

UNIVERSIDAD TECNICA DE COTOPAXI

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES INGENIERIA EN MEDIO AMBIENTE

PROYECTO DE INVESTIGACION

"ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018"

Proyecto de Investigación presentado previo a la obtención del Título de Ingeniera en Medio Ambiente

Autor:

Bayas Vizcaíno Jessica Lorena

Tutor:

Ing. Lara Landázuri Renán Arturo

Latacunga – Ecuador Febrero 2019 DECLARACIÓN DE AUTORÍA

Yo BAYAS VIZCAINO JESSICA LORENA declaro ser autora del presente proyecto de

investigación: "ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE

AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO,

PROVINCIA DE COTOPAXI, PERIODO 2018", siendo el ING. RENAN LARA tutor del

presente trabajo; y eximo expresamente a la UNIVERSIDAD TÉCNICA DE COTOPAXI y

a sus representantes legales de posibles reclamos o acciones legales.

Además, certifico que las ideas, conceptos, procedimientos y resultados vertidos en el presente

trabajo investigativo, son de mi exclusiva responsabilidad.

BAYAS VIZCAINO JESSICA LORENA

C.I. 180450197-9

II

CONTRATO DE CESIÓN NO EXCLUSIVA DE DERECHOS DE AUTOR

Comparecen a la celebración del presente instrumento de cesión no exclusiva de obra, que celebran de una parte **BAYAS VIZCAINO JESSICA LORENA**, identificada/o con C.C. N°**180450197-9**, de estado civil **SOLTERA** y con domicilio en la Provincia de Tungurahua, Cantón Ambato, Av. Galo Vela y Gran Colombia, a quien en lo sucesivo se denominará **LA CEDENTE**; y, de otra parte, el Ing. MBA. Cristian Fabricio Tinajero Jiménez, en calidad de Rector y por tanto representante legal de la Universidad Técnica de Cotopaxi, con domicilio en la Av. Simón Rodríguez Barrio El Ejido Sector San Felipe, a quien en lo sucesivo se le denominará **LA CESIONARIA** en los términos contenidos en las cláusulas siguientes:

ANTECEDENTES: CLÁUSULA PRIMERA. - LA/EL CEDENTE es una persona natural estudiante de la carrera de INGENIERIA EN MEDIO AMBIENTE, titular de los derechos patrimoniales y morales sobre el trabajo de grado de titulación de Proyecto de Investigación la cual se encuentra elaborada según los requerimientos académicos propios de la Facultad según las características que a continuación se detallan:

Historial académico. - (abril 2014 – febrero 2019).

Aprobación HCA:

Tutor. - (Ing. Renán Lara Landázuri).

Tema: "ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018"

CLÁUSULA SEGUNDA. - LA CESIONARIA es una persona jurídica de derecho público creada por ley, cuya actividad principal está encaminada a la educación superior formando profesionales de tercer y cuarto nivel normada por la legislación ecuatoriana la misma que establece como requisito obligatorio para publicación de trabajos de investigación de grado en su repositorio institucional, hacerlo en formato digital de la presente investigación.

CLÁUSULA TERCERA. - Por el presente contrato, LA CEDENTE autoriza a LA CESIONARIA a explotar el trabajo de grado en forma exclusiva dentro del territorio de la República del Ecuador.

CLÁUSULA CUARTA. - OBJETO DEL CONTRATO: Por el presente contrato **LA CEDENTE**, transfiere definitivamente a **LA CESIONARIA** y en forma exclusiva los siguientes derechos patrimoniales; pudiendo a partir de la firma del contrato, realizar, autorizar o prohibir:

- a) La reproducción parcial del trabajo de grado por medio de su fijación en el soporte informático conocido como repositorio institucional que se ajuste a ese fin.
- b) La publicación del trabajo de grado.
- c) La traducción, adaptación, arreglo u otra transformación del trabajo de grado con fines académicos y de consulta.
- d) La importación al territorio nacional de copias del trabajo de grado hechas sin autorización del titular del derecho por cualquier medio incluyendo mediante transmisión.
- f) Cualquier otra forma de utilización del trabajo de grado que no está contemplada en la ley como excepción al derecho patrimonial.

CLÁUSULA QUINTA. - El presente contrato se lo realiza a título gratuito por lo que **LA CESIONARIA** no se halla obligada a reconocer pago alguno en igual sentido **LA CEDENTE** declara que no existe obligación pendiente a su favor.

CLÁUSULA SEXTA. - El presente contrato tendrá una duración indefinida, contados a partir de la firma del presente instrumento por ambas partes.

CLÁUSULA SÉPTIMA. - CLÁUSULA DE EXCLUSIVIDAD. - Por medio del presente contrato, se cede en favor de LA CESIONARIA el derecho a explotar la obra en forma exclusiva, dentro del marco establecido en la cláusula cuarta, lo que implica que ninguna otra persona incluyendo LA CEDENTE podrá utilizarla.

CLÁUSULA OCTAVA. - LICENCIA A FAVOR DE TERCEROS. - LA CESIONARIA podrá licenciar la investigación a terceras personas siempre que cuente con el consentimiento de LA CEDENTE en forma escrita.

CLÁUSULA NOVENA. - El incumplimiento de la obligación asumida por las partes en la cláusula cuarta, constituirá causal de resolución del presente contrato. En consecuencia, la

resolución se producirá de pleno derecho cuando una de las partes comunique, por carta notarial, a la otra que quiere valerse de esta cláusula.

