICAS:

CARACTERÍSTICAS GENERALES					
Características generales - Marco	Valores	Unidad			
Modelo: Conceptpower DPA 500					
Va	lores de Potencia				
aparente	500	kVA			
Activa	500	kW			
Rango de potencia	100 – 3000	kW			
Tipo de UPS: en línea, trasformerfree, modular, capacid	ad paralela arquitectura parale	ela descentralizada:			
hasta 6 cuadros de la batería: no incluidos					
Clasificación Rendimiento: VFI-SS-111					
	Mecánico				
Dimensiones (anchura x altura x profundidad)	1580x1975x940	mm			
Masa, aprox. (Sistema de 500 kW, con 5 módulos)	975	KG			
El ruido acústico (acc. a IEC 62040-3) en el modo norm	al (a <= 25 °				
C) a 100% / 50% de carga	75/67				
en el modo de batería (a <= 25 ° C) a 100% / 50% de carga	73/66	dBA			
8	Seguridad				
Acceso: operador / restringido	~ -8********				
Grado de protección contra los riesgos y la entrada de ag	rua: IP 20				
	ilidad electromagnética				
obediente					
Emisión de UPS UPS Cat / Inmunidad gato		C3 / C3			
Ambiental					
Temperatura de almacenamiento	- 25 - +70	°C			
rango de temperatura operativo	0 - + 40	°C			
Rango de humedad relativa (sin condensación)	≤ 95	%			
Max. altitud y sin reducción de potencia	1000	m			

Información adicional y habitual			
Conexión: 5 hilos, 3 fases + N + PE			
Cable entrada: parte superior o inferior			
Accesibilidad: solamente frontal			
Color: Grafito gris (RAL 7024)			
código de Color: Pulverlacke N ° 4222903402			

Características generales - Módulo	Valores	Unidad
Modelo: 500 Conceptpower DPA	,	,
Valor de potencia:	-	
Aparente	100	(kVA)
Activa	100	(kW)
Tipo de UPS: en línea, trasformerfree, modular, capacidad pa	aralela arquitectura paralela descent	ralizada:
hasta 6 cuadros de la batería: no incluidos		
Clasificación Rendimiento: VFI-SS-111		
M	ecánico	
Dimensiones (anchura x altura x profundidad): activa		
sub-módulo / sub-módulo pasivo	710x178x750	mm
Masa, aprox .:	'	1
sub-módulo activo / sub-módulo pasivo	55/54	kg
Información adicional y habitual	- 1	1
la protección de retroalimentación: incluido		
Color: Negro (RAL 9005)		

Características de las entradas				
Características de las entradas	Valores armazón del SAI	Los valores del módulo de UPS	Unidad	
Poder, puntuación:	500	100	kW	
Voltaje (en estado estacionario, r.m.s.), una clasificación:		3x380 / 220V + N 3x400 / 230V + N 3x415 / 240V + N	VAC	
Tolerancia referente a 400/230 V	-20 / +15 A <80	% DE LA CARGA % DE LA CARGA % DE LA CARGA	%	
Frecuencia, clasificado		50	HZ	
tolerancia, refferred a 50Hz		- 30 / + 40	%	
(Eficaz), valorado (con la batería cargada y de entrada 400 / 230V)	760	152	A	
máxima (con carga de la batería y la entrada 400 / 230V)	835	167	A	
distorsión armónica total (THDi)		<3,5	%	
de irrupción actual	<100% de l	a corriente nominal	%	
Factor de potencia	0.99	9 @ 100% de carga		
Nominal de corta duración admisible de corriente (I CW)	25 para 1 s	-	KA, s	
AC del sistema de distribución de energía: TN-S, T	N-C, TN-CS, TT			
Nota: en el modo de derivación estática o modo ecocorrientes de fase.	TN-C y TN-CS puede ca	usar PE actual a ris e	e encima del 5% de las	
fases requieren	3			
neutra requerida		SI		
Información adicional y habitual				
Conexión: 5 hilos, 3 fases + N + PE				
Cable entrada: parte superior o inferior				
Accesibilidad: frontal				
Walk In / Soft Start: si				
Volver alimentar protección: si				

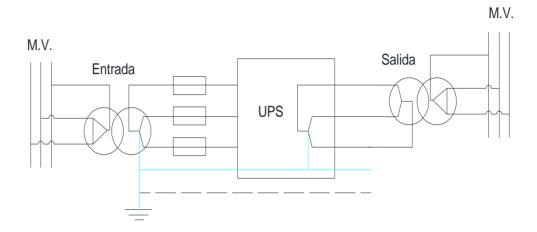
CARACTERÍSTICAS DE SALIDA					
Características de salida	Valores armazón del UPS	Los valores del módulo de UPS	Unidad		
Poder, puntuación:	500	100	kW		
sistema de distribución de energía de CA: TN-S, TN-C	, TN-CS, TT fases				
disponibles		3			
neutra disponibles		SI			
Tensión (estado estacionario, r.m.s.), una	3x380 / 220	V + N 3x400 / 230V	VAC		
clasificación:	+1	N 3x415 / 240V + N	VAC		
variación en el modo normal / modo de batería		± 1.5 / ± 1.5	%		
la distorsión armónica total (THDu), 100% de carga, m	odo normal:				
lineal		<2,0	0/		
no lineal (según IEC 62040-3)		<4,0	. %		
la distorsión armónica total(THDu), 100% de carga, el	modo de batería:				
lineal		<2,0			
no lineal (según IEC 62040-3)		<4,0	. %		
Desequilibrio de tensión y el desplazamiento de fase,					
100% desequilibrio de carga		0	%		
Voltaje de tiempo transitorio y la recuperación, 100% d	le carga paso:				
lineal		± 4	%		
no lineal (según IEC 62040-3)		± 4	%		
transferir modo normal -> modo de batería		0%			
Frecuencia (estado estacionario), puntuación:		50/60 Hz			
variación en el modo normal (FRQ. Sincronización con la red)		± 2 / ± 4	%		
variación en el modo de batería (marcha libre)		± 0,1			
error de fase de sincronización Max (referido a un		^	0		
ciclo de 360 °)		<2			
Max Velocidad de respuesta de		1	Hz/s		
corriente eficaz (A), asignadas nominales:	725	145	A		
		0.5 @ 150% carga,			
sobrecarga en inversor		5 @ 125% carga,	Min		
	20 @ 110% carga.				
Falla de Compensación modo normal y el modo de	1711 (2.36xIn)	348 (2.4xIn)	A		
capacidad de la batería para 100 ms	1711 (2.30xIII)	540 (2.4xIII)	11		
factor de potencia de carga, valorados	1				
desplazamiento (rango permisible de plomo-lag)	(7	Γodo el rango) 0%, s			
eficiencia AC / AC en el modo normal, carga lineal:	1		1		

100% de carga		95,6%		
carga de 75%		96.0	%	
50% de carga		96.1	70	
carga 25%		95.8		
eficiencia en modo Eco, carga lineal		≥ 99	%	
Crest - Factor (carga soportada)		3: 1		
bypass estático	I			
Tipo: interruptor automático, estática en cada módulo de	tiempo de transferen	cia: inversor • bypass	;/	
by-pass • inversor / en modo de ahorro	<1/<5/<6		ms	
Corriente nominal	800	160	A	
Falla de Compensación capacidad (modo de derivación) durante 20 ms	10 x In	10 x In	A	
corriente de sobrecarga en el modo de derivación (<25 ° C)	carga continuamente @ 110%		min	
derivación de mantenimiento: opcional en el bastidor				
fusible de protección de derivación o circuito nominal del interruptor		5x160	A, Gl fuse	

Características de la batería				
características de la batería	Valores	Unidad		
Tecnología: VRLA, ventila de plomo-ácido, NiCd				
Número de 12 V bloques (par e impar)	42-48 1)			
Número de 1.2 V células de NiCd (par e impar)	420-480 1)			
cargador de batería: descentralizado, cada módulo tie	ne su propio cargador			
Max. capacidad de cargador de corriente	60	A		
Max. capacidad de cargador de potencia	30	kW		
tensión de flotación (VRLA / NiCd)	2,25 / 1,40	VDC		
Fin de la tensión de descarga (VRLA / NiCd)	1,65 / 1,05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
r.m.s. rizado de corriente (porcentaje de la	2	%		
capacidad de la batería)	_	70		
La compensación de temperatura: opcional				
prueba de la batería: prueba de batería automática y p	eriódica (seleccionable)			

Configuración de armarios de SAI:

- SAI on line doble conversión
- Interfaz HMI con diagrama mímico y LCD (60–200 kW)
- Pantalla gráfica táctil (equipos de 250–500 kW)
- Fusibles de protección de entrada, bypass y batería
- Interruptor de bypass manual (opcional para los equipos 400–500 kW)
- Posibilidad de alimentación de entrada única o dual
- Interfaces de comunicación: puerto RS-232 y 5 contactos secos de entrada (incl. EPO y GEN On)


Opciones:

- Protección antirretorno integrada
- Kit de sistema paralelo
- Kit de sincronización
- Sensor de temperatura de batería
- Panel remoto (visualización con pantalla gráfica táctil)
- Cableado libre de halógenos
- IP 21
- Control y seguimiento (tarjeta de relés, ModBus RS-485, ModBus TCP/IP, SNMP)
- Armarios de baterías externas
- Entrada de cable superior (equipos de 400–500 kW)

Para el dimensionamiento del Ups, se tomó en cuenta la capacidad y crecimiento de la demanda de potencia eléctrica que se muestra en la tabla N° 27.

Como se describe anteriormente se va utilizar un banco de baterías para lo q vamos a describir cada uno de sus componentes que va necesitar este modulo para su conexión la red de medio voltaje.

Figura 31: Diagrama de conexión de los UPS con la red

Transformador

Se necesita dos transformadores, uno que eleve y otro que reduzca el voltaje de 13800 V a 400 V y viceversa , debido a que los modulos del almacenador tienen un voltaje de 400 V tanto en la entrada como en la salida, con las potencias que se requieran en cada tramo.

UPS

En este equipo que se ha seleccionado, esta formado de un rectificador, banco de baterías, un inversor, los cuales se encuentran internamente en el modulo.

- **Rectificador:** Es el encargado de convertir corriente altrna en corriente continua para que las baterias puedan ser alimentadas.
- Banco de Baterías: Son almacenadores de plomo-acido VRLA (reguladas por valculas), a continuación se describira mas acerca de estas baterías.
- **Inversor:** Su función es de invertir el voltaje de la salida de las baterias que es corriente continua en alterna.
- Pantallas de mando y control del almacenador: En esta pantalla es donde se puede controlar el modulo.

8.4.3.1. DIAGRAMA DE ELEMENTOS Y PROTECCIONES DEL ALMACENADOR

Fuse D 500 kW **⊰**-IA1 (Optional) Cable Single 100 kW D. Input F2-5 Cable A Load Cable E IA2-5 Furse C F3-6 // F2-4 100 kW IA2-4 Fuse E 53-4 100 kW Separate batteries IA2-3 Fuse E F3-3 100 kW IA2-2 F3-2 100 kW IA2-1 Fuse E

Figura 32: Diagrama de los elementos del almacenador de energía

Fuente: [18]

En LA figura 32 se encuentra las protecciones que contiene el almacenador para cada uno de sus modulos, estas protecciones se encuentran internamente en el equipo.

Banco de baterias

En este almacenador que tiene una potencia de 500 kW como se lo describe anteriormente está compuesto de 5 módulos cada uno de 100 kW, que a su vez cada uno de estos está compuesto de 9 baterías de plomo-acido de 28Ah cada una, con una corriente por módulo de 152 A.

Estas baterias tienen una profundidad de descarga del 70%, lo que quiere decir que se debe incrementar un 30% en las potencias de los modulos que se van a ubicar en cada uno de los tramos en estudio.

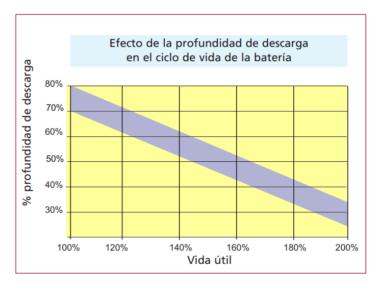


Figura 33: Curva de profundidad de descarga de la batería con relacion a la vida util

Fuente: [16].

En la siguiente figura (33) se puede observar una relación de la vida útil con la profundidad de descarga de las baterías de plomo-ácido VRLA (Regulada por Válvula) las cuales tienen una profundidad de descarga del 70% esto se lo hace más por alargar la vida útil de la batería, puesto que con esa profundidad de descarga aumenta los ciclos de trabajo de la batería.

8.4.4. CALCULO DESCARGA Y CARGA DE UN ALMACENADOR

El almacenador de 500 kW como se lo describe anteriormente está compuesto de 5 módulos cada uno de 100 kW, que a su vez cada uno de estos está compuesto de 9 baterías de 28Ah cada una, con una corriente por módulo de 152 A.

8.4.4.1. TIEMPO DE DESCARGA POR MÓDULO

Ah = 9 baterias x 28Ah = 252 Ah

$$t = \frac{252Ah}{152A} = 1,66 \ h$$

Con estos cálculos se dice que el módulo puede entregar 152 A en el tiempo de 1,66 horas

8.4.4.2. TIEMPO DE CARGA POR MÓDULO

De acuerdo a las especificaciones técnicas cada módulo carga 60 A en una hora, y cada uno es independiente.

$$t = \frac{152}{60} = 2,53$$

En relación al resultado obtenido se dice que el módulo cargara en 2,53 horas

Tabla 28: Numero de almacenadores a ser utilizado en el alimentador

Tramo	Capacidad de carga según los usuarios (2029) (kVA)	Capacidad de carga según los usuarios (2029) (kW)	Capacidad del almacenador. (kW)
Tramo N° 1	310.01	285.21	4X100 (400 kW)
Tramo N° 2	508.71	468.01	6X100 (600 kW)
Tramo N° 3	121.53	111.81	2X100 (200 kW)
Tramo N° 4	286.84	263.89	4X100 (400 kW)
Tramo N° 5	186.82	263.87	4X100 (400 kW)

Tramo	Capacidad de carga según los usuarios (2029) (kVA)	Capacidad de carga según los usuarios (2029) (kW)	Capacidad del almacenador. (kW)
Tramo N° 6	348.8	320.90	4X100 (400 kW)
Tramo N° 7	609.71	560.93	7X100 (700 kW)

8.4.4.3 PROCESO DE CARGA Y DESCARGA DE LOS ALMACENADORES EN LOS 7 TRAMOS

El alimentador Picaihua con la propuesta realizada en la tabla N° 28, cuenta con un total de 31 almacenadores de energía y con una potencia de 100 kW cada módulo, distribuidos de la siguiente manera:

Tabla 29: Cantidad de almacenadores por tramo

Numero de tramo	Numero de módulos
Tramo 1	4
Tramo 2	6
Tramo 3	2
Tramo 4	4
Tramo 5	4
Tramo 6	4
Tramo 7	7
TOTAL	31

La curva de demanda diaria se describe en la figura N° 34, la misma que se utilizara para identificar la demanda diaria al cargar los almacenadores en los diferentes escenarios.

Figura 34: Curva de demanda diaria del Alimentador Picaihua

Fuente [17]

Se simulará interrupciones con ocho tipos de casos. A continuación, se presenta estos escenarios para la carga de los almacenadores en la hora más oportuna, tomando en cuenta en no sobrepasar el pico máximo que tiene la curva diaria del alimentador.

- Interrupciones presenciadas en el interior de la subestación (escenario 1).
- Interrupciones presenciadas en la red primaria del tramo N° 1 (escenario 2)
- Interrupciones presenciadas en la red primaria del tramo N° 2 (escenario 3)
- Interrupciones presenciadas en la red primaria del tramo N° 3 (escenario 4)
- Interrupciones presenciadas en la red primaria del tramo N° 4 (escenario 5)
- Interrupciones presenciadas en la red primaria del tramo N° 5 (escenario 6)
- Interrupciones presenciadas en la red primaria del tramo N° 6 (escenario 7)
- Interrupciones presenciadas en la red primaria del tramo N° 7 (escenario 8)

Al presentar interrupciones en el disyuntor de la subestación, el alimentador cuenta con 31 almacenadores de 100 kW cada uno, que van abastecer a los 7 tramos, dichos almacenadores serán divididos en cinco partes para ser cargados, de la siguiente manera de 11pm a 2am 7 almacenadores, de 2am a 5am 10 almacenadores, de 5am a 8am 6 almacenadores, de 8am a 11am 4 almacenadores y de 11am a 2pm 4 almacenadores, esto se lo hace sin superar el pico de demanda, lo cual se identifica en la siguiente curva de demanda diaria del alimentador.

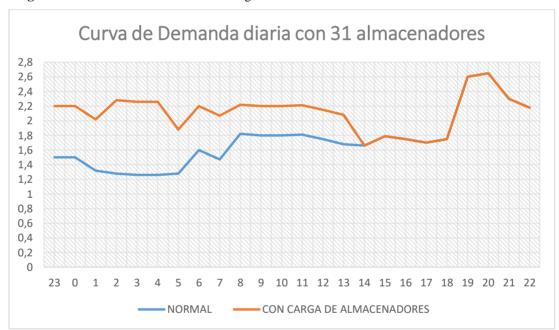


Figura 35: Curva de demanda diaria al cargar 31 almacenadores

Escenario 2

Al presenciar interrupciones en el tramo 1 por el tiempo promedio de 01:43, el alimentador contara con 27 almacenadores de 100 kW cada uno, que van abastecer a los 6 tramos restantes, estos almacenadores serán divididos en cuatro partes para ser cargados, de la siguiente manera de 11pm a 2am 7 almacenadores, de 2am a 5am 10 almacenadores, de 5am a 8am 6 almacenadores,

de 8am a 11am 4 almacenadores, esto se lo hace sin superar el pico de demanda, lo cual se identifica en la siguiente curva de demanda diaria del alimentador.

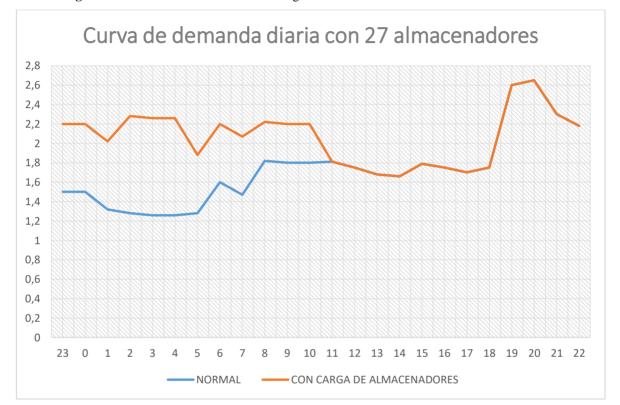


Figura 36: Curva de demanda diaria al cargar 27 almacenadores

Escenario 3

Al presentar interrupciones en el tramo 2 por el tiempo promedio de 02:39, el alimentador cuenta con 21 almacenadores de 100 kW cada uno, que van abastecer a los 4 tramos restantes, dichos almacenadores serán divididos en tres partes para ser cargados, de la siguiente manera de 11pm a 2am 7 almacenadores, de 2am a 5am 8 almacenadores, de 5am a 8am 6 almacenadores, esto se lo hace sin superar el pico de demanda, lo cual se identifica en la siguiente curva de demanda diaria del alimentador.