CLÁUSULA DÉCIMA. - En todo lo no previsto por las partes en el presente contrato, ambas se someten a lo establecido por la Ley de Propiedad Intelectual, Código Civil y demás del sistema jurídico que resulten aplicables.

CLÁUSULA UNDÉCIMA. - Las controversias que pudieran suscitarse en torno al presente contrato, serán sometidas a mediación, mediante el Centro de Mediación del Consejo de la Judicatura en la ciudad de Latacunga. La resolución adoptada será definitiva e inapelable, así como de obligatorio cumplimiento y ejecución para las partes y, en su caso, para la sociedad. El costo de tasas judiciales por tal concepto será cubierto por parte del estudiante que lo solicitare.

En señal de conformidad las partes suscriben este documento en dos ejemplares de igual valor y tenor en la ciudad de Latacunga, a los 15 días del mes de febrero del 2019.

Bayas Vizcaíno Jessica Lorena

LA CEDENTE

Ing. MBA. Cristian Tinajero Jiménez

EL CESIONARIO

AVAL DEL TUTOR DE PROYECTO DE INVESTIGACIÓN

En calidad de Tutor del Trabajo de Investigación sobre el título:

"ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018", de BAYAS VIZCAINO JESSICA LORENA, de la carrera de INGENIERIA EN MEDIO AMBIENTE, considero que dicho Informe Investigativo cumple con los requerimientos metodológicos y aportes científico-técnicos suficientes para ser sometidos a la evaluación del Tribunal de Validación de Proyecto que el Consejo Directivo de la Facultad de Ciencias Agropecuarias y Recursos Naturales de la Universidad Técnica de Cotopaxi designe, para su correspondiente estudio y calificación.

Latacunga, 27 de febrero del 2019

El Tutor

Ing. Renán Arturo Lara Landázuri

APROBACIÓN DEL TRIBUNAL DE TITULACIÓN

En calidad de Tribunal de Lectores, aprueban el presente Informe de Investigación de acuerdo a las disposiciones reglamentarias emitidas por la Universidad Técnica de Cotopaxi, y por la Facultad de Ciencias Agropecuarias y Recursos Naturales; por cuanto, el postulante: BAYAS VIZCAINO JESSICA LORENA con el título de Proyecto de Investigación: "ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018", han considerado las recomendaciones emitidas oportunamente y reúne los méritos suficientes para ser sometido al acto de Sustentación de Proyecto.

Por lo antes expuesto, se autoriza realizar los empastados correspondientes, según la normativa institucional.

Latacunga, 27 de febrero del 2019

Para constancia firman:

Nombre: M.Sc. Patricio Clavijo

CC: 050144458-2

Lector 2

Nombre: Dr. Polivio Moreno

CC: 050104764-1

Lector 3

Nombre: Ing. Oscar Daza CC: 040068979-0

AGRADECIMIENTO

Primeramente, agradezco a Dios por haberme dado las fuerzas, voluntad, paciencia y perseverancia necesaria para poder cumplir mis metas anheladas y estar conmigo en todos los momentos de mi vida.

A mis padres Vinicio Bayas y Blanca Vizcaíno, por haberme forjado como la persona que soy, muchos de mis logros se los debo a ustedes, por su cuidado, amor, consejos y apoyo.

Agradezco de igual manera al Departamento de agua potable y alcantarillado del GAD Municipal del Cantón Salcedo, por permitirme realizar este proyecto de investigación.

A la Universidad que me abrió las puertas y me brindo las oportunidades, para poder formarme como profesional, así como también a los diferentes docentes que me brindaron sus conocimientos y apoyo para seguir adelante.

Por último, pero no menos importante, a mis hermanos Daniel, Karen y Belén, por el apoyo que siempre me bridaron día a día en el transcurso de cada año de mi carrera universitaria.

Bayas Vizcaíno Jessica Lorena

DEDICATORIA

A quien me ha forjado mi camino y me ha dirigido por el sendero correcto, por este motivo dedico a Dios este proyecto de investigación, por estar conmigo en todo momento ayudándome día a día en mi preparación académica, eres quien guía el destino de mi vida.

Quiero dedicar este proyecto a mis padres Vinicio Bayas y Blanca Vizcaíno porque gracias a ellos he alcanzado muchas metas anheladas, por sus consejos, apoyo incondicional y paciencia. A mis hermanos Daniel, Karen y Belén, que más que hermanos son mis verdaderos amigos.

A toda mi familia Bayas Vizcaíno, que es lo mejor y lo más valioso de mi vida que Dios me ha otorgado, ya que han estado conmigo en todo momento impulsándome a cumplir mis objetivos y seguir adelante en mi vida.