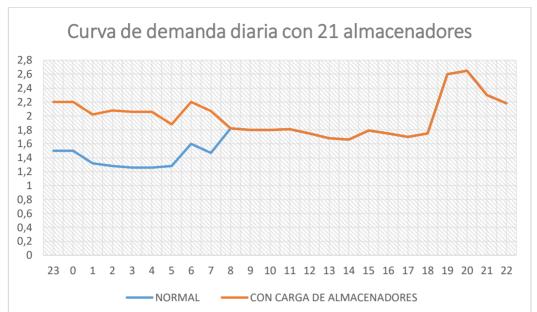


Figura 37: Curva de demanda diaria al cargar 21 almacenadores

Al presentar interrupciones en el tramo 3 por el tiempo promedio de 02:07, el alimentador cuenta con 8 almacenadores de 100 kW cada uno, que van abastecer a los 2 tramos aguas abajo, dichos almacenadores serán divididos en dos partes para ser cargados, de la siguiente manera de 11pm a 2am 4 almacenadores, de 2am a 5am 4 almacenadores, esto se lo hace sin superar el pico de demanda, lo cual se identifica en la siguiente curva de demanda diaria del alimentador.

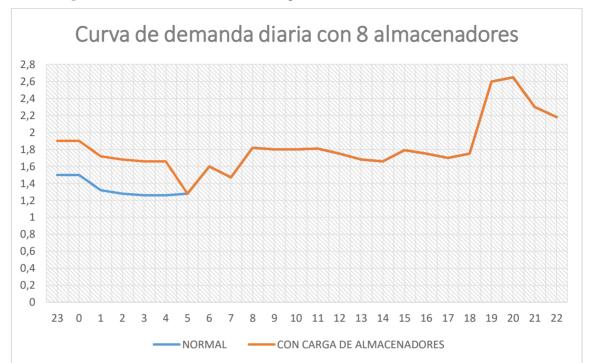


Figura 38: Curva de demanda diaria al cargar 8 almacenadores

Al presentar interrupciones en el tramo 4 por el tiempo promedio de 01:54, el alimentador cuenta con 4 almacenadores de 100 kW cada uno, que van abastecer a los 2 tramos aguas abajo, dichos almacenadores serán cargados, de la siguiente manera de 11pm a 2am 4 almacenadores, esto se lo hace sin superar el pico de demanda, lo cual se identifica en la siguiente curva de demanda diaria del alimentador.

Figura 39: Curva de demanda diaria al cargar 4 almacenadores

Al presentar interrupciones en el tramo 5 por el tiempo promedio de 05:16, solo este queda fuera de servicio debido a que no existen tramos aguas abajo, mientras que los restantes cuentan con alimentación de la red.

Escenario 7

Al presentar interrupciones en el tramo 6 por el tiempo promedio de 02:29, solo este queda fuera de servicio debido a que no existen tramos aguas abajo, mientras que los restantes cuentan con alimentación de la red.

Al presentar interrupciones en el tramo 7 por el tiempo promedio de 01:59, solo este queda fuera de servicio debido a que no existen tramos aguas abajo, mientras que los restantes cuentan con alimentación de la red.

8.5. CARGA INSTALADA CON LA INTRODUCCIÓN DE LOS SISTEMAS DE ALMACENAMIENTO DE ENERGÍA

La carga instalada en los siete tramos del alimentador será el siguiente:

Tabla 30: carga instalada con la introducción de los sistemas de almacenamiento de energía.

N° de Tramo	Carga Instalada (kVA) – fase A	Carga Instalada (kVA) – fase B	Carga Instalada (kVA) – fase C	Carga Instalada (kVA) – fase ABC	Carga de los almacenadores de energía (kVA)	Carga total instalada (kVA)
Tramo N° 1	20	50	50	270	400	790
Tramo N° 2	145	147.5	155	75	600	1122.5
Tramo N° 3	62.5	55	65	305	200	688.5
Tramo N° 4	280	0	0	0	400	680
Tramo N° 5	295	0	0	0	400	695
Tramo N° 6	87.5	90	95	170	400	843.5
Tramo N° 7	140	160	155	125	700	1281
Total	1030	502.5	520	945	31000	6100.5

La carga instalada con los sistemas de almacenamiento de energía eléctrica según cada una de las fases será la siguiente:

Tabla 31: carga instalada en cada fase (A, B, C, ABC)

Código de fases	A	В	С	ABC
Carga (kVA)	2060.3	1535.83	1553.33	945
Carga (kVA) – cada fase	2379.33	1851.83	1869.33	

8.5.1. ÍNDICES DE CALIDAD Y CONFIABILIDAD CON LA INTRODUCCIÓN DE LOS ALMACENADORES DE ENERGÍA.

Una vez seleccionado el tipo y potencia de los almacenadores de energía eléctrica, el tiempo de autonomía, se procederá a evaluar el alimentador con la introducción de las baterías de potencia, para ello utilizaremos las mismas fallas anteriormente utilizadas (tabla N°32). Se procederá a realizar el ejemplo de cálculo con las interrupciones del tramo N° 1.

En la figura N° 29, demostró la ubicación de las interrupciones en el tramo N° 1, a continuación, se analiza la potencia saliente con la introducción de los almacenadores de energía. Para este análisis utilizaremos la autonomía de 60 minutos de las baterías.

Tabla 32: Interrupciones con y sin la introducción de los almacenadores de energía en el tramo 1.

			Sin la introdu	ucción de los alma	cenadores de	Con la introduce	ción de los alma	cenadores de
				energía.			energía.	
Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio (kVA)	Tiempo de duración de la falla (h.)	Usuarios sin servicio	Potencia nominal fuera de servicio (kVA)	Tiempo de duración de la falla (h.)	Usuarios sin servicio
1450	Red de media tensión	Fusible	60	1,633	84	60	1,633	84
2020	Transformadores	Fusible	50	1,883	25	50	1,883	25
3802	Transformadores	Fusible	80	1,066	50	80	1,066	50
11071	Transformadores	Fusible	50	3,816	39	50	3,816	39
11156	Transformadores	Fusible	25	1,3	8	25	1,3	8
Red 1	Red de media tensión	Disyuntor	2887,5	0,083	2816	390	0,083	229
Red 2	Red de media tensión	Disyuntor	2887,5	0,799	2816	390	0,799	229
Red 3	Red de media tensión	Disyuntor	2897,5	1,05	2816	390	1,0	229
Red 4	Red de media tensión	Disyuntor	2917,5	0,133	2816	390	0,133	229
Red 5	Red de media tensión	Disyuntor	2922,5	0,249	2816	390	0,249	229
Red 6	Red de media tensión	Disyuntor	2922,5	0,5	2816	390	0,5	229
Red 7	Red de media tensión	Disyuntor	2922,5	1,099	2816	390	1,0	229
Red 8	Red de media tensión	Disyuntor	2927,5	1,383	2816	390	1,0	229

En el caso de la columna N° 1, se muestra los códigos de los elementos que han tenido fallas. Las interrupciones que no se modificaran en tiempos son los equipos: 2020, 3802, 11071, 11156, debido a que estos elementos cuando sufren interrupciones afectan solo a los usuarios que están conectados a ellos y en el historial de fallas se registran como fallos en la parte del transformador, en el caso del equipo 1450, tengo la falla en la red de media tensión, pero la falla ocurre dentro del ramal y actúa el fusible que se encuentra ubicada en la entrada del ramal y afecta solamente a los usuarios de ese ramal.

Para los ocho casos restantes (red 1-8), las fallas presentadas están en la cabecera del alimentador como se detalló en la figura N° 29 (para el caso del tramo N° 1), al momento de tener una falla de esta magnitud queda sin servicio todo el alimentador, pero con la implementación e introducción de los almacenadores de energía, reduce la potencia de salida y solamente quedaría sin servicio el tramo N° 1, hasta realizar los trabajos de reparación del/los elemento/s que han fallado.

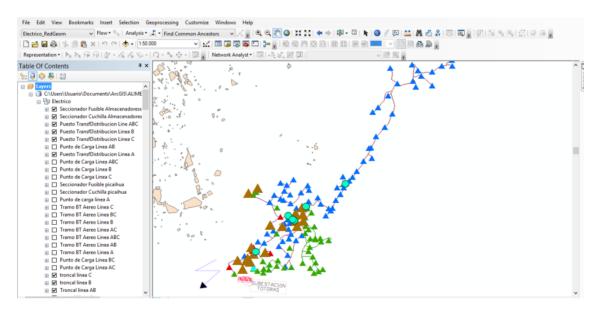


Figura 40: Elementos en falla en el tramo 1.

En el grafico anterior, se muestra la ubicación de los seccionadores de separación de los tramos, y las fallas más críticas registradas en el tramo N° 1, que en este caso ocurre en la cabecera del alimentador.

Aplicaremos la misma metodología que en la página 75 - 78, para la obtención de los índices por cada tramo.

Tabla 33: Índices de calidad en el tramo 1 con la introducción de los almacenadores de energía.

FMIK	TTIK	ENS (kWh)	Usuarios sin servicio
2.3932	0.8512	1768.1764	455

Con la introducción de los almacenadores de energía en el tramo N° 1, se reducen los índices de calidad, pero en este registro de fallas, existen interrupciones en la red primaria de media tensión que superan al tiempo de autonomía de 60 minutos de las baterías, es por ello que se realiza un nuevo cálculo de los índices de calidad, pero con la diferencia del tiempo y potencia que saldrá sin la utilización de los almacenadores con las fallas que sobrepasan de 1 hora.

Como tenemos dos índices de calidad (TTIK, FMIK, ENS, y número de usuarios) diferentes, procedemos a sumar estos dos índices, y en el número de usuarios sin servicio se procede a realizar el promedio entre los dos.

En la tabla N° 36, se observa los índices totales generados en el tramo N° 1, con los tramos restantes 2-7, se aplica el mismo criterio de obtención de los valores de los índices como se realizó con el primer tramo.

Tabla 34 XXIII-XLI: Índices con Autonomía de 15 minutos.

Código de tramo	FMIK (Int. /año)	TTIK (h. /año)	ENS (kWh)	Usuarios sin servicio
Tramo N° 1	3,2323	2,490	10234,8815	953
Tramo N° 2	2,7018	6,9965	29156,7964	157
Tramo N° 3	0,7686	0,7322	800,9659	68
Tramo N° 4	4,948	5.79	5323,944	196
Tramo N° 5	1,8983	11,242	959.824	40
Tramo N° 6	3,3439	15,487	2667,6995	94
Tramo N° 7	5,7206	17,46	10333,47	140

Tabla 35 XXIII-XLI: Índices con Autonomía de 30 minutos.

Código de tramo	FMIK (Int. /año)	<i>TTIK</i> (h. /año)	ENS (kWh)	Usuarios sin servicio
Tramo N° 1	2,8098	1,5557	6763,2442	953
Tramo N° 2	2,7018	6,07	26949,8837	157
Tramo N° 3	0,7686	0,6233	539,5316	68
Tramo N° 4	4,6913	5,5266	4710,0776	186
Tramo N° 5	1,8983	11,242	959.824	40
Tramo N° 6	3,3439	15,487	2667,6995	94
Tramo N° 7	5,7206	17,46	10333,47	140

Tabla 36 XXIII-XLI: Índices con Autonomía de 1 hora.

Código de tramo	FMIK (Int. /año)	<i>TTIK</i> (h. /año)	ENS (kWh)	Usuarios sin servicio
Tramo N° 1	2,3932	0,8512	1768,1764	455
Tramo N° 2	2,7018	5,3289	22536,0582	157
Tramo N° 3	0,3331	0,4133	34,4405	25
Tramo N° 4	4,4348	5,129	3749,3935	176
Tramo N° 5	1,8983	11,242	959.824	40
Tramo N° 6	3,3439	15,487	2667,6995	94
Tramo N° 7	5,7206	17,46	10333,47	140

8.6. ESTUDIO COMPARATIVO SIN Y CON ALMACENAMIENTO DE ENERGIA

8.6.1. ÍNDICES DE CALIDAD EN LA CABECERA DEL ALIMENTADOR CON LA INTRODUCCIÓN DE LOS ALMACENADORES DE ENERGÍA.

En las figuras 41, 42, se demuestra la reducción de los índices de calidad (TTIK) en la cabecera del alimentador, la frecuencia media de interrupción (FMIK) no se reducen en cuanto este indica la frecuencia de interrupciones registrados en un año, lo que significa que para este análisis el FMIK, no reducen debido a que tenemos la misma cantidad de interrupciones.

Se presenta a continuación la tabla de resumen de los índices de calidad.

Tabla 37: Índices de calidad en la cabecera del alimentador con la introducción de los almacenadores de energía

Resumen de los índices de calidad en la cabecera del alimentador					
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio	
Índices en el estado actual del alimentador	4.986	8.9202	15438.268	280	
Índices con autonomía de las baterías de 15 min.	2.885	5.448	13137.15	193	
Índices con autonomía de las baterías de 30 min.	2.7077	5.146	11269.84	192	
Índices con autonomía de las baterías de 60 min.	2.501	4.654	8203.803	150	

Figura 41: TTIK en la cabecera del alimentador Picaihua

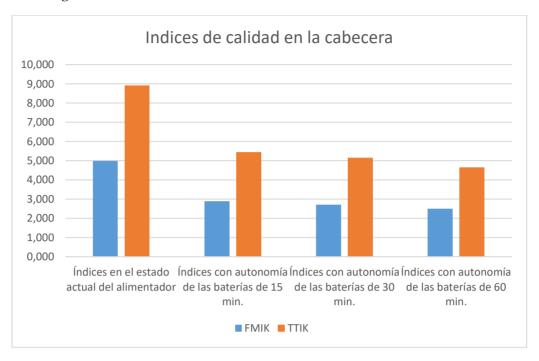
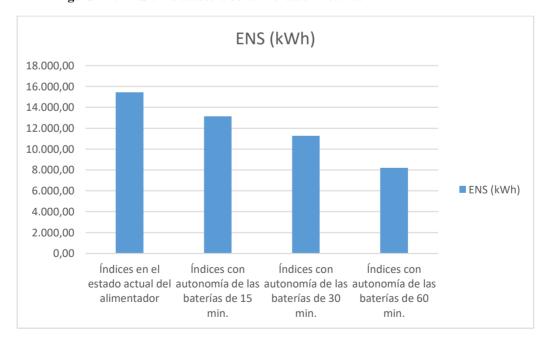



Figura 42: ENS en la cabecera del alimentador Picaihua

Como se observa en las figuras, 41 y 42, los índices de calidad TTIK, FMIK y la energía no sumistrada reducen a comparación del estado actual, estos gráficos demuestran la reducción en la cabecera del alimentador, a continuación, se presenta los índices por los siete tramos en la que se dividió el alimentador.

8.6.2. ÍNDICES DE CALIDAD EN CADA TRAMO DEL ALIMENTADOR CON LA INTRODUCCIÓN DE LOS ALMACENADORES DE ENERGÍA.

A continuación, se presenta los resúmenes de los cálculos de los índices de confiabilidad en el cada uno de los tramos, cada uno para diferente autonomía del almacenador.

Tabla 38: Comparación de índices en el tramo Nº 1.

Tabla resumen del Tramo N° 1						
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio		
Índices en el estado actual del alimentador	7,8565	5,3136	15000,9574	1748,7692		
Índices con autonomía de las baterías de 15 min.	3.2323	2.049	10234.8815	952.76		
Índices con autonomía de las baterías de 30 min.	2.8090	1.5557	6763.2442	952.76		
Índices con autonomía de las baterías de 60 min.	2.3932	0.8512	1768.1764	455.26		

Tabla 39: Comparación de índices en el tramo Nº 2.

Tabla resumen del Tramo N° 2					
Descripción	FMIK	ттік	ENS (kWh)	Usuarios sin servicio	
Índices en el estado actual del alimentador	4,1845	13,73861	31381,82838	219	
Índices con autonomía de las baterías de 15 min.	2.7018	6.9965	29174.9261	157.11	
Índices con autonomía de las baterías de 30 min.	2.7018	6.07	26949.883	157.11	
Índices con autonomía de las baterías de 60 min.	2.7018	5.3289	22536.058	157.11	

Tabla 40: Comparación de índices en el tramo Nº 3.

Tabla resumen del Tramo N° 3								
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio				
Índices en el estado actual del alimentador	1.2042	1.4881	1062.449	111.62				
Índices con autonomía de las baterías de 15 min.	0.7686 0.8877		800.5699	68.0				
Índices con autonomía de las baterías de 30 min.	0.7686	0.7789	539.5316	68				
Índices con autonomía de las baterías de 60 min.	0.3331	0.6920	34.4405	24.75				

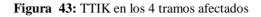
Tabla 41: Comparación de índices en el tramo Nº 4.

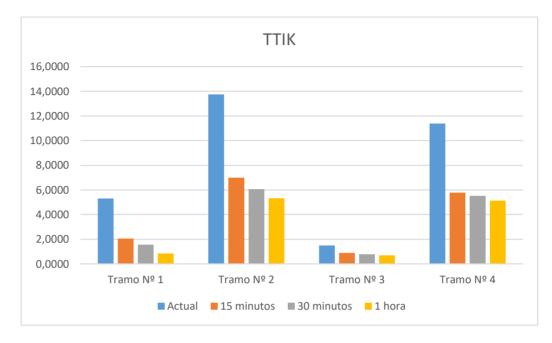
Tabla resumen del Tramo N° 4								
Descripción	cripción FMIK TTIK ENS (kWh)			Usuarios sin servicio				
Índices en el estado actual del alimentador	6.487	11.394	5974.227	254.21				
Índices con autonomía de las baterías de 15 min.	4.94	5.79	5323.944	196				
Índices con autonomía de las baterías de 30 min.	4.691	5.526	4710.77	186				
Índices con autonomía de las baterías de 60 min.	4.4348	5.1294	3749.393	176.94				

Tabla 42: Comparación de índices en el tramo Nº 5.

	Tramo N° 5 (Autonomía de 15 - 30 - 60 minutos)										
Sin almacenadores				Con almacenadores							
FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla	FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla		
1.898 3	11.242 2	959.824 4	40	1.8983	1.898 3	11.242 2	959.824 4	40	1.8983		

Tabla 43: Comparación de índices en el tramo Nº 6.


	Tramo N° 6 (Autonomía de 15 - 30 - 60 minutos)										
Sin almacenadores				Con almacenadores							
FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla	FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla		
3.343 9	15.487 9	2667.699 6	94	3.034	3.343 9	15.487 9	2667.699 6	94	3.034		


Tabla 44: Comparación de índices en el tramo Nº 7.

	Tramo N° 7 (Autonomía de 15 - 30 - 60 minutos)										
	Sin almacenadores				Con almacenadores						
FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla	FMIK	TTIK	ENS	Usuario s sin servicio	Duració n de la falla		
5.720 6	17.460 2	10333.469 6	140	2.156	5.720 6	17.460 2	10333.469 6	140	2.156		

Después de comparar los índices, se deduce que los tramos que son afectados son el 1, 2, 3, 4; mientras que el 5, 6, 7, no poseen carga aguas abajo por lo cual no cambia sus índices de confiabilidad.

A continuación, se presenta la figura 43, en la misma que se identifica la reducción de índices con las diferentes autonomías del almacenador.