Bayas Vizcaíno Jessica Lorena

UNIVERSIDAD TECNICA DE COTOPAXI

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

CARRERA DE INGENIERIA EN MEDIO AMBIENTE

TITULO: "ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018"

Autor: Bayas Vizcaíno Jessica Lorena

RESUMEN

El presente proyecto tuvo como fin caracterizar la eficiencia de funcionamiento de la planta de tratamiento de aguas residuales sector El Camal, para proponer medidas de mitigación para los impactos generados. Esta investigación se realizó por cuanto el funcionamiento se observó que no cumple con ciertos parámetros Físicos, Químicos y Biológicos. Siendo su objetivo de mejorar las descargas de aguas residuales al Río Cutuchi del alcantarillado de las zonas aledañas. Para cumplir con el objetivo se desarrolló varias actividades como: el diagnostico actual de la planta donde se identificó los problemas que presenta, seguidamente la caracterización de las aguas residuales en dos puntos (entrada y salida), que se enviaron al laboratorio. Posteriormente se realizó el cálculo de la eficiencia de la planta, determinando que tiene una eficiencia baja de 55,14%, siendo parámetros que no cumplen con los límites permisibles y otros tienen una eficiencia baja. Para finalizar la investigación se realizó el cálculo de las medidas propuestas para garantizar la reducción de la contaminación a un cuerpo de agua dulce. Para cumplir con ello se aforo el caudal, siendo el inicio del desarrollo de la toma de medidas, como los filtros lentos de arena que reducirá la presencia de coliformes fecales y solidos al igual aumentando la eficiencia de sulfatos y (DBO₅), una cámara de cloración para desinfectar el agua y descargar directamente al Río Cutuchi. Se entregó la investigación a las autoridades pertinentes que tendrán la responsabilidad e implementación de estas medidas para aumentar la eficiencia de la planta de tratamiento sector El Camal, se espera que la remoción de coliformes fecales sea de 90,75NMP/100ml, sulfatos 6,9mg/lt, solidos totales 116,8mg/lt, demanda bioquímica de oxigeno (DBO₅) 43,8mg/lt, de igual manera se espera que la eficiencia se de 90,31% aumentado en un 35,17% la eficiencia de la planta, cumpliendo con el Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

Palabras clave: Planta, Eficiencia, Caracterización, Parámetro, Diagnostico.

COTOPAXI TECHNICAL UNIVERSITY

AGRICULTURAL SCIENCES AND NATURAL RESOURCES DEPARTMENT

AVAL DE TRADUCCIÓN

En calidad de Docente del Idioma Inglés del Centro de Idiomas de la Universidad Técnica de Cotopaxi; en forma legal CERTIFICO que: La traducción del RESUMEN DEL PROYECTO DE INVESTIGACION al Idioma Inglés presentado por la señorita egresada de la Carrera de INGENIERIA EN MEDIO AMBIENTE de la FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES: BAYAS VIZCAINO JESSICA LORENA, cuyo título versa "ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018", lo realizó bajo mi supervisión y cumple con una correcta estructura gramatical del Idioma.

Es todo cuanto puedo certificar en honor a la verdad y autorizo al peticionario hacer uso del presente certificado de la manera ética que estime conveniente.

Latacunga, febrero del 2019

Atentamente.

Msc. Alison Mena Barthelotty

DOCENTE CENTRO DE IDIOMAS

C.C. 0501801252

AVAL DE TRADUCCION

INDICE

DECLARACIÓN DE AUTORÍA	II
CONTRATO DE CESIÓN NO EXCLUSIVA DE DERECHOS DE AUTOR	III
AVAL DEL TUTOR DE PROYECTO DE INVESTIGACIÓN	VI

APROBACIÓN DEL TRIBUNAL DE TITULACIÓN	VII
AGRADECIMIENTO	VIII
DEDICATORIA	VIII
RESUMEN	X
ABSTRACT	XI
AVAL DE TRADUCCION	XI
INDICE	XII
INDICE DE GRAFICOS	XIV
INDICE DE TABLAS	XV
1. INFORMACIÓN GENERAL	16
2. RESUMEN DEL PROYECTO	17
3. JUSTIFICACIÓN DEL PROYECTO	18
4. BENEFICIARIOS DEL PROYECTO	18
5. EL PROBLEMA DE INVESTIGACIÓN	19
6. OBJETIVOS	20
7. ACTIVIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS	OBJETIVOS
PLANTEADOS:	20
8. FUNDAMENTACION CIENTIFICO TECNICA	22
8.1. Aguas Residuales	22
8.1.1. Tipos de Aguas Residuales	22
8.1.2. Características de las Aguas Residuales	23
8.1.2.1. Características físicas	23
8.1.2.2. Características Químicas	25
8.2. METODOS DE AFORO	27
8.2.1. Método Hidráulico con Vertedores	27
8.2.1.1. Tipos de Vertedores	27
8.2.1.1.1. Vertedero Triangular	27
8.2.1.1.2. Vertedero Rectangular	27
8.3. EFICIENCIA PLANTA DE TRATAMIENTO	28
8.4. TRATAMIENTO DE AGUAS RESIDUALES	28
8.4.1. Diseño de Sistemas de Tratamiento	28
8.4.2. Etapas de la Planta de tratamiento	28
8.4.2.1. Pre-tratamiento o etapa pre-liminar	