8.6.3. DIAGRAMA UNIFILAR CON INDICES DE CALIDAD (ACTUAL Y PROYECTADO)

Figura 44: Diagrama unifilar índices estado actual

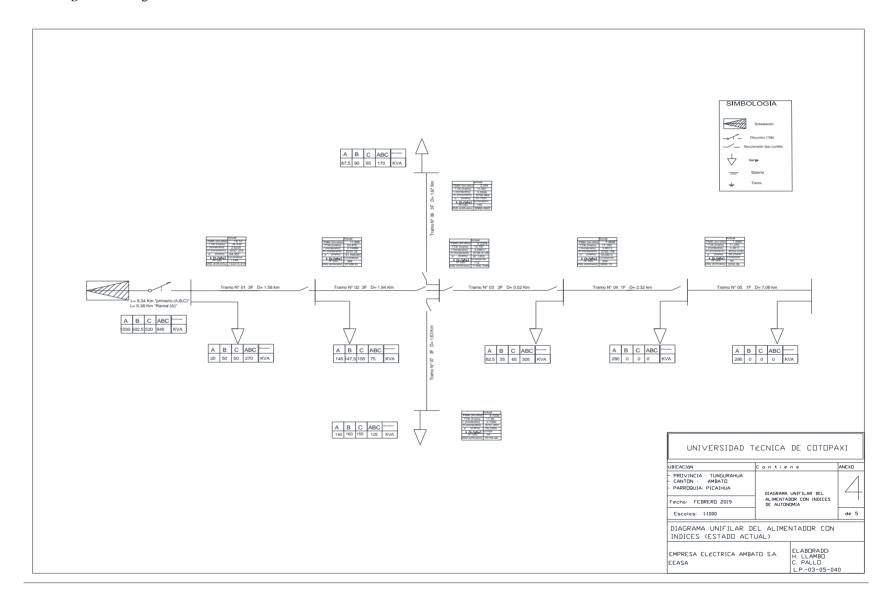
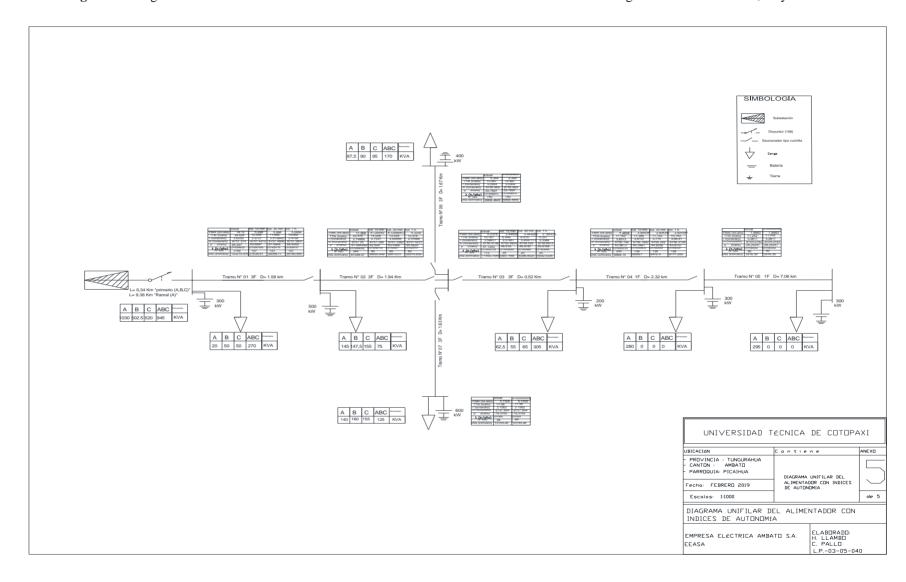



Figura 45: Diagrama unifilar de los índices de calidad con la introducción de los almacenadores de energía con autonomía de 15, 30 y 1 hora.

A continuación, se muestra una tabla resumen de las potencias, número de usuarios e interrupciones de las fallas en el alimentador

Tabla 45: Resumen de los índices de confiabilidad con la introducción de almacenadores de energía y con una autonomía de 60 minutos

	Potencia de salida actual	Potencia de salida con los almacenadores	Número de usuarios (Actual)	Número de usuarios (con almacenadores)	Horas promedio sin servicio eléctrico	Numero de fallas	TTIK (actual)	TTIK (con almacenadores autonomía de 60 minutos)
Tramo N° 1	2816	229	302,857988	105,1597633	2,6259	13	5,3136	0.8512
Tramo N° 2	179,3023077	72,43371795	194,512821	103,1282051	2,7486	51	13,73861	5.3289
Tramo N° 3	98,4555556	51,65	127,777778	71,55555556	3,5861	8	1.4881	0.6920
Tramo N° 4	115,9459459	60,67567568	149,972973	90,45945946	3,8512973	19	11.394	5.1294
Tramo N° 5	31,11111111	31,11111111	39,9444444	39,9444444	5,98177778	18	11.2422	11.2422
Tramo N° 6	54,53846154	54,53846154	80,4230769	80,42307692	3,03037037	27	15.4879	15.4879
Tramo N° 7	100,7169697	100,7169697	47	47	2,15625758	33	17.4602	17.4602

8.7. ANALISIS ECONOMICO:

Precio de los kWh en Ecuador (año 2019 = 9.33 ctv.).

Justificación ingresos:

- Energía no suministrada sin los almacenadores de energía = 15438.268 kWh.
- Energía no suministrada con los almacenadores = 8203.803 kWh.
- Diferencia de energía = 7234.465 kWh.
- Costo de la diferencia de la energía no suministrada = 7234.465 kWh*0.0933\$
- Costo de la diferencia de la energía no suministrada = \$ 674.97 ctvs.

Datos:

Inversión:

Para estimar los costos de los almacenadores se tomó como referencia a los precios que se detalla en el anexo XLIII.

Almacenadores de energía:

- Valor de los módulos: \$ 3200,00
- Numero de módulos: 31
- Numero de transformadores: 14
- Sistema de presencia o ausencia de tensión (entrada y salida):

Energía consumida por el almacenador:

Tramo N° 1

Numero de módulos: 4

- \bullet 400 kW * 2.5 h = 1000 kWh
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 93.3
- Costo de transformador (entrada 400 kVA 13.8/440): \$ 13449.00
- Costo de transformador (salida 400 kVA 440/13.8): \$ 13449.00

Tramo N° 2

Numero de módulos: 6

- 600 kW * 2.5 h = 1500 kWh
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 139.95
- Costo de transformador (entrada 600 kVA 13.8/440): \$ 18621.00
- Costo de transformador (salida 600 kVA 440/13.8): \$ 18621.00

Tramo N° 3

Numero de módulos: 2

- \bullet 200 kW * 2.5 h = 500 kWh.
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 46.65
- Costo de transformador (entrada 200 kVA 13.8/440): \$8529.00
- Costo de transformador (salida 200 kVA 440/13.8): \$8529.00

Tramo Nº 4

Numero de módulos: 4

- 400 kW * 2.5 h = 1000 kWh
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 93.3
- Costo de transformador (entrada 400 kVA 7.97/440): \$ 13449.00
- Costo de transformador (salida 400 kVA 440/7.97): \$ 13449.00

Tramo N° 5

Numero de módulos: 4

- \bullet 400 kW * 2.5 h = 1000 kWh
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 93.3
- Costo de transformador (entrada 400 kVA 7.97/440): \$ 13449.00
- Costo de transformador (salida 400 kVA 440/7.97): \$ 13449.00

Tramo N° 6

Numero de módulos: 4

- \bullet 400 kW * 2.5 h = 1000 kWh
- Costo de energía: 0.0933
- Costo total de la energía consumida por el modulo: \$ 93.3
- Costo de transformador (entrada 400 kVA 13.8/440): \$ 13449.00
- Costo de transformador (salida 400 kVA 440/13.8): \$ 13449.00

Tramo N° 7

Numero de módulos: 7

- 700 kW * 2.5 h = 1750 kWh
- Costo de energía: 0.0933 kWh
- Costo total de la energía consumida por el modulo: \$ 163.28
- Costo de transformador (entrada 700 kVA 13.8/440): \$ 23039.00
- Costo de transformador (salida 700 kVA 440/13.8): \$ 23039.00

Egresos:

- Costo de los módulos de energía: \$ 99200.00
- Costo de la energía consumida por los almacenadores: \$ 787.43
- Costo de los transformadores trifásicos (entrada y salida): \$ 103985.00
- Costo de los transformadores monofásicos (entrada y salida): \$ 103985.00

Número de trabajadores: 5

Mano de obra diaria del trabajador c/u: \$ 25.00

Costo de mano de obra: \$ 1875.00

Maquinaria: \$ 500.00Transporte: 200.98

■ Ingresos anuales: \$ 674.97 ctvs.

Inversión Total= \$ 310533.41

Ingresos anuales = \$ 674.97 primer año

Periodo de estudio del VAN y TIR 20 años

Tasa de descuento: 10%

TIR: -21.28%

VAN: \$ -297034.61

- Tiempo de recuperación = ((inversion inicial * 1 año))/(ingresos anuales)
- Tiempo de recuperación = ((3100533.41 * 1 año))/674.97
- Tiempo de recuperación = 460 años

9. HIPÓTESIS

Con la introducción de los sistemas de almacenamiento de energía en el alimentador, los índices de confiabilidad del alimentador se verán mejorados.

10. METODOLOGÍAS Y DISEÑO EXPERIMENTAL

10.1. DISEÑO EXPERIMENTAL

Se realizara un estudio comparativo de confiabilidad de un alimentador en sus condiciones normales, y en condiciones normales con introducción de sistemas de almacenamiento de energía, dentro de los almacenadores de energía encontraremos diferentes tecnologías para el almacenamiento de la electricidad que se encuentran en el mercado y en este trabajo de investigación nos enfocaremos al estudio de los sistemas de almacenamiento ininterrumpibles (UPS), tomando en cuenta siempre sus variables de capacidad de almacenamiento para considerar el tiempo que pueden suministrar de energía, en una interrupción de servicio debido a interrupciones a lo largo del alimentador.

Tabla 46: Técnicas de Investigación

No.	TÉCNICAS	INSTRUMENTOS
1	Investigación de diferentes tipos de almacenamiento de energía.	Fuentes Bibliográficas
2	Estudio de los sistemas UPS	Fuentes Bibliográficas

11. PRESUPUESTO PARA LA PROPUESTA DEL PROYECTO

Para la realización de este proyecto se prevé la siguiente propuesta:

Tipo	Categoría	Recursos	Descripción	Fuente	Cant.	Monto
				financiera		(\$)
Recursos	Infra-	Equipo	Computador	Personal	2	
Disponibles	estructura		personal			
		Equipo	Cámara digital	Personal	1	
		Equipo	Teléfono	Personal	2	
			celular			
Recursos	Gastos de	Transporte	Para traslados	Personal	2	50,00
necesarios	trabajo de	Fotocopias	información	Personal	180	9,00
	campo		necesaria			
		Internet	Información y	Personal	6	180,00
			descarga de			
			software			
	Materiales	Papel	Hojas de	Personal	1000	25,00
			impresión			
Imprevistos ((10%)	1	1	Personal		20,00
Gastos Indire	ectos (20%)			Personal		40,00
Total						324,00

12. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

12.1. ANÁLISIS

El alimentador picaihua pertenece a los alimentadores rurales existentes en la provincia de Tungurahua, este sistema presenta varias errores como de diseño y funcionamiento, entre estas tenemos:

La carga conectada en todo el trayecto del sistema trifasico, esta completamente desbalanceada, con una mayor carga conectada en la linea "A" (1200 kVA), seguidamente en la "B" (722.5 kVA) y finalmente en la linea "C" (130 kVA), lo que le hace un alimentador desbalanceado.

Las interrupciones cuentan desde el año 2016, 2017, y con corte hasta julio de 2018 con un total de 175 interrupciones, siendo los mas graves las fallas presentadas en la cabecera del alimentador (disyuntor). El tiempo promedio de estas fallas es de 2.63 horas al año.

Existen diferentes tipos de tecnologias para la implementacion de los sistemas de almacenamiento de energia que se utilizaron en el caso estudio, siendo una de las mas sofisticadas tanto economicamente y amigablemente los sistemas de almacenamiento por baterias (litio, silicio).

12.2. DISCUSION DE RESULTADOS

En este alimentador se realizo la division en siete tramos tomando en cuenta la carga concentrada en cada uno de ellos, la cual facilito la selección de la potencia del almacenador de energía, de acuerdo a la demanda que se necesite abastecer, al escoger este equipo se lo hace en relacion a las especificaciones tecnicas necesarias como es el nivel de voltaje al que se necesite conectar.

Los calculos realizados de los indices de confiabilida como son TTIK, FMIK en el sistema actual esta dentro de los limites establecidos por le ARCONEL la cual es la empresa reguladora, lo que se desea con esta propuesta es reducir estos indices a lo mas minimo como sea posible.

La autonomia de las baterias dependen de la necesidad que se requiera, para obtener los resultados hemos tomado como referencia al equipo Power Wave 33, que ofrece un tiempo de duración de 15 minutos a la carga concentrada.

Al realizar estos calculos de confiabilidad, tanto sin y con almacenamiento de energia electrica, hemos visto una reduccion considerable en la energia no suminstrada y en los tiempos de falla, la cual permite decir que en un futuro en el Ecudor se preveera de estos almacenadores para el mejoramiento de la confiabilidad en todo un sistema electrico de distrbucion.

13. CONCLUSIONES Y RECOMENDACIONES

13.1. CONCLUSIONES:

Con la información recolectada, encontramos diferentes tipos de almacenadores de energía eléctrica como volantes de inercia, almacenamiento hidráulico, térmico, bombeo de agua, hidrogeno-oxigeno, baterías, supercondensadores, pero la más utilizada en la parte eléctrica son los almacenadores por medio de bancos de baterías (litio, silicio), estas tienen un gran impacto en países desarrollados (EEUU, Rusia, Alemania, Japón).

El alimentador Picaihua pertenece a la empresa eléctrica Ambato formando parte de las cuatro empresas eléctricas de distribución con los mejores índices de calidad de la energía. El actual estado del alimentador con los cálculos realizados está dentro de los límites establecidos por la regulación "ARCONEL 005/18 calidad del servicio de distribución y comercialización de la energía eléctrica" lo que indica que el sistema estudiado no presenta mayores problemas en interrupciones.

El alimentador en estudio se dividió en siete tramos de acuerdo a su carga concentrada, la cual tuvo parte para la ubicación de estos sistemas de almacenamiento, con el análisis realizado encontramos que desde el punto de vista económico, no es viable para las empresas eléctricas de distribución, pero desde la parte social es factible realizar, porque reduce los tiempos de interrupciones, mejorando la confiabilidad, pérdidas económicas y materiales de cada uno de los usuarios conectados al alimentador.

13.2. **RECOMENDACIONES:**

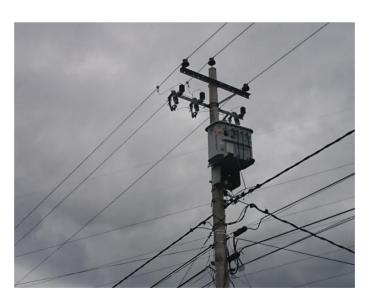
En la investigación realizada, no encontramos mucha información acerca del almacenador de energía que se propone en este estudio lo cual fue un conflicto para la selección del mismo y para escoger el equipo se recomienda no tener problemas con el nivel de voltaje, porque a la empresa donde se desee adquirir estos almacenadores piden las especificaciones técnicas a las que el cliente necesita.

Para los cálculos de las potencias de consumo de cada uno de los usuarios, es necesario receptar muestras de voltajes y corrientes de cada uno de los consumidores, según al estrato al que pertenezcan, para posteriormente realizar el dimensionamiento de los almacenadores con el rendimiento del transformador.

Para tener cálculos con bajos índices de confiabilidad, se recomienda seleccionar un alimentador que presente con frecuencia interrupciones y posteriormente realizar un convenio con la empresa eléctrica de distribución para la recolección continua de información, ya que con el sistema en mal estado se reflejaran notoriamente la reducción de los índices de confiabilidad con la entrada de los almacenadores de energía en el tiempo de estudio.

14. BIBLIOGRAFIA

- [1] Ali Chowdhury, D. K. (2009). Power Distribution System Reliability. Canadá.
- [2] fundación gas natural fenosa. (2016). Almacenar energía con tecnología de hidrogeno. España.
- [3] Jaramillo, E. R. (2015). Modelamiento y simulación de la producción de hidrogeno en un electrolizador. Quito.
- [4] Landa, J. V. (2010). Redes Eléctricas. México.
- [5] Abengoa, "almacenar electricidad con tecnologías de hidrogeno", innovative technology solutions for sustainability, febrero 2016.
- [6] Ramírez, J. R. (2008). Modelo dinámico de un electrolizador alcalino. Sevilla.
- [7] James Conca (Feb 24, 2015). Demand Response' Is How The Smart Grid Will Save Us Billions. Washington State.
- [8] Uncategorized, (agosto 31, 2012), definición de UPS y su función. España
- [9] ARCONEL, regulación Arconel 005/18, calidad del servicio de distribución y comercialización de la energía eléctrica.
- [10] E. Rodríguez Ubiñas, almacenamiento de energía térmica por calor latente en edificios: bases para la optimización de aplicación pasivas, opacas y traslucidas. Diciembre 2015.
- [11] N. Rasmussen "Diferentes tipos de sistemas UPS" Centro de Estudios de Centros de Datos, APC by Schneider Electric, 2010.
- [12] Penelope. (23 de 12 de 2015). Funcionamiento de volante de inercia. España.
- [13] Tomas Winter, (2013). Reliability and economic analysis of offshore wind power systems A comparison of internal grid topologies.
- [14] Roy Billinton & Ronald N. Allan, Reliability evaluation of engineering systems (Concepts and Techniques Second edition).


- [15] Asia Brown Bovery. DMPC Power Protection & PCS100 Medium Voltage UPS Product Overview "https://new.abb.com/es."
- [16] Asia Brown Bovery. Catálogo de producto productos y soluciones SAI de ABB. "https://searchext.abb.com/library/Download.aspx?DocumentID=9AKK107045A2753&Languag eCode=es&DocumentPartId=&Action=Launch&fbclid=IwAR2300xENA2P1yTS-LUVFDmmjIauPQZqkAr0AM7Wo 7qkjTuBnftnv5EdtQ"
- [17] Tapia, Vilcacundo, 2014, tesis de grado, https://docplayer.es/10245913-Universidad-tecnica-de-cotopaxi.html
- [18] ABB, 2017, lista de precios. En línea: http://www.materialeselectricos.co/pdf/ABB_LISTA_DE_PRECIOS_TRANSF.pdf

15. ANEXObS

Anexo I: Usuarios en el transformador N° 10161

Para el cálculo de la capacidad del transformador, se recepto muestras de corrientes y voltajes a diferentes usuarios que están conectados a la red de suministro del transformador N° 10161. Se escogió a este transformador aleatoriamente.

Anexo II: Transformador trifásico nº 10161

El transformador 10161, se encuentra a un kilómetro aguas debajo de la subestación Totoras, es tipo trifásico que están conectados 25 usuarios tipo C y D.

Anexo III: Medición 1f en medidor 3f usuario tipo C Y D

Se procede a la visita de los usuarios tipo C, D, y E, para receptar las muestras de corrientes y voltajes para proceder con los cálculos respectivos, para el crecimiento de la demanda en los próximos diez años.

Cus Horn

Anexo IV: Medición en medidor 1f usuario tipo C, D, E

Se visita a los usuarios C, D, y, E, con conexión monofásica, conectados al transformador N° 10161, en los medidores (102397 "C" y 141770 "D")

Anexo V: Medición en medidor 2f usuario tipo C

Se recepta también la muestra del usuario tipo C, con conexión bifásica al usuario (26972 "C").

Anexo VI: Sector recolectado las muestras de corrientes y voltajes

Sector de La Atarazana, lugar donde se encuentra el transformador trifásico N° 10161 y los usuarios que se recolecto las muestras para el estudio y cálculos correspondientes al crecimiento de la demanda eléctrica.

Anexo VII: Factor de diversidad para n usuarios

#	FACTOR DE	#	FACTOR DE	#	FACTOR DE
USUARIOS	DIVERSIDAD	USUARIOS	DIVERSIDAD	USUARIOS	DIVERSIDAD
1	1,04	41	2,76	81	2,99
2	1,15	42	2,77	82	3
3	1,27	43	2,78	83	3
4	1,37	44	2,79	84	3
5	1,48	45	2,8	85	3,01
6	1,58	46	2,8	86	3,01
7	1,67	47	2,81	87	3,01
8	1,75	48	2,82	88	3,02
9	1,83	49	2,83	89	3,02
10	1,9	50	2,84	90	3,02
11	1,96	51	2,85	91	3,02
12	2,02	52	2,85	92	3,03
13	2,08	53	2,86	93	3,03
14	2,13	54	2,87	94	3,03
15	2,18	55	2,87	95	3,03
16	2,22	56	2,88	96	3,04
17	2,26	57	2,89	97	3,04
18	2,3	58	2,89	98	3,04
19	2,33	59	2,9	99	3,04
20	2,37	60	2,9	100	3,05
21	2,4	61	2,91	101	3,05
22	2,43	62	2,91	102	3,05
23	2,45	63	2,92	103	3,05
24	2,48	64	2,93	104	3,06
25	2,5	65	2,93	105	3,06
26	2,52	66	2,94	106	3,06
27	2,55	67	2,94	107	3,06
28	2,57	68	2,94	108	3,06
29	2,59	69	2,95	109	3,07
30	2,6	70	2,95	110	3,07
31	2,62	71	2,96	111	3,07
32	2,64	72	2,96	112	3,07
33	2,65	73	2,97	113	3,07
34	2,67	74	2,97	114	3,07
35	2,68	75	2,97	115	3,08
36	2,7	76	2,98	116	3,08
37	2,71	77	2,98	117	3,08
38	2,72	78	2,98	118	3,08
39	2,73	79	2,99	119	3,08
40	2,74	80 E. EMBRECA	2,99	120	3,08

FUENTE: EMPRESA ELÉCTRICA AMBATO

Anexo VIII: Carga en el tramo n° 1, y rendimiento por cada transformador.

Código Empresa	Provincia	Cantón	Subtipo	Configuración BT	Fase Conexión	Código Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	8408	10	12	12	0	0	5,13	51,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	412	10	18	10	8	0	7,31	73,1
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	8603	30	14	14	0	0	41,51	138,366
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	8525	30	1	1	0	0	8,78	29,266
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	8600	30	1	1	0	0	8,78	29,266
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	10503	30	27	27	0	0	30,52	101,733
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C50T	10161	50	25	22	3	0	65,35	130,7
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C50T	8532	50	1	0	1	0	6,14	12,28
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C50T	11071	50	39	39	0	0	44,19	88,38
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	11156	25	8	0	8	0	2,77	11,08
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A25T	2020	25	25	25	0	0	8,64	34,56
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A25T	1226	25	30	30	0	0	9,97	39,88
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A25T	11141	25	28	28	0	0	9,41	37,64
						TOTAL	390	229	209	20	0	248,5		
										% de 0	peración del si	stema	63,71794872	

Anexo IX: Carga en el tramo n° 2, y rendimiento por cada transformador

Codigo Empresa	Provincia	Canton	Subtipo	Configuración BT	Fase Conexión	Codigo Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	6501	10	16	0	16	0	9,68	96,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	6689	10	16	16	0	0	7,28	72,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1C10T	3615	10	15	15	0	0	10,2	102
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	6419	15	1	1	0	0	0,86	5,733
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	11426	25	9	0	9	0	5,45	21,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	7687	25	29	29	0	0	14,32	57,28
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	422	25	46	45	1	0	21,83	87,32
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	424	25	15	12	3	0	12,18	48,72
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	5797	25	58	55	3	0	26,06	104,24
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	11224	25	19	19	0	0	16,42	65,68
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	11414	25	4	0	4	0	2,42	9,68
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	7540	30	1	1	0	0	9,13	30,433
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C45T	2049	45	32	32	0	0	64,12	142,488
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	496	25	52	6	46	0	17,72	70,88
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	5811	25	40	40	0	0	15,57	62,28
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	510	10	10	0	10	0	6,05	60,5
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	5325	15	29	0	29	0	17,55	117
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	5643	10	9	0	9	0	2,98	29,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	5644	10	34	0	34	0	20,57	205,7
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	6097	15	32	0	32	0	18,62	124,133
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A37.5T	11762	37,5	26	0	26	0	12,39	33,04
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	7009	15	34	0	34	0	16,2	108
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A5T	5321	5	14	0	14	0	8,47	169,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	5331	15	41	0	41	0	18,11	120,733
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	2529	15	36	6	30	0	23,33	155,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A15T	9189	15	38	6	32	0	22,32	148,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A15T	5567	15	23	0	23	0	4,97	33,133
	_					TOTAL	522,5	679	283	396	0	404,8	84,58911111	
										% d	e operación del sis	tema	77,47368421	

Anexo X: Carga en el tramo n° 3, y rendimiento por cada transformador

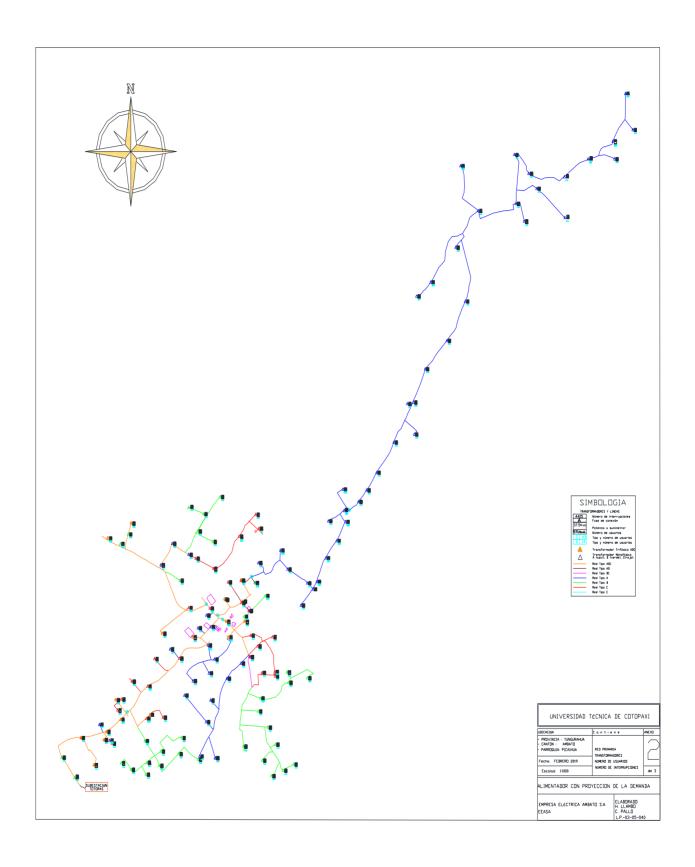
Codigo Empresa	Provincia	Canton	Subtipo	Configuración BT	Fase Conexión	Codigo Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	9267	15	12	0	12	0	7,26	48,4
EEASA	TUNGURAHUA	АМВАТО	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	4199	25	1	1	0	0	0,45	1,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A37.5T	499	37,5	1	1	0	0	0,68	1,813
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	8559	30	1	1	0	0	8,78	29,266
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C75T	10757	75	1	0	1	0	6,39	8,52
EEASA	TUNGURAHUA	АМВАТО	Transformador Trifásico en Poste	Estrella	ABC	3C100T	9439	100	1	1	0	0	8,78	8,78
EEASA	TUNGURAHUA	АМВАТО	Transformador Trifásico en Poste	Estrella	ABC	3C100T	7919	100	1	0	1	0	5,56	5,56
EEASA	TUNGURAHUA	АМВАТО	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	4200	25	1	1	0	0	0,86	3,44
EEASA	TUNGURAHUA	АМВАТО	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	500	15	9	4	5	0	4,79	31,933
EEASA	TUNGURAHUA	АМВАТО	Transformador Monofásico en Poste	Línea Monofásica	В	1C10T	497	10	7	0	7	0	2,42	24,2
EEASA	TUNGURAHUA	АМВАТО	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	502	25	48	0	48	0	29,04	116,16
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	874	15	29	0	29	0	17,55	117
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	503	15	23	14	9	0	10,15	67,666
						TOTAL	487,5	135	23	112	0	102,71		
										% de	operación del si	stema	21,06871795	

Anexo XI: Carga en el tramo n° 4, y rendimiento por cada transformador

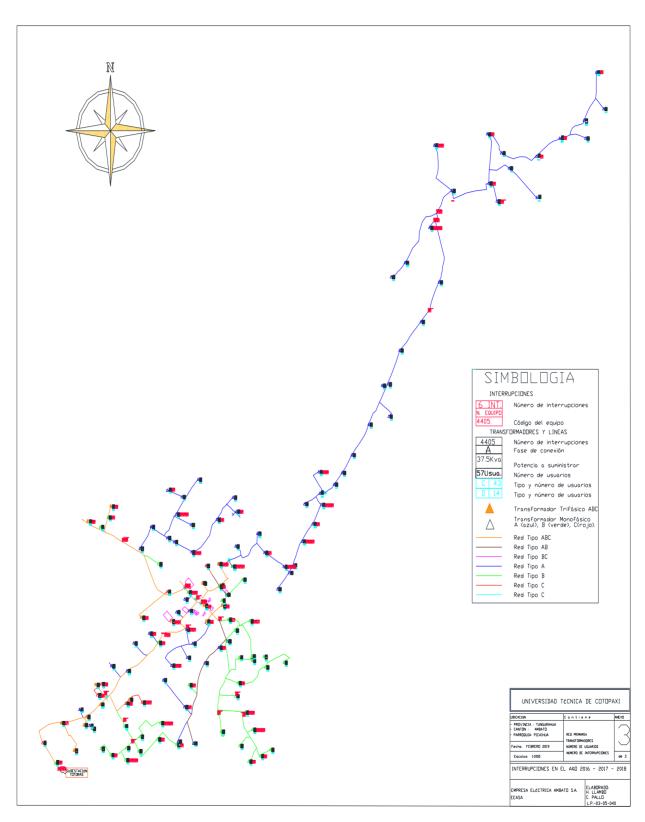
Código Empresa	Provincia	Cantón	Subtipo	Configuración BT	Fase Conexión	Código Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	8033	5	7	0	7	0	4,24	84,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	504	10	5	1	4	0	1,84	18,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	4406	15	31	13	18	0	19,73	131,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	4409	15	37	4	33	0	23,42	156,133
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	4064	15	43	43	0	0	37,15	247,666
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	3127	15	38	0	38	0	22,99	153,266
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	4387	15	27	27	0	0	12,75	85
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	Α	1A15T	3630	15	38	2	36	0	23,51	156,733
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	4407	25	52	24	28	0	27,52	110,08
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	11333	25	18	13	5	0	12,96	51,84
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A37.5T	4405	37,5	56	13	43	0	30,51	81,36
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A37.5T	11407	37,5	18	18	0	0	5,98	15,946
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A50T	250	50	3	0	3	0	1,82	3,64
						TOTAL	280	373	158	215	0	224,42		
										% de	operación del si	stema	80,15	

Anexo XII: Carga en el tramo n° 5, y rendimiento por cada transformador

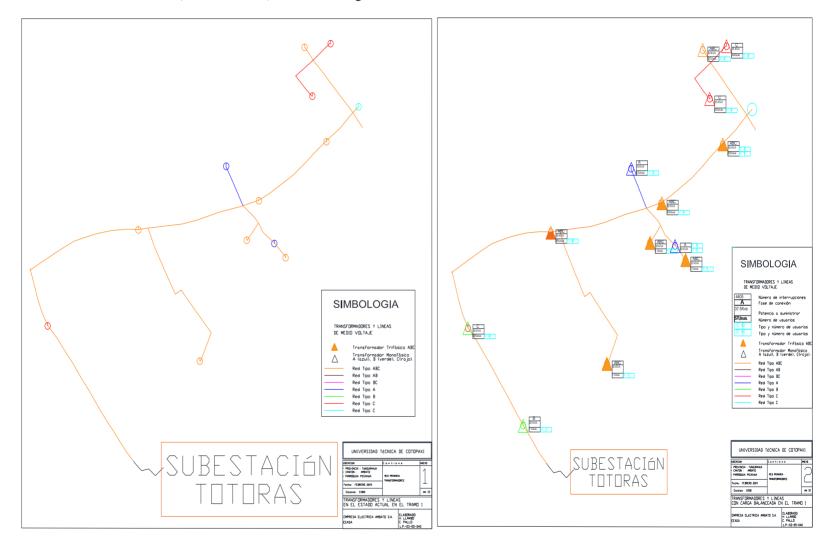
Código Empresa	Provincia	Cantón	Subtipo	Configuración BT	Fase Conexión	Código Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	2423	5	14	0	3	11	5,81	116,2
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	1469	5	1	1	0	0	0,45	9
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	1122	5	5	0	0	5	1,82	36,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	556	5	8	0	0	8	2,9	58
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	8445	5	5	0	0	5	1,82	36,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	10646	5	4	0	0	4	1,45	29
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A5T	10633	5	22	0	9	13	9,95	199
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	11926	10	13	0	0	13	4,72	47,2
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	3661	10	5	0	0	5	1,82	18,2
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	8972	10	16	0	16	0	5,53	55,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	8891	10	19	0	19	0	11,5	115
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	554	10	27	0	0	27	9,8	98
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	7882	10	14	10	0	4	4,81	48,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	9382	10	10	0	10	0	2,73	27,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	9239	10	16	0	16	0	9,68	96,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	5313	10	3	0	0	3	1,09	10,9
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	560	10	4	0	0	4	1,45	14,5
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	6624	10	8	0	2	6	2,84	28,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	3742	10	1	0	1	0	0,61	6,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	8719	15	8	0	8	0	4,65	31
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	9018	15	19	0	19	0	9,05	60,333
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	4404	15	37	0	37	0	17,63	117,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	3628	15	4	0	0	4	1,45	9,666
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	561	15	2	0	0	2	0,73	4,866
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	1808	15	12	0	9	3	6,53	43,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	511	25	44	0	44	0	26,62	106,48
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	6486	25	1	0	1	0	0,22	0,88
						TOTAL	295	322	11	194	117	147,66	1424,091	
										% d	e operación del sist	tema	50,05423729	

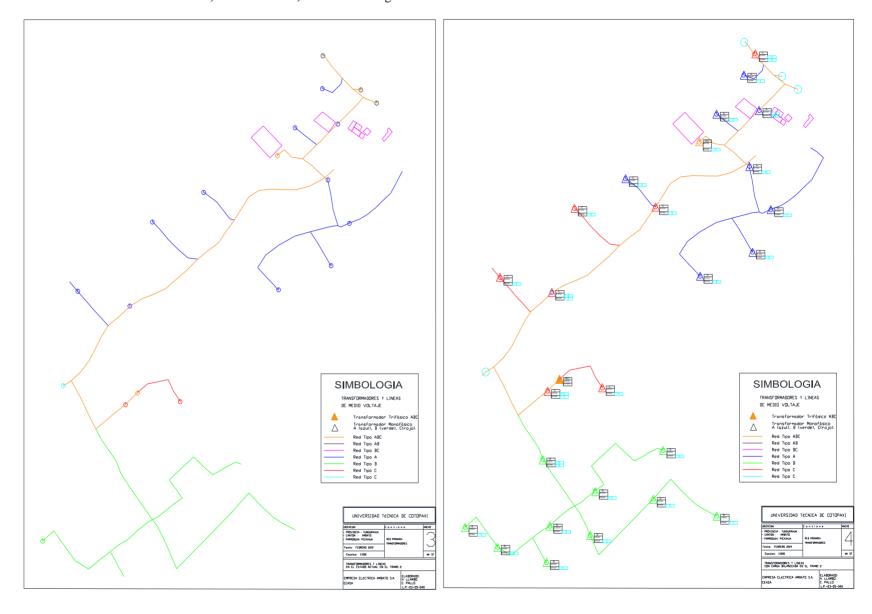

Anexo XIII: Carga en el tramo n° 6, y rendimiento por cada transformador.

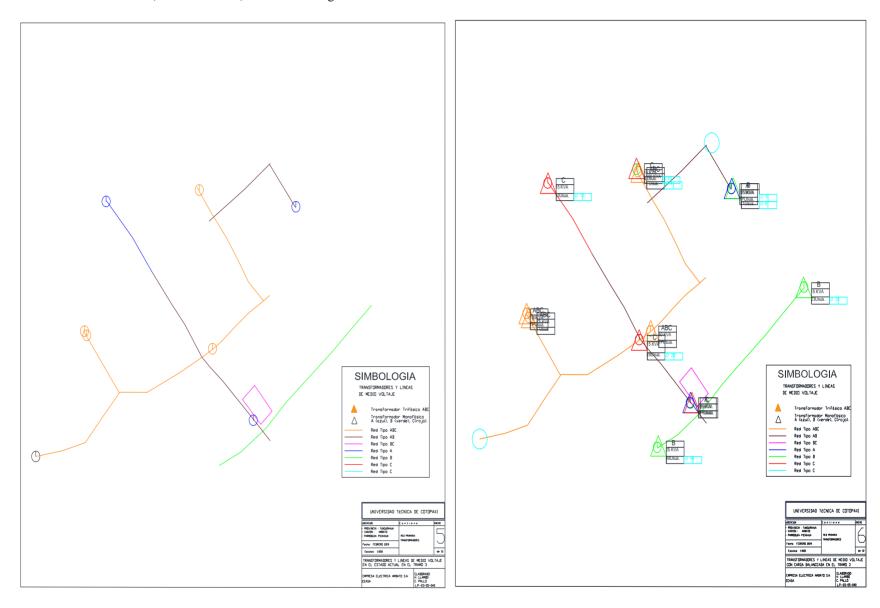
Codigo Empresa	Provincia	Canton	Subtipo	Configuración BT	Fase Conexión	Codigo Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	3936	10	12	0	12	0	7,26	72,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	5476	10	12	0	12	0	4,15	41,5
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1C10T	4389	10	1	0	1	0	0,61	6,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	5505	10	14	0	14	0	8,47	84,7
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	1487	10	15	1	14	0	9,33	93,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	464	10	11	0	11	0	6,66	66,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	6635	10	8	0	8	0	4,65	46,5
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	5785	15	20	0	20	0	12,1	80,666
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A15T	527	15	23	0	23	0	13,92	92,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	520	25	47	0	47	0	16,25	65
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	3215	25	39	0	39	0	23,6	94,4
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A25T	4308	25	32	0	32	0	19,36	77,44
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A37.5T	12062	37,5	1	1	0	0	0,34	0,906
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C45T	10941	45	20	0	20	0	24,76	55,022
EEASA	TUNGURAHUA	AMBATO	Padmounted Trifásico Exterior	Estrella	ABC	3P50T	10785	50	68	7	61	0	48,37	96,74
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C75T	10124	75	1	1	0	0	9,13	12,173
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	8101	10	6	0	6	0	3,63	36,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	4390	15	31	13	18	0	17,18	114,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	730	10	21	0	21	0	12,71	127,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	С	1A25T	1997	25	65	5	60	0	36,45	145,8
						TOTAL	442,5	447	28	419	0	278,93		
												% de operación del sistema	63,03502825	

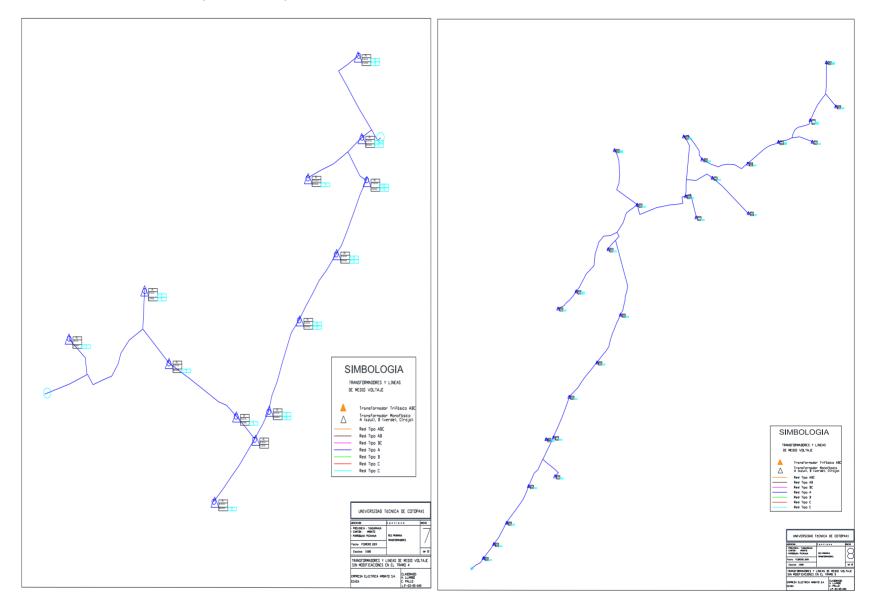

Anexo XIV: Carga en el tramo n° 6, y rendimiento por cada transformador.