8.4.2.2	2. Etapa Primaria	30
8.4.2.3	3. Etapa Secundaria	31
8.4.2.	4. Tratamientos alternos	32
9. P	REGUNTA CIENTIFICA	32
10.	METODOLOGIAS Y DISEÑO EXPERIMENTAL	32
10.1.	Aspectos Metodológicos.	32
10.2.	Protocolo	33
10.3.	Métodos y Técnicas.	34
10.4.	Diseño de medidas de remediación	35
11.	ANALISIS Y DISCUSIÓN DE RESULTADOS	35
12.	IMPACTOS (TÉCNICOS, SOCIALES, AMBIENTALES O ECONÓMICOS)	69
13.	PRESUPUESTO DEL PROYECTO	70
14.	CONCLUSIONES Y RECOMENDACIONES	70
15.	BIBLIOGRAFÍA	73
16.	ANEXOS	75
16.1.	Hoja de vida Autor	75
16.2.	Hoja de vida Tutor	76
16.3.	Resultados análisis de aguas	77
16.4.	Registro de alturas del caudal	83
16.5.	Planta de tratamiento sector El Camal	84
16.6.	Medidas Propuestas	86

INDICE DE GRAFICOS

Ilustración 1 Coliformes Totales	. 38
Ilustración 2 Aceites y Grasas	. 39
Ilustración 3 Potencial de Hidrogeno	40

Ilustración 4 Sulfatos	40
Ilustración 5 Solidos Suspendidos Totales	41
Ilustración 6 Solidos Totales	42
Ilustración 7 Demanda Química de Oxigeno	43
Ilustración 8 Demanda Bioquímica de Oxigeno	44
Ilustración 9 Diagrama del proceso de la PTAR El Camal	46
Ilustración 10 PTAR sector El Camal	84
Ilustración 11 Recolección de muestras	84
Ilustración 12 Muestras recolectadas	84
Ilustración 13 Visita in-situ y estado de los procesos de tratamiento	85
Ilustración 14 Alrededores y cerramiento de la PTAR	85
Ilustración 15 Registro de alturas del caudal	85
INDICE DE TABLAS	
Tabla 1 Criterios de diseño cribado	30
Tabla 2 Criterios de diseño sedimentador	31
Tabla 3 Resultados obtenidos en el ingreso de la PTAR sector El Camal	36
Tabla 4 Resultados obtenidos en la salida de la PTAR sector El Camal	36
Tabla 5 Altura del agua en el segmento circular	45
Tabla 6 Remoción esperada	63
Tabla 7 Cuadro comparativo de eficiencias	65
Tabla 8 Plan de ejecución de la propuesta PTAR El Camal	67

1. INFORMACIÓN GENERAL

Título del Proyecto:

ANALISIS DE EFICIENCIA DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL DEL CANTÓN SALCEDO, PROVINCIA DE COTOPAXI, PERIODO 2018

Fecha de inicio:

Abril 2018

Fecha de finalización:

Febrero 2019

Lugar de ejecución:

Barrió Augusto Dávalos-San Miguel-Salcedo-Cotopaxi-GAD Salcedo

Facultad que auspicia

Facultad de Ciencias Agropecuarias y Recursos Naturales

Carrera que auspicia:

Ingeniería en Medio Ambiente

Proyecto de investigación vinculado:

GAD Municipal del Cantón Salcedo

Equipo de Trabajo:

Ing. Carlos García (Coordinador del proyecto)

Ing. Renán Lara (Tutor del proyecto)

Bayas Vizcaíno Jessica Lorena (Autora del proyecto)

MSc. Patricio Clavijo (Lector 1)

Dr. Polivio Moreno (Lector 2)

Ing. Oscar Daza (Lector 3)

Área de Conocimiento:

Ambiente-Recursos Hídricos.

Línea de investigación:

Gestión de calidad y seguridad laboral

Sub líneas de investigación de la Carrera:

Salud, Seguridad y Ambiente

2. RESUMEN DEL PROYECTO

La presente investigación se desarrolló en el sector El Camal, barrio Augusto Dávalos, parroquia San Miguel, Cantón Salcedo, en esta zona cuenta con una planta de tratamiento de aguas residuales, recolectando todas las aguas de la red de alcantarillado de la zona oeste del cantón. El caudal saliente de esta infraestructura se vierte directamente a un cuerpo de agua dulce en este caso el Río Cutuchi. Por lo cual es de suma importancia un diagnóstico y caracterización de la eficiencia de la planta de tratamiento, esto se realizó en base a los resultados obtenidos de los análisis de aguas realizados en dos puntos de muestreo (entrada y salida). Se identificó los parámetros que no cumplen con la normativa vigente y otros que tienen una eficiencia baja. Es necesario la implementación de las medidas estipuladas para controlar y obtener un funcionamiento adecuado en el tratamiento de las aguas residuales.

El presente proyecto tiene como fin caracterizar la eficiencia de la planta y de esta manera mitigar los impactos que actualmente se generan por medio de las medidas establecidas. Primeramente, se realizó un diagnóstico de la situación actual de la planta, seguidamente de la recolección de las muestras hacer analizadas por parte de la empresa Analítica, Avanzada, Asesoría y Laboratorios (ANAVANLAB), con los resultados obtenidos se comparó con el Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce, identificando los parámetros que no cumple con los límites permisibles. Posteriormente se calculó la eficiencia general de la planta de tratamiento con los resultados del laboratorio. Finalmente se desarrolló un aforo del caudal, para continuar con el desarrollo de la propuesta con medidas factibles y se calculó la eficiencia esperada con la implementación de las medidas.