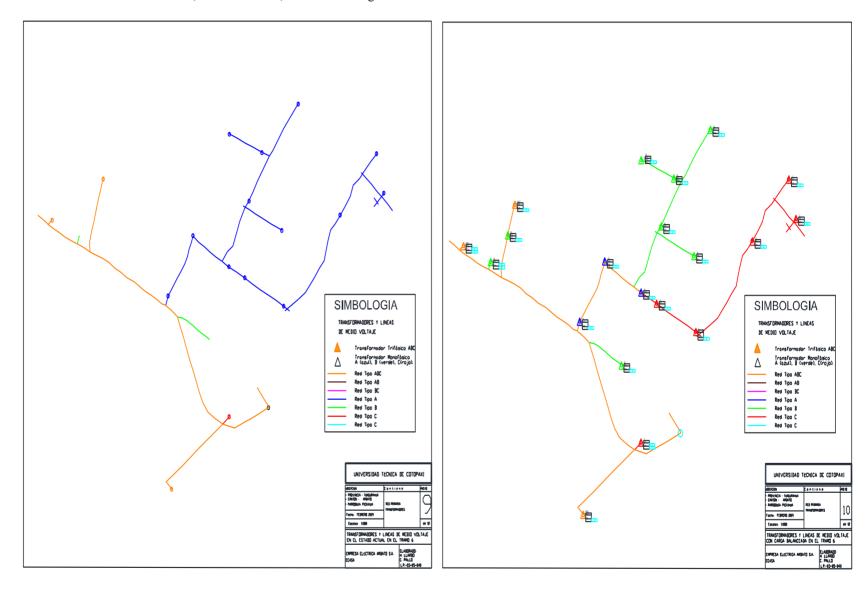
Codigo Empresa	Provincia	Canton	Subtipo	Configuración BT	Fase Conexión	Codigo Estructura	No,Transf,	Potencia (kVA)	# USUARIOS	USUARIO TIPO C	USUARIO TIPO D	USUARIO TIPO E	potencia del sistema (Trafo)	% de operación
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	А	1A10T	3376	10	13	0	13	0	7,87	78,7
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A10T	2538	10	18	0	18	0	6,22	62,2
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A10T	3646	10	16	0	16	0	9,68	96,8
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A10T	5272	10	1	0	1	0	0,61	6,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A15T	7089	15	18	0	18	0	10,89	72,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A15T	7085	15	13	0	13	0	7,87	52,466
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	A	1A25T	934	25	1	0	1	0	0,58	2,32
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C30T	8613	30	19	0	19	0	29,26	97,533
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C45T	8612	45	80	52	28	0	128,09	284,644
EEASA	TUNGURAHUA	AMBATO	Transformador Trifásico en Poste	Estrella	ABC	3C50T	8371	50	67	15	52	0	108,57	217,14
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1C50T	491	50	1	0	1	0	0,61	1,22
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	5271	10	1	0	1	0	0,61	6,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	4803	10	26	0	26	0	15,73	157,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	490	10	31	0	31	0	8,45	84,5
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	10664	10	21	0	21	0	12,71	127,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	11843	15	19	0	19	0	11,5	76,666
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	492	15	29	3	26	0	18,22	121,466
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	1796	15	28	0	28	0	9,26	61,733
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	3410	10	5	0	5	0	3,03	30,3
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	6910	10	18	0	18	0	10,47	104,7
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	8624	10	9	0	9	0	4,29	42,9
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	4386	10	4	0	4	0	1,91	19,1
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	933	25	1	0	1	0	0,61	2,44
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	1415	15	26	0	26	0	11,48	76,533
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A10T	8611	10	12	0	12	0	7,26	72,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A5T	9796	5	5	0	5	0	3,03	60,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	4385	15	46	0	46	0	9,94	66,266
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A15T	5794	15	17	0	17	0	10,29	68,6
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A37.5T	11408	37,5	47	0	47	0	14,97	39,92
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A25T	11152	25	24	0	24	0	5,61	22,44
EEASA	TUNGURAHUA	AMBATO	Transformador Monofásico en Poste	Línea Monofásica	В	1A37.5T	11413	37,5	15	0	15	0	4,96	13,226
						TOTAL	580	631	70	561	0	474,58	2226,213	
										20	de operación del siste	ma	81,82413793	

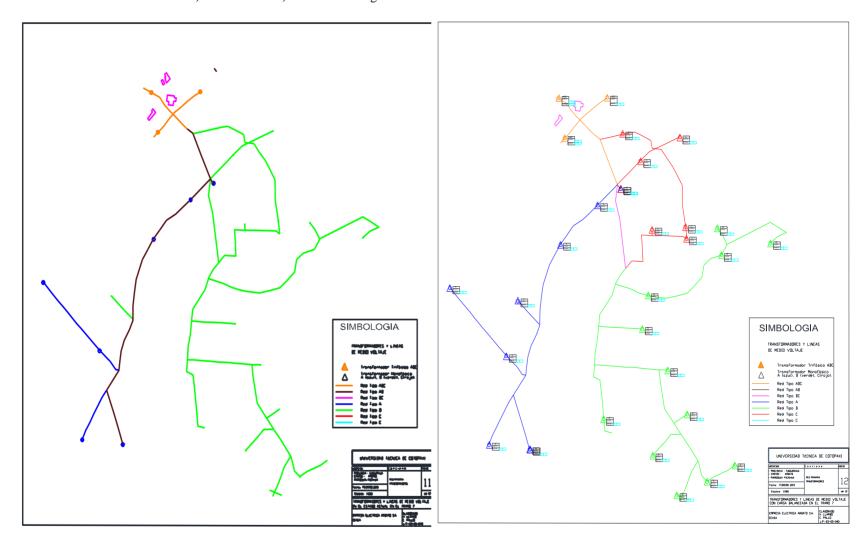

Anexo XV: Diagrama del alimentador Picaihua con balance de cargas


Anexo XVI: Interrupciones en el año 2016, 2017 y 2018


Anexo XVII: Tramo N° 1 a) estado actual b) balanceado cargas


Anexo XVIII: Tramo N° 2 a) estado actual b) balanceado cargas


Anexo XIX: Tramo N° 3 a) estado actual b) balanceado cargas


Anexo XX: Estado actual a) Tramo N° 4 b) Tramo N° 5

Anexo XXI: Tramo N° 6 a) estado actual b) balanceado cargas

Anexo XXII: Tramo N° 7 a) estado actual b) balanceado cargas

Anexo XXIII: Tabla de datos para los cálculos de los índices de calidad y confiabilidad en la cabecera del alimentador

COT . N	Lordo Wallada a	Time In control in		Sin la i	introducción de los aln	nacenadores de en	ergía.				Con la introducción	de los almacenadores o	le energía.		
Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 min	Tiempo de duración de la falla (h.)	FMIK	ттік	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 min	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Red de media tensión	1450	60	84	1,633	0,0200	0,0327	1,9612	60	84	1,633	1,633	0,0200	0,0327	1,9612
Fusible	Transformadores	2020	50	25	1,883	0,0167	0,0314	1,5705	50	25	1,883	1,883	0,0167	0,0314	1,5705
Fusible	Transformadores	3802	80	50	1,066	0,0267	0,0285	2,2760	80	50	1,066	1,066	0,0267	0,0285	2,2760
Fusible Fusible	Transformadores Transformadores	11071 11156	50 25	39 8	3,816 1,3	0,0167	0,0637	3,1827 0.2711	50 25	39 8	3,816 1,3	3,816 1,3	0,0167	0,0637	3,1827 0,2711
Disyuntor	Red de media tensión	PICAIHUA	2887,5	2816	0,083	0,9633	0,0800	230,8675	390	1522,5	0,083	0,0415	0,1301	0,0108	4,2116
Disyuntor	Red de media tensión	PICAIHUA	2887,5	2816	0,799	0,9633	0,7697	2222,4478	390	1522,5	0,25	0,3995	0,5467	0,2807	1539,7492
Disyuntor	Red de media tensión	PICAIHUA	2897,5	2816	1,05	0,9666	1,0150	2940,8779	390	1522,5	0,25	0,525	0,5484	0,4029	2253,3545
Disyuntor	Red de media tensión	PICAIHUA	2917,5	2816	0,133	0,9733	0,1295	377,6715	390	1522,5	0,133	0,0665	0,1301	0,0173	6,7487
Disyuntor	Red de media tensión	PICAIHUA PICAIHUA	2922,5	2816	0,249	0,9750	0,2428 0,4875	709,4948 1424,6883	390 390	1522,5	0,249	0,1245 0,25	0,1301	0,0324	12,6348
Disyuntor Disyuntor	Red de media tensión Red de media tensión	PICAIHUA	2922,5 2922,5	2816 2816	1,099	0,9750 0,9750	1,0715	3131,4648	390	1522,5 1522,5	0,25	0,5495	0,5525 0,5525	0,1381	725,0297 2431,8063
Disyuntor	Red de media tensión	PICAIHUA	2927,5	2816	1,383	0,9766	1,3507	3954,1833	390	1522,5	0,25	0,6915	0,5534	0,5695	3252,0852
Fusible	Red de media tensión	40547	2477,5	2396	1,133	0,8265	0,9364	2320,0537	522,5	1537,5	0,25	0,5665	0,5622	0,3867	1830,8961
Fusible	Red de media tensión	40547	2477,5	2396	6,7	0,8265	5,5377	13719,6470	522,5	1537,5	0,25	3,35	0,5004	2,6873	13230,4894
Fusible Fusible	Red de media tensión Red de media tensión	1613 4408	95 2432.5	265 2099	4,849 3,666	0,0317	0,1537 2,9750	14,5996 7236,6733	95 522.5	265 1389	4,849 0,25	4,849 1.833	0,0317	0,1537 1,4078	14,5996 6765,9435
Fusible	Red de media tensión	2351	2432,3 95	101	1,283	0,8115	0.0407	3,8629	95	1389	1,283	1,833	0,4929	0.0407	3,8629
Fusible	Red de media tensión	2351	45	101	1,766	0,0150	0,0265	1,1930	45	101	1,766	1,766	0,0150	0,0265	1,1930
Fusible	Red de media tensión	4408	2432,5	2099	2,016	0,8115	1,6360	3979,5781	522,5	1389	0,25	1,008	0,4929	0,7384	3508,8483
Fusible	Red de media tensión	1613	95	265	1,5	0,0317	0,0475	4,5163	95	265	1,5	1,5	0,0317	0,0475	4,5163
Fusible	Transformadores	6097	15	32	1,333	0,0050	0,0067	0,1001	15	32	1,333	1,333	0,0050	0,0067	0,1001
Fusible Fusible	Transformadores Transformadores	6501 7009	10 15	16 34	0,799 3,483	0,0033	0,0027	0,0267 0.2614	10 15	16 34	0,799 3,483	0,799 3,483	0,0033	0,0027	0,0267 0,2614
Fusible	Transformadores	7009	10	34	0.816	0,0033	0.0027	0.0272	10	34	0.816	0.816	0.0033	0,0027	0.0272
Fusible	Transformadores	7276	75	41	4,883	0,0250	0,1222	9,1633	75	41	4,883	4,883	0,0250	0,1222	9,1633
Fusible	Transformadores	422	25	46	1,566	0,0083	0,0131	0,3265	25	46	1,566	1,566	0,0083	0,0131	0,3265
Fusible	Transformadores	510	10	10	2,45	0,0033	0,0082	0,0817	10	10	2,45	2,45	0,0033	0,0082	0,0817
Fusible Fusible	Transformadores Transformadores	510 2049	10 45	10 32	1,566 1,599	0,0033	0,0052	0,0522 1,0802	10 45	10 32	1,566 1,599	1,566 1.599	0,0033	0,0052	0,0522 1,0802
Fusible	Transformadores	5319	10	26	5,9	0,0130	0,0240	0.1968	10	26	5,9	5,9	0,0033	0,0240	0,1968
Fusible	Transformadores	5331	15	41	1,8	0,0050	0,0090	0,1351	15	41	1,8	1,8	0,0050	0,0090	0,1351
Fusible	Transformadores	5567	10	23	0,999	0,0033	0,0033	0,0333	10	23	0,999	0,999	0,0033	0,0033	0,0333
Fusible	Transformadores	5811	25	40	8,75	0,0083	0,0730	1,8244	25	40	8,75	8,75	0,0083	0,0730	1,8244
Fusible Fusible	Transformadores Transformadores	6097 6097	15 10	32 32	2,416 3,716	0,0050	0,0121 0.0124	0,1814 0.1240	15 10	32 32	2,416 3,716	2,416 3,716	0,0050	0,0121 0,0124	0,1814 0,1240
Fusible	Transformadores	6097	15	32	0,499	0,0050	0,0025	0,0375	15	32	0,499	0,499	0,0050	0,0025	0,0375
Fusible	Transformadores	6097	15	32	1,516	0,0050	0,0076	0,1138	15	32	1,516	1,516	0,0050	0,0076	0,1138
Fuisble	Transformadores	496	25	52	1,216	0,0083	0,0101	0,2535	25	52	1,216	1,216	0,0083	0,0101	0,2535
Fuisble	Transformadores	496	25	52	3,016	0,0083	0,0252	0,6289	25	52	3,016	3,016	0,0083	0,0252	0,6289
Fusible Fusible	Transformadores Transformadores	5319 5319	10 10	26 26	0,666 1.166	0,0033	0,0022	0,0222	10 10	26 26	0,666 1,166	0,666 1.166	0,0033	0,0022	0,0222 0.0389
Fusible	Transformadores Transformadores	5319	10	26	3,349	0,0033	0,0039	0,0389	10	26	3,349	3,349	0,0033	0,0039	0,0389
Fusible	Transformadores	5319	10	26	2,05	0,0033	0,0068	0,0684	10	26	2,05	2,05	0,0033	0,0068	0,0684
Fusible	Transformadores	5644	10	34	3,966	0,0033	0,0132	0,1323	10	34	3,966	3,966	0,0033	0,0132	0,1323
Fusible	Transformadores	6097	15	32	0,766	0,0050	0,0038	0,0575	15	32	0,766	0,766	0,0050	0,0038	0,0575
Fusible Fusible	Transformadores Transformadores	6097 6097	15 15	32 32	1,2 1,833	0,0050	0,0060	0,0901 0,1376	15 15	32 32	1,2 1,833	1,2 1,833	0,0050	0,0060	0,0901
Fusible	Transformadores	6097	15	32	0,849	0,0050	0,0092	0,0637	15	32	0,849	0,849	0,0050	0,0092	0,0637
Fusible	Transformadores	6097	15	32	3,166	0,0050	0,0158	0,2376	15	32	3,166	3,166	0,0050	0,0158	0,2376
Fusible	Transformadores	6501	10	16	0,716	0,0033	0,0024	0,0239	10	16	0,716	0,716	0,0033	0,0024	0,0239
Fusible	Transformadores	9189	15	38	1,333	0,0050	0,0067	0,1001	15	38	1,333	1,333	0,0050	0,0067	0,1001
Fusible	Transformadores	499 499	37,5 37,5	1	2,033 4,683	0,0125 0,0125	0,0254	0,9538 2,1970	37,5 37,5	1,00 1,00	2,033 4,683	2,033 4,683	0,0125 0,0125	0,0254 0,0586	0,9538 2,1970
Fusible Fusible	Transformadores Transformadores	499	37,5 37,5	1	4,683 1,766	0,0125	0,0586	0,8285	37,5 37,5	1,00	4,683 1,766	4,683 1,766	0,0125	0,0586	0,8285
Fusible	Transformadores	499	37,5	1	1,149	0,0125	0,0221	0,5390	37,5	1,00	1,149	1,149	0,0125	0,0221	0,5390
Fusible	Transformadores	499	37	1	2,366	0,0123	0,0292	1,0806	37	1,00	2,366	2,366	0,0123	0,0292	1,0806
Fusible	Transformadores	874	15	29	3,5	0,0050	0,0175	0,2627	15	29,00	3,5	3,5	0,0050	0,0175	0,2627
Fusible	Transformadores	874	15	29	2,4	0,0050	0,0120	0,1802	15	29,00	2,4	2,4	0,0050	0,0120	0,1802
Fusible Fusible	Red de media tensión Transformadores	1442 4064	1063,5 10	830 43	0,983 1,2	0,3548	0,3488	370,9107 0,0400	137,25 10	482,50 43	0,25 1,2	0,4915 0,6	0,2003 0,0033	0,1358 0,0040	278,1505 0.0400
Fusible	Red de media tensión	1612	570	692	2,033	0,1902	0,3866	220,3575	275	508,5	0.25	1,0165	0,0055	0,1810	199,5673
Fusible	Red de media tensión	1612	570	692	0,416	0,1902	0,0791	45,0904	275	508,5	0,25	0,208	0,1410	0,0273	24,3001

Fusible	Red de media tensión	1612	570	692	3,166	0,1902	0,6020	343,1638	275	508,5	0,25	1,583	0,1410	0,2887	322,3735
Fusible	Red de media tensión	1612	570	692	0,716	0,1902	0,1362	77,6075	275	508,5	0,25	0,358	0,1410	0,0558	56,8172
Fusible Fusible	Red de media tensión Red de media tensión	1612	570 570	692	2,366	0,1902	0,4499	256,4515 198,6795	275 275	508,5 508.5	0,25	1,183	0,1410	0,2127	235,6613
Fusible		1612 4405	25	692 56	1,833	0,1902	0,3486	0,2711	25	56	0,25	0,9165	0,1410	0,1620 0,0108	177,8892 0,2711
Fusible	Transformadores	4405		56	1,3	0,0083	0,0108	0,2711		56	1,3	3,65	0,0083	0,0108	0,7611
Fusible	Transformadores	4405	25 25	56	3,65 1,133	0,0083	0,0304	0,7611	25 25	56	3,65 1,133	1,133	0,0083	0,0304	0,7611
Fusible	Transformadores Transformadores	4405	25	56	1,133	0,0083	0,0094	0,2535	25	56	1,133	1,133	0,0083	0,0094	0,2362
Fusible	Transformadores	4405	25	56	0,55	0,0083	0,0046	0,1147	25	56	0,55	0,55	0,0083	0,0046	0,1147
Fusible	Transformadores	4405	37,5	56	2,1	0,0085	0,0263	0,9852	37,5	56	2,1	2,1	0,0083	0,0263	0,9852
Fusible	Transformadores	4405	37,5	56	0,566	0,0125	0,0263	0,2655	37,5	56	0,566	0,566	0,0125	0,0203	0,2655
Fusible	Transformadores	4405	25	56	5,033	0,0083	0,0420	1,0494	25	56	5,033	5,033	0,0083	0,0420	1,0494
Fusible	Transformadores	4406	15	31	1,933	0,0050	0,0097	0,1451	15	31	1,933	1,933	0,0050	0,0097	0,1451
Fusible	Transformadores	4407	25	52	1,316	0.0083	0,0097	0.2744	25	52	1,316	1,316	0,0030	0,0097	0,2744
Fusible	Transformadores	4407	25	52	0,716	0,0083	0,0060	0,1493	25	52	0,716	0,716	0,0083	0,0060	0,1493
Fusible	Transformadores	6720	10	52	3,583	0,0033	0,0120	0,1195	10	52	3,583	3,583	0,0033	0,0120	0,1195
Fusible	Red de media tensión	2464	165	179	3,483	0,0550	0,1917	31,6346	165	179	0	3,483	0,0550	0,1917	31,6346
Fusible	Red de media tensión	2559	5	10	3,116	0,0017	0,0052	0,0260	5	10	0	3,116	0.0017	0,0052	0.0260
Fusible	Red de media tensión	2559	79	10	2,166	0,0264	0,0571	4,5098	79	10	0	2,166	0,0264	0,0571	4,5098
Fusible	Red de media tensión	2560	95	125	7,166	0,0317	0.2271	21,5757	95	125	0	7,166	0,0317	0,2271	21.5757
Fusible	Red de media tensión	2560	81	125	15,333	0,0270	0,4143	33,5612	81	125	0	15,333	0,0270	0,4143	33,5612
Fusible	Red de media tensión	2560	45	125	2,499	0,0150	0,0375	1.6882	45	125	0	2,499	0,0150	0,0375	1.6882
Fusible	Transformadores	554	10	27	3,016	0,0033	0,0101	0,1006	10	27	0	3,016	0,0033	0,0101	0,1006
Fusible	Transformadores	556	5	8	3,766	0,0017	0,0063	0,0314	5	8	0	3,766	0,0017	0,0063	0,0314
Fusible	Transformadores	2423	5	14	21,766	0,0017	0,0363	0,1815	5	14	0	21,766	0,0017	0,0363	0,1815
Fusible	Transformadores	2423	15	14	5.833	0.0050	0,0292	0.4378	15	14	0	5,833	0,0050	0,0292	0.4378
Fuisble	Transformadores	2423	5	14	9,666	0,0017	0,0161	0,0806	5	14	0	9,666	0,0017	0,0161	0,0806
Fusible	Transformadores	3253	5	13	4,049	0,0017	0,0068	0,0338	5	13	0	4,049	0,0017	0,0068	0,0338
Fusible	Transformadores	3253	5	13	1,866	0,0017	0,0031	0,0156	5	13	0	1,866	0,0017	0,0031	0,0156
Fusible	Transformadores	3253	5	13	2,416	0,0017	0,0040	0,0202	5	13	0	2,416	0,0017	0,0040	0,0202
Fusible	Transformadores	5313	10	3	4,583	0,0033	0,0153	0,1529	10	3	0	4,583	0,0033	0,0153	0,1529
Fusible	Transformadores	5315	10	13	3	0,0033	0,0100	0,1001	10	13	0	3	0,0033	0,0100	0,1001
Fusible	Transformadores	6624	10	8	7,799	0,0033	0,0260	0,2602	10	8	0	7,799	0,0033	0,0260	0,2602
Fusible	Transformadores	8445	5	5	6,149	0,0017	0,0103	0,0513	5	5	0	6,149	0,0017	0,0103	0,0513
Fusible	Red de media tensión	1444	65	447	7,75	0,0217	0,1681	10,9237	65	447	0	7,75	0,0217	0,1681	10,9237
Fusible	Red de media tensión	1444	150	447	6,033	0,0500	0,3019	45,2852	150	447	0	6,033	0,0500	0,3019	45,2852
Fusible	Red de media tensión	1444	200	447	6,799	0,0667	0,4536	90,7289	200	447	0	6,799	0,0667	0,4536	90,7289
Fusible	Red de media tensión	1444	250	447	6,616	0,0834	0,5518	137,9483	250	447	0	6,616	0,0834	0,5518	137,9483
Fusible	Red de media tensión	1447	200	140	1,35	0,0667	0,0901	18,0150	200	140	0	1,35	0,0667	0,0901	18,0150
Fusible	Red de media tensión	1447	195	140	6,016	0,0651	0,3914	76,3164	195	140	0	6,016	0,0651	0,3914	76,3164
Fusible	Red de media tensión	1447	73	140	4,483	0,0244	0,1092	7,9699	73	140	0	4,483	0,0244	0,1092	7,9699
Fusible	Transformadores	1487	10	15	2,233	0,0033	0,0074	0,0745	10	15	0	2,233	0,0033	0,0074	0,0745
Fusible	Transformadores	3936	10	12	0,916	0,0033	0,0031	0,0306	10	12	0	0,916	0,0033	0,0031	0,0306
Fusible	Transformadores	5476	10	12	10,883	0,0033	0,0363	0,3631	10	12	0	10,883	0,0033	0,0363	0,3631
Fusible	Transformadores	5476	10	12	2,883	0,0033	0,0096	0,0962	10	12	0	2,883	0,0033	0,0096	0,0962
Fusible	Transformadores	5476	10	12	1,933	0,0033	0,0064	0,0645	10	12	0	1,933	0,0033	0,0064	0,0645
Fusible	Transformadores	5476	10	12	2,183	0,0033	0,0073	0,0728	10	12	0	2,183	0,0033	0,0073	0,0728
Fusible	Transformadores	5476	10	12	2,383	0,0033	0,0079	0,0795	10	12	0	2,383	0,0033	0,0079	0,0795
Fusible	Transformadores	5476	10	12	0,716	0,0033	0,0024	0,0239	10	12	0	0,716	0,0033	0,0024	0,0239
Fusible	Transformadores	5476	10	12	1,599	0,0033	0,0053	0,0533	10	12	0	1,599	0,0033	0,0053	0,0533
Fusible	Transformadores	5476 5476	10	12	1,699	0,0033	0,0057	0,0567	10	12	0	1,699	0,0033	0,0057	0,0567
Fusible Fusible	Transformadores Transformadores	5476 5785	10 15	12 20	1,133 0.766	0,0033	0,0038	0,0378 0,0575	10 15	12 20	0	1,133 0.766	0,0033	0,0038	0,0378
Fusible	Transformadores Transformadores	6635	10	20 8	0,766	0,0050	0,0038	0,0575	10	20 8	0	0,766	0,0050	0,0038	0,0575
Fusible	Transformadores Transformadores	6635	10	8	0,916	0,0033	0,0031	0,0306	10	8	0	0,533	0,0033	0.0018	0,0306
Fusible	Transformadores Transformadores	6635	10	8	1,916	0,0033	0,0018	0,0178	10	8	0	1,916	0,0033	0,0018	0,0178
Fusible	Transformadores Transformadores	6635	10	8	1,916 3.016	0,0033	0,0064	0,0639	10	8	0	1,916 3.016	0,0033	0,0064	0,0639
Fusible	Transformadores	8101	10	6	2,299	0,0033	0,0077	0,0767	10	6	0	2,299	0,0033	0.0077	0,1006
Fusible	Transformadores	10124	75	1	2,299	0,0055	0,0538	4.0346	75	1	0	2,299	0,0055	0,0077	4.0346
Fusible	Transformadores	10785	50	68	1.616	0,0230	0,0338	1,3478	50	68	0	1,616	0,0230	0,0338	1,3478
Fusible	Transformadores	10785	50	68	1,010	0.0167	0.0167	0.8340	50	68	0	1,010	0.0167	0,0270	0.8340
Fusible	Red de media tensión	2357	180	465	2,366	0.0601	0,1421	25.5741	180	465	0	2,366	0.0601	0.1421	25.5741
Fusible	Red de media tensión	4410	450	631	4,583	0,1501	0,6880	309,6105	450	631	0	4,583	0,1501	0,6880	309,6105
Fusible	Red de media tensión	4410	870	631	4,565	0,2902	1,4512	1262,5521	870	631	0	4,565	0,1301	1,4512	1262,5521
Fusible	Red de media tensión	4410	175	631	2,116	0.0584	0.1235	21.6188	175	631	0	2.116	0,0584	0.1235	21.6188
Fusible	Red de media tensión	4410	610	631	0.683	0,2035	0,1390	84.7854	610	631	0	0.683	0,2035	0,1390	84,7854
Fusible	Red de media tensión	4410	546,66	631	2,916	0,1824	0,5318	290,7120	546,66	631	0	2,916	0,2033	0,5318	290,7120
Fusible	Red de media tensión	4432	15	27	2,016	0,0050	0,0101	0,1513	15	27	0	2,016	0,0050	0,0101	0,1513
Fusible	Red de media tensión	4433	62	136	2,516	0,0207	0,0520	3,2265	62	136	0	2,516	0,0207	0,0520	3,2265
Fusible	Transformadores	1732	10	19	2,933	0,0033	0,0098	0,0978	10	19	0	2,933	0,0033	0,0098	0,0978
Fusible	Transformadores	1732	10	19	6,016	0,0033	0,0201	0,2007	10	19	0	6,016	0,0033	0,0201	0,2007
Fusible	Transformadores	1732	10	19	4,333	0,0033	0,0145	0,1446	10	19	0	4,333	0,0033	0,0145	0,1446
Fusible	Transformadores	1796	15	28	1,15	0,0050	0,0058	0,0863	15	28	0	1,15	0,0050	0,0058	0,0863
Fusible	Transformadores	1796	15	28	4,466	0,0050	0,0223	0,3352	15	28	0	4,466	0,0050	0,0223	0,3352

Fusible	Transformadores	1796	15	28	1,049	0,0050	0,0052	0,0787	15	28	0	1,049	0,0050	0,0052	0,0787
Fusible	Transformadores	1796	15	28	1,733	0,0050	0,0087	0,1301	15	28	0	1,733	0,0050	0,0087	0,1301
Fusible	Transformadores	3182	15	20	1,566	0,0050	0,0078	0,1175	15	20	0	1,566	0,0050	0,0078	0,1175
Fusible	Transformadores	3646	10	16	2,85	0,0033	0,0095	0,0951	10	16	0	2,85	0,0033	0,0095	0,0951
Fusible	Transformadores	4409	15	37	0,528472222	0,0050	0,0026	0,0397	15	37	0	0,528472222	0,0050	0,0026	0,0397
Fusible	Transformadores	4409	15	37	0,559027778	0,0050	0,0028	0,0420	15	37	0	0,559027778	0,0050	0,0028	0,0420
Fusible	Transformadores	4483	25	47	1,316	0,0083	0,0110	0,2744	25	47	0	1,316	0,0083	0,0110	0,2744
Fusible	Transformadores	4483	25	47	0,583	0,0083	0,0049	0,1216	25	47	0	0,583	0,0083	0,0049	0,1216
Fusible	Transformadores	4803	10	26	0,583	0,0033	0,0019	0,0194	10	26	0	0,583	0,0033	0,0019	0,0194
Fusible	Transformadores	5841	30	29	1,15	0,0100	0,0115	0,3453	30	29	0	1,15	0,0100	0,0115	0,3453
Fusible	Transformadores	7089	15	18	2,483	0,0050	0,0124	0,1864	15	18	0	2,483	0,0050	0,0124	0,1864
Fusible	Transformadores	7692	10	80	1,116	0,0033	0,0037	0,0372	10	80	0	1,116	0,0033	0,0037	0,0372
Fusible	Transformadores	7992	10	80	4,683	0,0033	0,0156	0,1562	10	80	0	4,683	0,0033	0,0156	0,1562
Fusible	Transformadores	8371	50	67	1	0,0167	0,0167	0,8340	50	67	0	1	0,0167	0,0167	0,8340
Fusible	Transformadores	8611	5	12	0,666	0,0017	0,0011	0,0056	5	12	0	0,666	0,0017	0,0011	0,0056
Fusible	Transformadores	10250	15	24	0,7	0,0050	0,0035	0,0525	15	24	0	0,7	0,0050	0,0035	0,0525
Fusible	Transformadores	10250	15	24	0,849	0,0050	0,0042	0,0637	15	24	0	0,849	0,0050	0,0042	0,0637
Fusible	Transformadores	10664	10	21	0,933	0,0033	0,0031	0,0311	10	21	0	0,933	0,0033	0,0031	0,0311
Fusible	Transformadores	11152	25	24	2,166	0,0083	0,0181	0,4516	25	24	0	2,166	0,0083	0,0181	0,4516
Fusible	Transformadores	11408	25	47	3,549	0,0083	0,0296	0,7400	25	47	0	3,549	0,0083	0,0296	0,7400

Tabla resumen de los índices de calidad en la cabecera del alimentador con la introducción de los almacenadores de energía y para una autonomía de 15 minutos

	Cálculos en la cabecera del alimentador														
		Sin almacenadores	5		Con almacenadores										
FMIK	TTIK	ENS (kWh)	Usuarios sin servicio	Duración de la falla (h.)	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio	Duración de la falla (h.)						
4.986	8.9202	15438.268	280	2.63	2.885	5.448	13137.15	193	2.53						

A continuación, se presenta la tabla de resumen de los índices de calidad con y sin la introducción de los almacenadores de energía y para las tres autonomías como 15, 30, y 60 minutos de duración de las baterías de potencia.

Tabla resumen de los índices de calidad en la cabecera del alimentador												
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio								
Índices en el estado actual del alimentador	4.986	8.9202	15438.268	280								
Índices con autonomía de las baterías de 15 min.	2.885	5.448	13137.15	193								
Índices con autonomía de las baterías de 30 min.	2.7077	5.146	11269.84	192								
Índices con autonomía de las baterías de 60 min.	2.501	4.654	8203.803	150								

Anexo XXIV: Tramo N° 1 con autonomía de 15 minutos.

Código del equipo	Instalación donde se presentó la falla.	Tipo de	Sin la introducción de los almacenadores de energía.						Con la introducción de los almacenadores de energía.							
		protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	
Fusible	Red de media tensión	1450	60	84	1,633	0,0200	0,0327	1,9612	60	84	1,633	1,633	0,0200	0,0327	1,9612	
Fusible	Transformadores	2020	50	25	1,883	0,0167	0,0314	1,5705	50	25	1,883	1,883	0,0167	0,0314	1,5705	
Fusible	Transformadores	3802	80	50	1,066	0,0267	0,0285	2,2760	80	50	1,066	1,066	0,0267	0,0285	2,2760	
Fusible	Transformadores	11071	50	39	3,816	0,0167	0,0637	3,1827	50	39	3,816	3,816	0,0167	0,0637	3,1827	
Fusible	Transformadores	11156	25	8	1,3	0,0083	0,0108	0,2711	25	8	1,3	1,3	0,0083	0,0108	0,2711	
Disyuntor	Red de media tensión (1)	PICAIHUA	2887,5	2816	0,083	0,9633	0,0800	230,8675	390	229	0,083	0,0415	0,1301	0,0108	4,2116	
Disyuntor	Red de media tensión (2)	PICAIHUA	2887,5	2816	0,799	0,9633	0,7697	2222,4478	390	229	0,25	0,3995	0,5467	0,2807	1539,7492	
Disyuntor	Red de media tensión (3)	PICAIHUA	2897,5	2816	1,05	0,9666	1,0150	2940,8779	390	229	0,25	0,525	0,5484	0,4029	2253,3545	
Disyuntor	Red de media tensión (4)	PICAIHUA	2917,5	2816	0,133	0,9733	0,1295	377,6715	390	229	0,133	0,0665	0,1301	0,0173	6,7487	
Disyuntor	Red de media tensión (5)	PICAIHUA	2922,5	2816	0,249	0,9750	0,2428	709,4948	390	229	0,249	0,1245	0,1301	0,0324	12,6348	
Disyuntor	Red de media tensión (6)	PICAIHUA	2922,5	2816	0,5	0,9750	0,4875	1424,6883	390	229	0,25	0,25	0,5525	0,1381	725,0297	
Disyuntor	Red de media tensión (7)	PICAIHUA	2922,5	2816	1,099	0,9750	1,0715	3131,4648	390	229	0,25	0,5495	0,5525	0,4301	2431,8063	
Disyuntor	Red de media tensión (8)	PICAIHUA	2927,5	2816	1,383	0,9766	1,3507	3954,1833	390	229	0,25	0,6915	0,5534	0,5695	3252,0852	

	Tramo N° 1														
		Sin almacenado	res		Con almacenadores										
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla						
7,8565	5,3136	15000,9574	1748,7692	1,1534	3.2323	2.049	10234.8815	156.76	0.9497						

Anexo XXV: Tramo N° 1 con autonomía de 30 minutos.

Código	Instalación	Tipo de	Sin la introducci	ón de los a	lmacenad	ores de	energía	ı.	Con la introduce	ción de los a	almacenadore	s de energía	ı.		
del equipo	donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	TTIK	ENS (kWh)
Fusible	Red de media tensión	1450	60	84	1,633	0,0200	0,0327	1,9612	60	84	1,633	1,633	0,0200	0,0327	1,9612
Fusible	Transformadores	2020	50	25	1,883	0,0167	0,0314	1,5705	50	25	1,883	1,883	0,0167	0,0314	1,5705
Fusible	Transformadores	3802	80	50	1,066	0,0267	0,0285	2,2760	80	50	1,066	1,066	0,0267	0,0285	2,2760
Fusible	Transformadores	11071	50	39	3,816	0,0167	0,0637	3,1827	50	39	3,816	3,816	0,0167	0,0637	3,1827
Fusible	Transformadores	11156	25	8	1,3	0,0083	0,0108	0,2711	25	8	1,3	1,3	0,0083	0,0108	0,2711
Disyuntor	Red de media tensión (1)	PICAIHUA	2887,5	2816	0,083	0,9633	0,0800	230,8675	390	229	0,083	0,0415	0,1301	0,0108	4,2116
Disyuntor	Red de media tensión (2)	PICAIHUA	2887,5	2816	0,799	0,9633	0,7697	2222,4478	390	229	0,5	0,3995	0,5467	0,1765	857,0506
Disyuntor	Red de media tensión (3)	PICAIHUA	2897,5	2816	1,05	0,9666	1,0150	2940,8779	390	229	0,5	0,525	0,5484	0,2984	1565,8310
Disyuntor	Red de media tensión (4)	PICAIHUA	2917,5	2816	0,133	0,9733	0,1295	377,6715	390	229	0,133	0,0665	0,1301	0,0173	6,7487
Disyuntor	Red de media tensión (5)	PICAIHUA	2922,5	2816	0,249	0,9750	0,2428	709,4948	390	229	0,249	0,1245	0,1301	0,0324	12,6348
Disyuntor	Red de media tensión (6)	PICAIHUA	2922,5	2816	0,5	0,9750	0,4875	1424,6883	390	229	0,5	0,25	0,1301	0,0651	25,3711
Disyuntor	Red de media tensión (7)	PICAIHUA	2922,5	2816	1,099	0,9750	1,0715	3131,4648	390	229	0,5	0,5495	0,5525	0,3245	1732,1477
Disyuntor	Red de media tensión (8)	PICAIHUA	2927,5	2816	1,383	0,9766	1,3507	3954,1833	390	229	0,5	0,6915	0,5534	0,4637	2549,9871

	Tramo N° 1 (con autonomía de las baterías de 30 minutos)												
	Sin almacenadores Con almacenadores												
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla				
7,8565	7,8565 5,3136 15000,9574 1748,7692 1,1534 2.8090 1.5557 6763.2442 156.76 0.9497												

Anexo XXVI: Tramo N° 1 con autonomía de 60 minutos (1h).