Estas medidas propuestas se esperan conseguir un efluente adecuado en base a los límites permisibles de descargas a un cuerpo de agua dulce. De esta manera el nuevo proceso mejorara el tratamiento y evitara una contaminación directa al recurso hídrico. Una vez finalizado el proyecto se entregará al Departamento de agua potable y alcantarillado del cantón Salcedo, esta dependencia tendrá una propuesta factible para solucionar los problemas generados por la planta de tratamiento y así cumplir con lo estipulado en la normativa ambiental vigente.

3. JUSTIFICACIÓN DEL PROYECTO

El proyecto es de suma importancia para determinar la eficiencia actual de la planta y de acuerdo a los resultados obtenidos proponer diferentes alternativas de mejoramiento en el proceso de tratamiento de aguas residuales, que son: Caja de retención de sólidos, Tanque Imhoff, Lecho de secado, Pantano Artificial, que no están cumpliendo las normativas ambientales vigentes, una de estas los límites máximos permisibles de descargas a cuerpos de agua dulce.

De acuerdo al Departamento agua potable y alcantarillado del GAD Municipal del Cantón Salcedo, se construyó en el año 2005, con el fin de cumplir un adecuado proceso de tratamiento de aguas residuales de los sectores aledaños anteriormente mencionados.

Por medio de esta investigación se propondrá alternativas que mejoraran la eficiencia del funcionamiento en cada uno de los procesos unitarios que tiene, mejorando la calidad de las aguas tratadas que son descargas hacia el cuerpo de agua dulce Rio Cutuchi.

Es de suma importancia el proyecto, beneficiando a la población cercana y al Camal Municipal que contara con una planta de tratamiento de calidad que garantiza un proceso de tratamiento eficiente y cumpliendo las normativas vigentes sin alterar al ambiente.

4. BENEFICIARIOS DEL PROYECTO

BENEFI	ICIARIOS	HABITANTES APROXIMADO	POBLACION 2008	POBLACION 2010
DIRECTOS	Camal Municipal, Barrio Augusto Dávalos, La Florida, La Argentina y San Andrés de Pilalo	875 hab.	748 hab.	787 hab.
INDIRECTOS	Cantón Salcedo	58.216 hab.	49.765 Hab.	51.304 Hab.

5. EL PROBLEMA DE INVESTIGACIÓN

Uno de los objetivos que plantea el Plan Nacional del Buen Vivir "Garantizar los derechos de la naturaleza, y un ambiente sano y sustentable", esto no se cumple ya que nuestro país no existe un mayor control referente a la contaminación hídrica, y esto ha llevado a que se desarrolle alteraciones a la calidad de vida de la población y del ambiente.

En el Ecuador el tratamiento de aguas residuales es un tema de vital importancia ya que la mayoría de provincias se han enfocado en la protección al recurso hídrico y el control de las descargas de aguas sin previo tratamiento, un ejemplo a nivel nacional es la provincia de Manabí, Cantón Portoviejo que tiene la mejor planta de tratamiento del país cumpliendo con las normativas ambientales vigentes.

En la provincia de Cotopaxi una de las plantas que cumple la normativa ambiental es la de Chipoalo-Salcedo, recientemente repotenciada un par de años atrás por el Departamento de agua potable y alcantarillado del GAD Municipal del Cantón Salcedo.

El Cantón Salcedo está ubicado al sur de la Provincia de Cotopaxi, en la sierra ecuatoriana, en las coordenadas 1°03′00″ de latitud Sur y 78°35′00″ de longitud Oeste, a una altura de 3513 m.s.n.m. "La mayor problemática que presenta el Cantón se refleja a nivel ambiental y económico, ya que las autoridades de turno más invierten económicamente en las plantas de potabilización para agua de consumo humano, pero olvidamos el control y tratamiento de estas mismas aguas que son utilizadas y aprovechadas de diferente manera y que son enviadas a las plantas de tratamiento de aguas residuales que no cumple sus funciones adecuadamente".

Con la investigación a desarrollarse se pretende mejorar el funcionamiento de la planta de tratamiento de aguas residuales sector El Camal del Cantón Salcedo. Esta es la principal de los sectores de esta zona oeste y El Camal Municipal del Cantón capta el 1,50% de las aguas provenientes de toda la zona. El principal problema que presenta esta planta es el mal funcionamiento en sus procesos unitarios de tratamiento incumpliendo la normativa de niveles máximos permisibles de descargas a cuerpos de agua dulce, que por ende ha generado varios problemas secundarios como son los malos olores que afecta a la salud de la población cercana, los valores altos de contaminantes biológicos procedentes del Camal Municipal que afectan a la calidad del recurso hídrico como en este caso el Río Cutuchi. Las causas son: el descuido por parte de las autoridades a cargo, el mal control de los restos biológicos generados por el Camal

Municipal del Cantón que son descargados sin un manejo adecuado, la falta de un mantenimiento a los procesos de la planta, y toda esta agua son enviadas a la planta de tratamiento que como anteriormente se mencionó está en una situación crítica en su funcionamiento.

6. OBJETIVOS

Objetivo General

 Realizar el análisis de la eficiencia actual en el funcionamiento de la planta de tratamiento de aguas residuales sector el Camal, Cantón Salcedo.

Objetivos Específicos

- Diagnosticar la situación actual de la planta de tratamiento.
- Determinar los parámetros (Físicos, Químicos y Biológicos) de los puntos de muestreo y comparar con la normativa vigente.
- Proponer alternativas de mejora, para el funcionamiento adecuado de la planta de tratamiento de aguas residuales.

7. ACTIVIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS OBJETIVOS			
PLANTEADOS:			
Diagnosticar la	Se realizó vistas in-situ a	Se identificó los	Mediante la técnica de
situación actual de la	la planta para evaluar su	diferentes procesos que	observación permitió
planta de tratamiento	situación actual	cumple la planta en el	evaluar y diagnosticar
		tratamiento de aguas	la situación en que se
		residuales	encuentra la planta
	Se realizó el muestro de	Se identificó los	Mediante el método de
	agua en base a la	resultados de los	análisis realizado se
	normativa NTE INEN	parámetros físicos,	determinó los
	2169 de los dos puntos	químicos y biológicos	parámetros analizados
	entrada y salida de la		por el muestreo de agua
	PTAR conjuntamente	Con los resultados	
		obtenidos de los	

Determinar los parámetros (Físicos, Químicos y Biológicos) de los puntos de	ANAVANLAB Se realizó la comparación con la Ley	o no con los límites permisibles del Acuerdo Ministerial	deductivo e inductivo se determinó el
muestreo y comparar con la normativa vigente		Mediante la fórmula establecida de la	comparación de los parámetros analizados
funcionamiento adecuado de la planta	mediante segmento circular para determinar el caudal de entrada Se desarrolló los cálculos	respectivo del caudal para dimensionar las medidas propuestas Por medio de estas medidas propuestas se espera cumplir con un funcionamiento adecuada de la planta y un efluente que cumpla con la normativa	propuestas viables en base de las actividades realizadas anteriormente. Por ende estas propuestas están conformadas por

Se	espera	demostrar	sus	niveles	dentro	de
que	las	propuestas	los	límites	permisil	bles
pres	sentadas	son viables	esti	pulados.		
des	de el pu	nto de vista				
técr	ico por	medio de la				
efic	iencia e	sperada				
	que pres desc técn	que las presentadas desde el pu técnico por	que las propuestas presentadas son viables desde el punto de vista	que las propuestas los presentadas son viables esti desde el punto de vista técnico por medio de la	que las propuestas los límites presentadas son viables estipulados. desde el punto de vista técnico por medio de la	que las propuestas los límites permisil presentadas son viables desde el punto de vista técnico por medio de la

8. FUNDAMENTACION CIENTIFICO TECNICA

8.1. Aguas Residuales

Las aguas residuales son aguas que ya han sido empleadas en las diferentes actividades que los seres humanos ejercen, las cuales contienen una gran cantidad de sustancias contaminantes. Existen diversos tipos de aguas residuales y son clasificadas según su origen y el nivel de contaminación que presenten debido a que cada tipo requiere un proceso de tratamiento diferente. Las aguas residuales necesitan un especial tratamiento para reducir la contaminación, evitar riesgos para la salud y el Medio Ambiente. (ODIAGA, 2014)

8.1.1. Tipos de Aguas Residuales

- Aguas residuales domésticas o aguas negras: Son aquellas de origen residencial y comercial que contienen desechos fisiológicos, entre otros, provenientes de la actividad humana, y deben ser dispuestas adecuadamente. (FIBRAS Y NORMAS, 2004)
- Aguas residuales municipales: Son aquellas aguas residuales domésticas que pueden estar mezcladas con aguas de drenaje pluvial o con aguas residuales de origen industrial previamente tratadas, para ser admitidas en los sistemas de alcantarillado de tipo combinado. (FIBRAS Y NORMAS, 2004)
- Aguas blancas: pueden ser de procedencia atmosférica (lluvia, nieve o hielo) o del riego y limpieza de calles, parques y lugares públicos. En aquellos lugares en que las precipitaciones atmosféricas son muy abundantes, éstas pueden de evacuarse por separado para que no saturen los sistemas de depuración. (FIBRAS Y NORMAS, 2004)
- Aguas residuales industriales: proceden de los procesamientos realizados en fábricas y establecimientos industriales y contienen aceites, detergentes, antibióticos, ácidos y grasas y

otros productos y subproductos de origen mineral, químico, vegetal o animal. Su composición es muy variable, dependiendo de las diferentes actividades industriales. (FIBRAS Y NORMAS, 2004)

- Aguas Residuales Urbano: Este tipo de aguas son las que más contacto directo tienen con los seres humanos, se originan a partir de excretas, residuos domésticos y comerciales, arrastres de lluvia e infiltraciones. Los principales contaminantes que aparecen en este tipo de vertimientos son: objetos de gran tamaño en estado de suspensión en el afluente, arenas, grasas, aceites, contaminantes emergentes o prioritarios, coliformes fecales, entre otros. Si estas aguas no son tratadas adecuadamente, se generan diversos problemas ligados con la contaminación de las fuentes del recurso hídrico, la pérdida de nutrientes en zonas de cultivos, malos olores y generación de afectaciones de salud en la comunidad afectada; cuando se mezclan diferentes tipos de desechos y no se hace un tratamiento adecuado. (FIBRAS Y NORMAS, 2004)

8.1.2. Características de las Aguas Residuales

Las aguas residuales presentan diferentes características como las Fisicoquímicas las cuales se pueden tener en cuenta para poder tener un manejo del agua para ser tratadas, de acuerdo a esto si no se hace un buen manejo obedecería a una mala caracterización de las aguas, ya que impide seleccionar correctamente los tratamientos y aplicar criterios adecuados para el diseño. (MARTINEZ, 1995)