Código	Instalación	Tipo de	Sin la introd	Sin la introducción de los almacenadores de energía.						Con la introducción de los almacenadores de energía.						
del equipo	donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	
Fusible	Red de media tensión	1450	60	84	1,633	0,0200	0,0327	1,9612	60	84	1,633	1,633	0,0200	0,0327	1,9612	
Fusible	Transformadores	2020	50	25	1,883	0,0167	0,0314	1,5705	50	25	1,883	1,883	0,0167	0,0314	1,5705	
Fusible	Transformadores	3802	80	50	1,066	0,0267	0,0285	2,2760	80	50	1,066	1,066	0,0267	0,0285	2,2760	
Fusible	Transformadores	11071	50	39	3,816	0,0167	0,0637	3,1827	50	39	3,816	3,816	0,0167	0,0637	3,1827	
Fusible	Transformadores	11156	25	8	1,3	0,0083	0,0108	0,2711	25	8	1,3	1,3	0,0083	0,0108	0,2711	
Disyuntor	Red de media tensión (1)	PICAIHUA	2887,5	2816	0,083	0,9633	0,0800	230,8675	390	229	0,083	0,083	0,1301	0,0108	4,2116	
Disyuntor	Red de media tensión (2)	PICAIHUA	2887,5	2816	0,799	0,9633	0,7697	2222,4478	390	229	0,799	0,799	0,1301	0,1040	40,5431	
Disyuntor	Red de media tensión (3)	PICAIHUA	2897,5	2816	1,05	0,9666	1,0150	2940,8779	390	1522,5	1	0,525	0,5484	0,0892	190,7841	
Disyuntor	Red de media tensión (4)	PICAIHUA	2917,5	2816	0,133	0,9733	0,1295	377,6715	390	229	0,133	0,133	0,1301	0,0173	6,7487	
Disyuntor	Red de media tensión (5)	PICAIHUA	2922,5	2816	0,249	0,9750	0,2428	709,4948	390	229	0,249	0,249	0,1301	0,0324	12,6348	
Disyuntor	Red de media tensión (6)	PICAIHUA	2922,5	2816	0,5	0,9750	0,4875	1424,6883	390	229	0,5	0,5	0,1301	0,0651	25,3711	
Disyuntor	Red de media tensión (7)	PICAIHUA	2922,5	2816	1,099	0,9750	1,0715	3131,4648	390	1522,5	1	0,5495	0,5525	0,1133	332,8306	
Disyuntor	Red de media tensión (8)	PICAIHUA	2927,5	2816	1,383	0,9766	1,3507	3954,1833	390	1522,5	1	0,6915	0,5534	0,2521	1145,7909	

	Tramo N° 1 (con autonomía de las baterías de 60 minutos)												
	Sin almacenadores Con almacenadores												
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla				
7,8565	7,8565 5,3136 15000,9574 1748,7692 1,1534 2.3932 0.8512 1768.1764 455 0.0175												

Anexo XXVII: Tramo N° 1 tabla resumen de índices con diferentes autonomías.

		Tabla resumen del Tramo Nº 1		
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio
Índices en el estado actual del alimentador	7,8565	5,3136	15000,9574	1748,7692
Índices con autonomía de las baterías de 15 min.	3.2323	2.049	10234.8815	952.76
Índices con autonomía de las baterías de 30 min.	2.8090	1.5557	6763.2442	952.76
Índices con autonomía de las baterías de 60 min.	2.3932	0.8512	1768.1764	455.26

Anexo XXVIII: Tramo N° 2 con autonomía de 15 minutos.

Código		Tipo de	Sin la introducción de	los almacenado	res de energí	а.			Con la introducción de	los almacenadores	de energía.				
del equipo	Instalación donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттк	ENS (kWh)
Fusible	Red de media tensión	40547	2477,5	2396	1,133	0,9501	1,0765	2667,0608	522,5	1537,5	0,25	0,5665	0,5753	0,4445	2104,7406
Fusible	Red de media tensión	40547	2477,5	2396	6,7	0,9501	6,3660	15771,6747	522,5	1537,5	0,25	3,35	0,5753	3,0893	15209,3545
Fusible	Red de media tensión	1613	95	265	4,849	0,0364	0,1767	16,7832	95	265	4,849	4,849	0,0364	0,1767	16,7832
Fusible	Red de media tensión	4408	2432,5	2099	3,666	0,9329	3,4200	8319,0520	522,5	1389	0,25	1,833	0,5666	1,6184	7777,9159
Fusible	Red de media tensión	2351	95	101	1,283	0,0364	0,0467	4,4407	95	101	1,283	1,283	0,0364	0,0467	4,4407
Fusible	Red de media tensión	2351	45	101	1,766	0,0173	0,0305	1,3715	45	101	1,766	1,766	0,0173	0,0305	1,3715
Fusible	Red de media tensión	4408	2432,5	2099	2,016	0,9329	1,8807	4574,7979	522,5	1389	0,25	1,008	0,5666	0,8488	4033,6617
Fusible	Red de media tensión	1613	95	265	1,5	0,0364	0,0547	5,1918	95	265	1,5	1,5	0,0364	0,0547	5,1918
Fusible	Transformadores	6097	15	32	1,333	0,0058	0,0077	0,1150	15	32	1,333	1,333	0,0058	0,0077	0,1150
Fusible	Transformadores	6501	10	16	0,799	0,0038	0,0031	0,0306	10	16	0,799	0,799	0,0038	0,0031	0,0306
Fusible	Transformadores	7009	15	34	3,483	0,0058	0,0200	0,3005	15	34	3,483	3,483	0,0058	0,0200	0,3005
Fusible	Transformadores	7009	10	34	0,816	0,0038	0,0031	0,0313	10	34	0,816	0,816	0,0038	0,0031	0,0313
Fusible	Transformadores	9189	15	38	1,333	0,0058	0,0077	0,1150	15	38	1,333	1,333	0,0058	0,0077	0,1150

	Tramo N* 2 (Autonomía de 15 minutos)												
	S	in almacenadores				Con alma	acenadores						
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla				
4,1845	13,73861	31381,82838	2.7018	6.9965	29174.9261	369.05	2.114						

Anexo XXIX: Tramo N° 2 con autonomía de 30 minutos.

Código del	Instalación donde se	Tipo de protección	Sin la	introducción d	e los almacen	adores de	energía.			Con la in	troducción de los al	macenadores de	e energía.		
equipo	presentó la falla.	que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	TTIK	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Red de media tensión	40547	2477,5	2396	1,133	0,9501	1,0765	2667,0608	522,5	1537,5	0,5	0,5665	0,5753	0,3508	1542,4204
Fusible	Red de media tensión	40547	2477,5	2396	6,7	0,9501	6,3660	15771,6747	522,5	1537,5	0,5	3,35	0,5753	2,9955	14647,0343
Fusible	Red de media tensión	1613	95	265	4,849	0,0364	0,1767	16,7832	95	265	4,849	4,849	0,0364	0,1767	16,7832
Fusible	Red de media tensión	4408	2432,5	2099	3,666	0,9329	3,4200	8319,0520	522,5	1389	0,5	1,833	0,5666	1,5269	7236,7798
Fusible	Red de media tensión	2351	95	101	1,283	0,0364	0,0467	4,4407	95	101	1,283	1,283	0,0364	0,0467	4,4407
Fusible	Red de media tensión	2351	45	101	1,766	0,0173	0,0305	1,3715	45	101	1,766	1,766	0,0173	0,0305	1,3715
Fusible	Red de media tensión	4408	2432,5	2099	2,016	0,9329	1,8807	4574,7979	522,5	1389	0,5	1,008	0,5666	0,7572	3492,5256
Fusible	Red de media tensión	1613	95	265	1,5	0,0364	0,0547	5,1918	95	265	1,5	1,5	0,0364	0,0547	5,1918
Fusible	Transformadores	422	15	46	1,466	0,0058	0,0084	0,1265	15	46	1,466	1,466	0,0058	0,0084	0,1265
Fusible	Transformadores	496	25	52	3,466	0,0096	0,0332	0,8308	25	52	3,466	3,466	0,0096	0,0332	0,8308

Tramo N° 2 (Autonomía de 30 minutos)												
	!	Sin almacenadores				Con alm	acenadores					
FMIK	ТТІК	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla			
4,1845	13,73861	31381,82838	219	2.244	2.7018	6.07	26949.883	369.05	2.1114			

Anexo XXX: Tramo N° 2 con autonomía de 60 minutos (1h).

C(d)		The sale	Sin la introducción de l	os almacenador	es de energía.				Con la introducción de	los almacenadores d	e energía.				
Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Red de media tensión	40547	2477,5	2396	1,133	0,9501	1,0765	2667,0608	522,5	1537,5	1	0,5665	0,5753	0,1634	417,7799
Fusible	Red de media tensión	40547	2477,5	2396	6,7	0,9501	6,3660	15771,6747	522,5	1537,5	1	3,35	0,5753	2,8081	13522,3938
Fusible	Red de media tensión	1613	95	265	4,849	0,0364	0,1767	16,7832	95	265	4,849	4,849	0,0364	0,1767	16,7832
Fusible	Red de media tensión	4408	2432,5	2099	3,666	0,9329	3,4200	8319,0520	522,5	1389	1	1,833	0,5666	1,3437	6154,5075
Fusible	Red de media tensión	2351	95	101	1,283	0,0364	0,0467	4,4407	95	101	1,283	1,283	0,0364	0,0467	4,4407
Fusible	Red de media tensión	2351	45	101	1,766	0,0173	0,0305	1,3715	45	101	1,766	1,766	0,0173	0,0305	1,3715
Fusible	Red de media tensión	4408	2432,5	2099	2,016	0,9329	1,8807	4574,7979	522,5	1389	1	1,008	0,5666	0,5741	2410,2533
Fusible	Red de media tensión	1613	95	265	1,5	0,0364	0,0547	5,1918	95	265	1,5	1,5	0,0364	0,0547	5,1918
Fusible	Transformadores	422	15	46	1,466	0,0058	0,0084	0,1265	15	46	1,466	1,466	0,0058	0,0084	0,1265

	Tramo N* 2 (Autonomía de 60 minutos)												
	Si	n almacenadores				Con alma	acenadores						
FMIK	FMIK TTIK ENS Usuarios sin servicio la falla FMIK TTIK ENS Usuarios sin servicio de la falla												
4,1845	13,73861	31381,82838	219	2.244	2.7018	5.3289	22536.058	369.05	2.1114				

Anexo XXXI: Tramo N° 2 tabla resumen de índices con diferentes autonomías.

	T	abla resumen del Tramo N°	2	
Descripción	FMIK	TTIK	ENS (kWh)	Usuarios sin servicio
Índices en el estado actual del alimentador	4,1845	13,73861	31381,82838	219
Índices con autonomía de las baterías de 15 min.	2.7018	6.9965	29174.9261	157.11
Índices con autonomía de las baterías de 30 min.	2.7018	6.07	26949.883	157.11
Índices con autonomía de las baterías de 60 min.	2.7018	5.3289	22536.058	157.11

Anexo XXXII: Tramo N° 3 con autonomía de 15 minutos.

Código	Instalación	Tipo de	Sin la introducci	ón de los a	Imacenad	ores de	energía	a.	Con la introduce	ción de los aln	nacenadores d	e energía.			
del equipo	donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	TTIK	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Transformadores	499	37,5	1	2,033	0,0353	0,0717	2,6882	37,5	1,00	2,033	2,033	0,0353	0,0717	2,6882
Fusible	Transformadores	499	37,5	1	4,683	0,0353	0,1651	6,1923	37,5	1,00	4,683	4,683	0,0353	0,1651	6,1923
Fusible	Transformadores	499	37,5	1	1,766	0,0353	0,0623	2,3352	37,5	1,00	1,766	1,766	0,0353	0,0623	2,3352
Fusible	Transformadores	499	37,5	1	1,149	0,0353	0,0405	1,5193	37,5	1,00	1,149	1,149	0,0353	0,0405	1,5193
Fusible	Transformadores	499	37	1	2,366	0,0348	0,0823	3,0457	37	1,00	2,366	2,366	0,0348	0,0823	3,0457
Fusible	Transformadores	874	15	29	3,5	0,0141	0,0494	0,7405	15	29,00	3,5	3,5	0,0141	0,0494	0,7405
Fusible	Transformadores	874	15	29	2,4	0,0141	0,0339	0,5078	15	29,00	2,4	2,4	0,0141	0,0339	0,5078
Fusible	Red de media tensión	1442	1063,5	830	0,983	1,0000	0,9830	1045,4205	137,25	482,50	0,25	0,4915	0,5645	0,3826	783,9371

			Tra	amo N° 3 (Autonomía	de 15 minutos)				
	S	iin almacenadores				Con alma	cenadores		
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla
1.2042	1.4881	1062.449	111.62	2.36	0.7686	0.8877	800.5699	68.0	0.9194

Anexo XXXIII: Tramo N° 3 con autonomía de 30 minutos.

01.11			Sin la introducción de	los almacenado	res de energí	a			Con la introducción de	los almacenadores	de energía.				
Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Transformadores	499	37,5	1	2,033	0,0353	0,0717	2,6882	37,5	1,00	2,033	2,033	0,0353	0,0717	2,6882
Fusible	Transformadores	499	37,5	1	4,683	0,0353	0,1651	6,1923	37,5	1,00	4,683	4,683	0,0353	0,1651	6,1923
Fusible	Transformadores	499	37,5	1	1,766	0,0353	0,0623	2,3352	37,5	1,00	1,766	1,766	0,0353	0,0623	2,3352
Fusible	Transformadores	499	37,5	1	1,149	0,0353	0,0405	1,5193	37,5	1,00	1,149	1,149	0,0353	0,0405	1,5193
Fusible	Transformadores	499	37	1	2,366	0,0348	0,0823	3,0457	37	1,00	2,366	2,366	0,0348	0,0823	3,0457
Fusible	Transformadores	874	15	29	3,5	0,0141	0,0494	0,7405	15	29,00	3,5	3,5	0,0141	0,0494	0,7405
Fusible	Transformadores	874	15	29	2,4	0,0141	0,0339	0,5078	15	29,00	2,4	2,4	0,0141	0,0339	0,5078
Fusible	Red de media tensión	1442	1063,5	830	0,983	1,0000	0,9830	1045,4205	137,25	482,50	0,5	0,4915	0,5645	0,2738	522,5028

			Tra	mo N° 3 (Autonomía	de 30 minutos)				
	S	in almacenadores			Con alma	cenadores			
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	ТТІК	ENS	Usuarios sin servicio	Duración de la falla
1.2042	1.4881	1062.449	111.62	2.36	0.7686	0.7789	539.5316	68	0.9194

Anexo XXXIV: Tramo N° 3 con autonomía de 60 minutos (1h).

Código		Tipo de	Sin la	introducción de	e los almacena	adores de	energía.			Con la intro	ducción de los alm	acenadores de e	nergía.		
del equipo	Instalación donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттк	ENS (kWh)
Fusible	Transformadores	499	37,5	1	2,033	0,0353	0,0717	2,6882	37,5	1,00	2,033	2,033	0,0353	0,0717	2,6882
Fusible	Transformadores	499	37,5	1	4,683	0,0353	0,1651	6,1923	37,5	1,00	4,683	4,683	0,0353	0,1651	6,1923
Fusible	Transformadores	499	37,5	1	1,766	0,0353	0,0623	2,3352	37,5	1,00	1,766	1,766	0,0353	0,0623	2,3352
Fusible	Transformadores	499	37,5	1	1,149	0,0353	0,0405	1,5193	37,5	1,00	1,149	1,149	0,0353	0,0405	1,5193
Fusible	Transformadores	499	37	1	2,366	0,0348	0,0823	3,0457	37	1,00	2,366	2,366	0,0348	0,0823	3,0457
Fusible	Transformadores	874	15	29	3,5	0,0141	0,0494	0,7405	15	29,00	3,5	3,5	0,0141	0,0494	0,7405
Fusible	Transformadores	874	15	29	2,4	0,0141	0,0339	0,5078	15	29,00	2,4	2,4	0,0141	0,0339	0,5078
Fusible	Red de media tensión	1442	1063,5	830	0,983	1,0000	0,9830	1045,4205	137,25	135,00	0,983	0,4915	0,1291	0,1269	17,4117

Autonomía de 60 minutos)

			Tr	amo N° 3 (Autonomía	de 30 minutos)				
	4	Sin almacenadores				Con alma	cenadores		
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	ТТІК	ENS	Usuarios sin servicio	Duración de la falla
1.2042	1.4881	1062.449	111.62	2.36	0.3331	0.6920	34.4405	24.75	0.9194

Anexo XXXV: Tramo N° 3 tabla resumen de índices con diferentes autonomías.

		Tabla resumen del Tramo N° 2		
Descripción	FMIK	ттік	ENS (kWh)	Usuarios sin servicio
Índices en el estado actual del alimentador	1.2042	1.4881	1062.449	111.62
Índices con autonomía de las baterías de 15 min.	0.7686	0.8877	800.5699	68.0
Índices con autonomía de las baterías de 30 min.	0.7686	0.7789	539.5316	68
Índices con autonomía de las baterías de 60 min.	0.3331	0.6920	34.4405	24.75

Anexo XXXVI: Tramo N° 4 con autonomía de 15 minutos.

Código	Instalación donde se	Tipo de	Sin la introducción de	los almacenado	res de energía	а.			Con la introducción de	los almacenadores	de energía.				
del equipo	presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттк	ENS (kWh)
Fusible	Transformadores	4064	10	43	1,2	0,0174	0,0209	0,2087	10	43	1,2	0,6	0,0174	0,0209	0,2087
Fusible	Red de media tensión	1612	570	692	2,033	0,9913	2,0153	1148,7334	275	508,5	0,25	1,0165	0,7348	0,9435	1040,3530
Fusible	Red de media tensión	1612	570	692	0,416	0,9913	0,4124	235,0581	275	508,5	0,25	0,208	0,7348	0,1421	126,6777
Fusible	Red de media tensión	1612	570	692	3,166	0,9913	3,1385	1788,9277	275	508,5	0,25	1,583	0,7348	1,5051	1680,5472
Fusible	Red de media tensión	1612	570	692	0,716	0,9913	0,7098	404,5711	275	508,5	0,25	0,358	0,7348	0,2908	296,1907
Fusible	Red de media tensión	1612	570	692	2,366	0,9913	2,3454	1336,8929	275	508,5	0,25	1,183	0,7348	1,1086	1228,5124

Fusible	Red de media tensión	1612	570	692	1,833	0,9913	1,8171	1035,7247	275	508,5	0,25	0,9165	0,7348	0,8444	927,3443
Fusible	Transformadores	4405	25	56	1,3	0,0435	0,0565	1,4130	25	56	1,3	1,3	0,0435	0,0565	1,4130
Fusible	Transformadores	4405	25	56	3,65	0,0435	0,1587	3,9674	25	56	3,65	3,65	0,0435	0,1587	3,9674
Fusible	Transformadores	4405	25	56	1,133	0,0435	0,0493	1,2315	25	56	1,133	1,133	0,0435	0,0493	1,2315
Fusible	Transformadores	4405	25	56	1,216	0,0435	0,0529	1,3217	25	56	1,216	1,216	0,0435	0,0529	1,3217
Fusible	Transformadores	4405	25	56	0,55	0,0435	0,0239	0,5978	25	56	0,55	0,55	0,0435	0,0239	0,5978
Fusible	Transformadores	4405	37,5	56	2,1	0,0652	0,1370	5,1359	37,5	56	2,1	2,1	0,0652	0,1370	5,1359
Fusible	Transformadores	4405	37,5	56	0,566	0,0652	0,0369	1,3842	37,5	56	0,566	0,566	0,0652	0,0369	1,3842
Fusible	Transformadores	4405	25	56	5,033	0,0435	0,2188	5,4707	25	56	5,033	5,033	0,0435	0,2188	5,4707
Fusible	Transformadores	4406	15	31	1,933	0,0261	0,0504	0,7564	15	31	1,933	1,933	0,0261	0,0504	0,7564
Fusible	Transformadores	4407	25	52	1,316	0,0435	0,0572	1,4304	25	52	1,316	1,316	0,0435	0,0572	1,4304
Fusible	Transformadores	4407	25	52	0,716	0,0435	0,0311	0,7783	25	52	0,716	0,716	0,0435	0,0311	0,7783
Fusible	Transformadores	6720	10	52	3,583	0,0174	0,0623	0,6231	10	52	3,583	3,583	0,0174	0,0623	0,6231

			Tr	amo N° 4 (Autonomía	de 15 minutos)				
	9	Sin almacenadores				Con alma	acenadores		
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla
6.487	11.394	5974.227	254.21	1.832	4.94	5.79	5323.944	196	1.5243

Anexo XXXVII: Tramo N° 4 con autonomía de 30 minutos.