8.1.2.1. Características físicas

Sólidos totales

Analíticamente, se define el contenido de sólidos totales como la materia que se obtiene como residuo después de someter al agua a un proceso de evaporación a entre 103 y 105 0C. (MARTINEZ, 1995)

- Olor

Normalmente, los olores son debidos a los gases liberados durante el proceso de descomposición de la materia orgánica. El agua residual reciente tiene un olor peculiar, algo desagradable, que resulta más tolerable que el del agua residual séptica. El olor más característico del agua residual séptica es el debido a la presencia del sulfuro de hidrógeno que

se produce al reducirse los sulfatos a sulfitos por acción de microorganismos anaerobios. (MARTINEZ, 1995)

- Temperatura

La temperatura del agua residual suele ser siempre más elevada que la del agua de suministro, hecho principalmente debido a la incorporación de agua caliente procedente de las casas y los diferentes usos industriales. Dado que el calor específico del agua es mucho mayor que el del aire, las temperaturas registradas de las aguas residuales son más altas que la temperatura del aire durante la mayor parte del año, y sólo son menores que ella durante los meses más calurosos del verano. (MARTINEZ, 1995)

- Densidad

Se define la densidad de un agua residual como su masa por unidad de volumen, expresada en kg/m3. Es una característica física importante del agua residual dado que de ella depende la potencial formación de corrientes de densidad en fangos de sedimentación y otras instalaciones de tratamiento. (MARTINEZ, 1995)

- Color

El agua residual reciente suele tener un color grisáceo. Sin embargo, al aumentar el tiempo de transporte en las redes de alcantarillado y al desarrollarse condiciones más próximas a las anaerobias, el color del agua residual cambia gradualmente de gris a gris oscuro, para finalmente adquirir color negro. Llegado este punto, suele clasificarse el agua residual como séptica. (MARTINEZ, 1995)

- Turbiedad

La turbiedad, como medida de las propiedades de transmisión de la luz de un agua, es otro parámetro que se emplea para indicar la calidad de las aguas vertidas o de las aguas naturales en relación con la materia coloidal y residual en suspensión. (MARTINEZ, 1995)

- Solidos disueltos.

Es la denominación que reciben todos los sólidos que quedan retenidos en un proceso de filtración fina. En general, los sólidos disueltos son en un 40% orgánicos y un 60% inorgánicos. (GARCIA, 2014)

- Solidos Suspendidos.

Son aquellos que son visibles y flotan en las aguas residuales entre superficie y fondo, pueden ser removidos por medios físicos o mecánicos a través de procesos de filtración o de sedimentación. (GARCIA, 2014)

- Conductividad.

La conductividad de un agua es la aptitud de esta para conducir la corriente eléctrica. (GARCIA, 2014)

8.1.2.2. Características Químicas

- Materia orgánica

Son sólidos que provienen de los reinos animal y vegetal, así como de las actividades humanas relacionadas con la síntesis de compuestos orgánicos. Los compuestos orgánicos están formados normalmente por combinaciones de carbono, hidrógeno y oxígeno, con la presencia, en determinados casos, de nitrógeno. (CIDTA, 2015)

- Materia inorgánica

Son varios los componentes inorgánicos de las aguas residuales y naturales que tienen importancia para la determinación y control de la calidad del agua. Las concentraciones de las sustancias inorgánicas en el agua aumentan tanto por el contacto del agua con las diferentes formaciones geológicas, como por las aguas residuales, tratadas o sin tratar, que a ella se descargan. (CIDTA, 2015)

- pH

La concentración de ion hidrógeno es un parámetro de calidad de gran importancia tanto para el caso de aguas naturales como residuales. (CIDTA, 2015)

- Alcalinidad

La alcalinidad de un agua residual está provocada por la presencia de hidróxidos, carbonatos y bicarbonatos de elementos como el calcio, el magnesio, el sodio, el potasio o el amoniaco. (CIDTA, 2015)

Nitrógeno

Los elementos nitrógeno y fósforo son esenciales para el crecimiento de protistas y plantas, razón por la cual reciben el nombre de nutrientes o bioestimuladores. (CIDTA, 2015)

- Gases

Los gases que con mayor frecuencia se encuentran en aguas residuales brutas son el nitrógeno (N2), el oxígeno (O2), el dióxido de carbono (CO2), el sulfuro de hidrógeno (H2 S), el amoniaco (NH3), y el metano (CH4). (CIDTA, 2015)

- Metano.

El principal subproducto de la descomposición anaerobia de la materia orgánica del agua residual es el gas metano. (CIDTA, 2015)

Oxígeno disuelto

El oxígeno disuelto es necesario para la respiración de los microorganismos aerobios, así como para otras formas de vida. Sin embargo, el oxígeno es sólo ligeramente soluble en agua. La cantidad real de oxígeno y otros gases que pueden estar presente en la solución. (CIDTA, 2015)

- Demanda Bioquímica de Oxigeno (DBO5)

Expresa la cantidad de oxígeno necesario para la oxidación bioquímica, de los compuestos orgánicos degradables existentes en el líquido residual, fijando ciertas condiciones de tiempo y temperatura, 5 días y a 20 ° C, que requieren las bacterias durante la estabilización de la materia orgánica susceptible de descomposición en condiciones aerobias. (GARCIA, 2014)

- Demanda Química de Oxigeno

Determina la cantidad de oxígeno requerido para oxidar la materia orgánica en una muestra de agua residual, bajo condiciones específicas de agente oxidante, temperatura y tiempo. (GARCIA, 2014)

- Grasas y Aceites.