Código		Tipo de	Sin la introducción de	los almacenado	res de energía	а.			Con la introducción de	los almacenadores	de energía.				
del equipo	Instalación donde se presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттк	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Transformadores	4064	10	43	1,2	0,0174	0,0209	0,2087	10	43	1,2	0,6	0,0174	0,0209	0,2087
Fusible	Red de media tensión	1612	570	692	2,033	0,9913	2,0153	1148,7334	275	508,5	0,5	1,0165	0,7348	0,8794	931,9725
Fusible	Red de media tensión	1612	570	692	0,416	0,9913	0,4124	235,0581	275	325	0,416	0,416	0,4783	0,1990	54,7130
Fusible	Red de media tensión	1612	570	692	3,166	0,9913	3,1385	1788,9277	275	508,5	0,5	1,583	0,7348	1,4410	1572,1668

Fusible	Red de media tensión	1612	570	692	0,716	0,9913	0,7098	404,5711	275	508,5	0,5	0,5	0,7348	0,2266	187,8103
Fusible	Red de media tensión	1612	570	692	2,366	0,9913	2,3454	1336,8929	275	508,5	0,5	0,5	0,7348	1,0445	1120,1320
Fusible	Red de media tensión	1612	570	692	1,833	0,9913	1,8171	1035,7247	275	508,5	0,5	0,9165	0,7348	0,7803	818,9638
Fusible	Transformadores	4405	25	56	1,3	0,0435	0,0565	1,4130	25	56	1,3	1,3	0,0435	0,0565	1,4130
Fusible	Transformadores	4405	25	56	3,65	0,0435	0,1587	3,9674	25	56	3,65	3,65	0,0435	0,1587	3,9674
Fusible	Transformadores	4405	25	56	1,133	0,0435	0,0493	1,2315	25	56	1,133	1,133	0,0435	0,0493	1,2315
Fusible	Transformadores	4405	25	56	1,216	0,0435	0,0529	1,3217	25	56	1,216	1,216	0,0435	0,0529	1,3217
Fusible	Transformadores	4405	25	56	0,55	0,0435	0,0239	0,5978	25	56	0,55	0,55	0,0435	0,0239	0,5978
Fusible	Transformadores	4405	37,5	56	2,1	0,0652	0,1370	5,1359	37,5	56	2,1	2,1	0,0652	0,1370	5,1359
Fusible	Transformadores	4405	37,5	56	0,566	0,0652	0,0369	1,3842	37,5	56	0,566	0,566	0,0652	0,0369	1,3842
Fusible	Transformadores	4405	25	56	5,033	0,0435	0,2188	5,4707	25	56	5,033	5,033	0,0435	0,2188	5,4707
Fusible	Transformadores	4406	15	31	1,933	0,0261	0,0504	0,7564	15	31	1,933	1,933	0,0261	0,0504	0,7564
Fusible	Transformadores	4407	25	52	1,316	0,0435	0,0572	1,4304	25	52	1,316	1,316	0,0435	0,0572	1,4304
Fusible	Transformadores	4407	25	52	0,716	0,0435	0,0311	0,7783	25	52	0,716	0,716	0,0435	0,0311	0,7783
Fusible	Transformadores	6720	10	52	3,583	0,0174	0,0623	0,6231	10	52	3,583	3,583	0,0174	0,0623	0,6231

			Tra	mo N° 4 (Autonomía	de 30 minutos)						
	S	in almacenadores		Con almacenadores							
FMIK	ттік	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla		
6.487	11.394	5974.227	254.21	1.832	4.691	5.526	4710.77	186	1.506		

Anexo XXXVIII: Tramo N° 4 con autonomía de 60 minutos (1h).

Código		Tino do	Sin la introducción de	los almacenado	res de energí	а.			Con la introducción de	los almacenadores	de energía.				
del equipo Instalación donde se presentó la falla.	Tipo de protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Autonomía de 15 MIN (h.)	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)	
Fusible	Transformadores	4064	10	43	1,2	0,0174	0,0209	0,2087	10	43	1,2	1,2	0,0174	0,0209	0,2087
Fusible	Red de media tensión	1612	570	692	2,033	0,9913	2,0153	1148,7334	275	508,5	1	1,0165	0,7348	0,7511	715,2117

Fusible	Red de media tensión	1612	570	692	0,416	0,9913	0,4124	235,0581	275	325	0,416	0,416	0,4783	0,1990	54,7130
Fusible	Red de media tensión	1612	570	692	3,166	0,9913	3,1385	1788,9277	275	508,5	1	1,583	0,7348	1,3127	1355,4059
Fusible	Red de media tensión	1612	570	692	0,716	0,9913	0,7098	404,5711	275	325	0,716	0,716	0,4783	0,3424	94,1696
Fusible	Red de media tensión	1612	570	692	2,366	0,9913	2,3454	1336,8929	275	508,5	1	1,183	0,7348	0,9162	903,3711
Fusible	Red de media tensión	1612	570	692	1,833	0,9913	1,8171	1035,7247	275	508,5	1	0,9165	0,7348	0,6520	602,2030
Fusible	Transformadores	4405	25	56	1,3	0,0435	0,0565	1,4130	25	56	1,3	1,3	0,0435	0,0565	1,4130
Fusible	Transformadores	4405	25	56	3,65	0,0435	0,1587	3,9674	25	56	3,65	3,65	0,0435	0,1587	3,9674
Fusible	Transformadores	4405	25	56	1,133	0,0435	0,0493	1,2315	25	56	1,133	1,133	0,0435	0,0493	1,2315
Fusible	Transformadores	4405	25	56	1,216	0,0435	0,0529	1,3217	25	56	1,216	1,216	0,0435	0,0529	1,3217
Fusible	Transformadores	4405	25	56	0,55	0,0435	0,0239	0,5978	25	56	0,55	0,55	0,0435	0,0239	0,5978
Fusible	Transformadores	4405	37,5	56	2,1	0,0652	0,1370	5,1359	37,5	56	2,1	2,1	0,0652	0,1370	5,1359
Fusible	Transformadores	4405	37,5	56	0,566	0,0652	0,0369	1,3842	37,5	56	0,566	0,566	0,0652	0,0369	1,3842
Fusible	Transformadores	4405	25	56	5,033	0,0435	0,2188	5,4707	25	56	5,033	5,033	0,0435	0,2188	5,4707
Fusible	Transformadores	4406	15	31	1,933	0,0261	0,0504	0,7564	15	31	1,933	1,933	0,0261	0,0504	0,7564
Fusible	Transformadores	4407	25	52	1,316	0,0435	0,0572	1,4304	25	52	1,316	1,316	0,0435	0,0572	1,4304
Fusible	Transformadores	4407	25	52	0,716	0,0435	0,0311	0,7783	25	52	0,716	0,716	0,0435	0,0311	0,7783
Fusible	Transformadores	6720	10	52	3,583	0,0174	0,0623	0,6231	10	52	3,583	3,583	0,0174	0,0623	0,6231

			Ti	ramo N° 4 (Autonomía	a de 60 minutos)					
		Sin almacenadores			Con almacenadores					
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	
6.487	11.394	5974.227	254.21	1.832	4.4348	5.1294	3749.393	176.94	1.5488	

Anexo XXXIX: Tramo N° 4 tabla resumen de indices con diferentes autonomías.

		Tabla resumen del Tramo N° 4		
Descripción	FMIK	ттік	ENS (kWh)	Usuarios sin servicio

Índices en el estado actual del alimentador	6.487	11.394	5974.227	254.21
Índices con autonomía de las baterías de 15 min.	4.94	5.79	5323.944	196
Índices con autonomía de las baterías de 30 min.	4.691	5.526	4710.77	186
Índices con autonomía de las baterías de 60 min.	4.4348	5.1294	3749.393	176.94

Anexo XL: Tramo N° 5 índices en su estado actual.

Código	Instalación donde se	Tipo de	Sin	la introducción d	e los almacenado	ores de energ	gía.	
del equipo	presentó la falla.	protección que actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)
Fusible	Red de media tensión	2464	165	179	3,483	0,5593	1,9481	321,4396
Fusible	Red de media tensión	2559	5	10	3,116	0,0169	0,0528	0,2641
Fusible	Red de media tensión	2559	79	10	2,166	0,2678	0,5800	45,8237
Fusible	Red de media tensión	2560	95	125	7,166	0,3220	2,3077	219,2310
Fusible	Red de media tensión	2560	81	125	15,333	0,2746	4,2101	341,0163
Fusible	Red de media tensión	2560	45	125	2,499	0,1525	0,3812	17,1542
Fusible	Transformadores	554	10	27	3,016	0,0339	0,1022	1,0224
Fusible	Transformadores	556	5	8	3,766	0,0169	0,0638	0,3192
Fusible	Transformadores	2423	5	14	21,766	0,0169	0,3689	1,8446
Fusible	Transformadores	2423	15	14	5,833	0,0508	0,2966	4,4489
Fuisble	Transformadores	2423	5	14	9,666	0,0169	0,1638	0,8192
Fusible	Transformadores	3253	5	13	4,049	0,0169	0,0686	0,3431
Fusible	Transformadores	3253	5	13	1,866	0,0169	0,0316	0,1581
Fusible	Transformadores	3253	5	13	2,416	0,0169	0,0409	0,2047
Fusible	Transformadores	5313	10	3	4,583	0,0339	0,1554	1,5536
Fusible	Transformadores	5315	10	13	3	0,0339	0,1017	1,0169
Fusible	Transformadores	6624	10	8	7,799	0,0339	0,2644	2,6437
Fusible	Transformadores	8445	5	5	6,149	0,0169	0,1042	0,5211

			Tramo N	5 (Autonomía de	15 - 30 - 60 minutos)				
	Si	n almacenadores				Con alma	acenadores		
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla
1.8983	11.2422	959.8244	40	1.8983	1.8983	11.2422	959.8244	40	1.8983

Anexo XLI: Tramo N° 6 índices de confiabilidad.

Código del	Instalación donde se presentó	Tipo de protección que		Sin la introducción de los almac	enadores de energía.			
equipo	M MIM.	actuó	Potencia nominal fuera de servicio (kVA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	TTIK	ENS (kWh)
Fusible	Red de media tensión	1444	65	447	7,75	0,1466	1,1359	73,8303
Fusible	Red de media tensión	1444	150	447	6,033	0,3382	2,0405	306,0710
Fusible	Red de media tensión	1444	200	447	6,799	0,4510	3,0661	613,2131
Fusible	Red de media tensión	1444	250	447	6,616	0,5637	3,7294	932,3563
Fusible	Red de media tensión	1447	200	140	1,35	0,4510	0,6088	121,7587
Fusible	Red de media tensión	1447	195	140	6,016	0,4397	2,6451	515,8025
Fusible	Red de media tensión	1447	73	140	4,483	0,1646	0,7379	53,8668
Fusible	Transformadores	1487	10	15	2,233	0,0225	0,0503	0,5035
Fusible	Transformadores	3936	10	12	0,916	0,0225	0,0207	0,2065
Fusible	Transformadores	5476	10	12	10,883	0,0225	0,2454	2,4539
Fusible	Transformadores	5476	10	12	2,883	0,0225	0,0650	0,6501
Fusible	Transformadores	5476	10	12	1,933	0,0225	0,0436	0,4359
Fusible	Transformadores	5476	10	12	2,183	0,0225	0,0492	0,4922
Fusible	Transformadores	5476	10	12	2,383	0,0225	0,0537	0,5373
Fusible	Transformadores	5476	10	12	0,716	0,0225	0,0161	0,1614
Fusible	Transformadores	5476	10	12	1,599	0,0225	0,0361	0,3605
Fusible	Transformadores	5476	10	12	1,699	0,0225	0,0383	0,3831
Fusible	Transformadores	5476	10	12	1,133	0,0225	0,0255	0,2555
Fusible	Transformadores	5785	15	20	0,766	0,0338	0,0259	0,3886
Fusible	Transformadores	6635	10	8	0,916	0,0225	0,0207	0,2065
Fusible	Transformadores	6635	10	8	0,533	0,0225	0,0120	0,1202
Fusible	Transformadores	6635	10	8	1,916	0,0225	0,0432	0,4320
Fuisble	Transformadores	6635	10	8	3,016	0,0225	0,0680	0,6800
Fusible	Transformadores	8101	10	6	2,299	0,0225	0,0518	0,5184
Fusible	Transformadores	10124	75	1	2,15	0,1691	0,3636	27,2689
Fusible	Transformadores	10785	50	68	1,616	0,1127	0,1822	9,1094
Fusible	Transformadores	10785	50	68	1	0,1127	0,1127	5,6370

			Tramo !	N° 6 (Autonomía de	15 - 30 - 60 minutos)				
	S	in almacenadores				Con alm:	acenadores		
FMIK	ттік	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla
3.3439	15.4879	2667.6996	94	3.034	3.3439	15.4879	2667.6996	94	3.034

Anexo XLII: Tramo N° 7 índices de confiabilidad.

								1				
Código del equipo	Instalación donde se presentó la falla.	Tipo de protección que actuó	Sin la introducción de los almacenadores de energía.									
			Potencia nominal fuera de servicio (k VA)	Usuarios sin servicio	Tiempo de duración de la falla (h.)	FMIK	ттік	ENS (kWh)				
Fusible	Red de media tensión	2357	180	465	2,366	0,3098	0,7330	131,9422				
Fusible	Red de media tensión	4410	450	631	4,583	0,7745	3,5497	1597,3451				
Fusible	Red de media tensión	4410	870	631	5	1,4974	7,4871	6513,7694				
Fusible	Red de media tensión	4410	175	631	2,116	0,3012	0,6373	111,5361				
Fusible	Red de media tensión	4410	610	631	0,683	1,0499	0,7171	437,4256				
Fusible	Red de media tensión	4410	546,66	631	2,916	0,9409	2,7436	1499,8436				
Fusible	Red de media tensión	4432	15	27	2,016	0,0258	0,0520	0,7807				
Fusible	Red de media tensión	4433	62	136	2,516	0,1067	0,2685	16,6463				
Fusible	Transformadores	1732	10	19	2,933	0,0172	0,0505	0,5048				
Fusible	Transformadores	1732	10	19	6,016	0,0172	0,1035	1,0355				
Fusible	Transformadores	1732	10	19	4,333	0,0172	0,0746	0,7458				
Fusible	Transformadores	1796	15	28	1,15	0,0258	0,0297	0,4454				
Fusible	Transformadores	1796	15	28	4,466	0,0258	0,1153	1,7295				
Fusible	Transformadores	1796	15	28	1,049	0,0258	0,0271	0,4062				
Fusible	Transformadores	1796	15	28	1,733	0,0258	0,0447	0,6711				
Fusible	Transformadores	3182	15	20	1,566	0,0258	0,0404	0,6065				
Fusible	Transformadores	3646	10	16	2,85	0,0172	0,0491	0,4905				

Fusible	Transformadores	4409	15	37	0,528472222	0,0258	0,0136	0,2047
Fusible	Transformadores	4409	15	37	0,559027778	0,0258	0,0144	0,2165
Fusible	Transformadores	4483	25	47	1,316	0,0430	0,0566	1,4157
Fusible	Transformadores	4483	25	47	0,583	0,0430	0,0251	0,6272
Fusible	Transformadores	4803	10	26	0,583	0,0172	0,0100	0,1003
Fusible	Transformadores	5841	30	29	1,15	0,0516	0,0594	1,7814
Fusible	Transformadores	7089	15	18	2,483	0,0258	0,0641	0,9616
Fusible	Transformadores	7692	10	80	1,116	0,0172	0,0192	0,1921
Fusible	Transformadores	7992	10	80	4,683	0,0172	0,0806	0,8060
Fusible	Transformadores	8371	50	67	1	0,0861	0,0861	4,3029
Fusible	Transformadores	8611	5	12	0,666	0,0086	0,0057	0,0287
Fusible	Transformadores	10250	15	24	0,7	0,0258	0,0181	0,2711
Fusible	Transformadores	10250	15	24	0,849	0,0258	0,0219	0,3288
Fusible	Transformadores	10664	10	21	0,933	0,0172	0,0161	0,1606
Fusible	Transformadores	11152	25	24	2,166	0,0430	0,0932	2,3300
Fusible	Transformadores	11408	25	47	3,549	0,0430	0,1527	3,8178

Tramo N° 7 (Autonomía de 15 - 30 - 60 minutos)													
Sin almacenadores					Con almacenadores								
FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla	FMIK	TTIK	ENS	Usuarios sin servicio	Duración de la falla				
5.7206	17.4602	10333.4696	140	2.156	5.7206	17.4602	10333.4696	140	2.156				

Anexo XLIII: Datos de los costos, para el análisis económico de los sistemas de almacenamiento.

Precios de transformador para 200 kVA.

Trifásicos serie 15 kV Voltaje en el lado de BT. Descripción Precios en Voltaje en el lado AT. Voltios KVA del producto Código COP sin IVA Voltios BA PG En Vacío Plena carga 15 SDT UBA 00XX \$7.456.000 30 UBB 00XX \$ 9.051.000 SDT 13.800 - 13.200 208-120 214-124 \$11.237.000 45 SDT UBC 00XX 228-132 220-127 75 SDT UBD 00XX \$14.079.000 440-254 460-266 112.5 \$ 18.067.000 11.400 - 7.620 460-266 480-277 SDT UBE 00XX 150 SDT UBF 00XX \$22.524.000 225 SDT UBG 00XX \$ 26.655.000

Fuente [18]

Precios de transformadores desde 300 kVA.

Transformadores de distribución trifásicos serie 15 y 34.5 kV

Trifásicos serie 15 kV

Voltaje en el lado	Voltaje en el lad	o de BT. Voltios	LCV A	Descripción	011	Precios en	
de AT. Voltios	Plena carga	En Vacío	KVA	del producto BA PG	Código	COP sin IVA	
13.800 – 13.200 11.400 – 7.620	208-120 220-127 440-254 460-266	214-124 228-132 460-266 480-277	300	MDT	UBH 00XX	\$ 31.960.000	
			400	MDT	UBI 00XX	\$ 42.030.000	
			500	MDT	UBJ 00XX	\$ 50.108.00	
			630	MDT	UCA 00XX	\$ 58.192.00	
			800	MDT	UCC 00XX	\$ 71.999.00	
			1.000	MDT	UCD 00XX	\$ 82.215.00	
			1.250	MDT	UCE 00XX	\$ 95.892.00	
			1.500	MDT	UCE 00XX	\$ 104.387.00	
			1.600	MDT	UCE 00XX	\$ 129.121.00	
			2.000	MDT	UCJ 00XX	\$ 152.121.00	
			2.500	MDT	UCJ 00XX	\$ 183.670.00	
			3.000	MDT	UCJ 00XX	\$ 222.286.00	

Fuente [18]