Las grasas y aceites son compuestos orgánicos constituidos principalmente por ácidos grasos de origen animal y vegetal, así como los hidrocarburos del petróleo. Las normas de calidad de agua recomiendan que los aceites y grasas estén ausentes en el agua para consumo humano, ya que pueden producir algún riesgo de daño a la salud. (GARCIA, 2014)

8.2.METODOS DE AFORO.

La posibilidad de medir los caudales de agua residual es de fundamental importancia a la hora de proyectar los sistemas de saneamiento. Los métodos de descarga directa son aquellos en que la magnitud de la descarga es función de una o dos variables fácilmente medibles. En los casos en que se vaya a realizar varias determinaciones de caudales, vale la pena construir curvas de calibrado para simplificar el trabajo. (GEORGE, 1995)

8.2.1. Método Hidráulico con Vertedores

Es un método de medición de caudal, útil en caudales pequeños. Se interrumpe el flujo del agua en la canaleta y se produce una depresión del nivel, se mide el tamaño de la lámina de agua y su altura. El agua cae por un vertedero durante cierto tiempo, se mide la altura de la lámina y se calcula la cantidad de agua que se vertió en ese tiempo. (VILLACRES, 2011)

8.2.1.1. Tipos de Vertedores

8.2.1.1.1. Vertedero Triangular

La cantidad de agua que se disponen en un predio se denomina aforo y puede ser realizado de diferentes maneras. Una de estas y la más fácil de construir e instalar es el vertedero triangular. La escotadura de este tipo de vertedero es de forma triangular. El ángulo que se forma es de 90 grados. (SEPULVEDA, 2014)

8.2.1.1.2. Vertedero Rectangular

Es un dispositivo hidráulico, una placa cortada de forma regular a través de la cual fluye el agua. Son utilizados intensiva y satisfactoriamente, en la medición del caudal de pequeños cursos de agua y conductos libres, así como en el control de flujo en galerías y canales. (CAMPOS, 2018)

8.3.EFICIENCIA PLANTA DE TRATAMIENTO.

El grado de eficiencia de las plantas de tratamiento de aguas residuales se define como: la reducción porcentual de indicadores apropiados, considerados en forma acumulativa o de determinadas sustancias. (ATV, 1998)

8.4.TRATAMIENTO DE AGUAS RESIDUALES

El tratamiento de aguas residuales consiste en una serie de procesos físicos, químicos y biológicos que tienen como fin eliminar los contaminantes físicos, químicos y biológicos presentes en el agua efluente del uso humano. El objetivo del tratamiento es producir agua limpia (o efluente tratado) o reutilizable en el ambiente y un residuo sólido o fango (también llamado biosólido o lodo) convenientes para la disposición o rehúso. Es muy común llamarlo depuración de aguas residuales para distinguirlo del tratamiento de aguas potables. (AMBIENTE, 1991)

8.4.1. Diseño de Sistemas de Tratamiento

Este diseño se hace de acuerdo a varios parámetros entre los que se encuentra efluentes y métodos disponibles aplicables, para que este sea mejor se debe tomar en cuenta la caracterización del agua residual, diseño de los sistemas de tratamiento propuestos, como es el caso de los procesos, diseños, factibilidad, aplicabilidad, confiabilidad, costo beneficio, construcción, operación y mantenimiento. (ROMERO, 2010)

8.4.2. Etapas de la Planta de tratamiento

• Etapa Preliminar

Se define como preliminar porque es la "antesala" del tratamiento de depuración que recibirán las aguas residuales debido a que cumple con las funciones de medir y regular el caudal de agua que ingresa a la planta como también de extraer los sólidos flotantes grandes, la arena y la grasa, destacando que la eliminación de estos agentes indeseables se suscita mediante un proceso de filtración, el cual es necesario para el normal desarrollo de esta fase. (FARIAS, 2017)

• Etapa primaria

Esta etapa tiene como propósito, eliminar los sólidos en suspensión a través de un proceso de sedimentación simple por gravedad o asistida por sustancias químicas tales como coagulantes y floculantes. (FARIAS, 2017)

Etapa secundaria

La eliminación de la materia orgánica en disolución y en estado coloidal mediante un proceso de oxidación de naturaleza biológica como también la degradación sustancias del contenido biológico del agua residual originado por los desechos humanos, son los objetivos primordiales que se plantean durante la realización de esta etapa del proceso de tratamiento de agua residual. (FARIAS, 2017)

Etapa terciaria

Es la fase final del tratamiento de aguas residuales, en la cual se practican una serie de procesos para aumentar la calidad del agua a estándares requeridos para su descarga en ríos, mares, lagos, campos y demás cuencas hidrográficas. (FARIAS, 2017)

8.4.2.1. Pre-tratamiento o etapa pre-liminar

• Cribado

Proceso donde los sólidos de gran tamaño tales como botellas, palos, bolsas, balones, llantas y demás elementos desechados en el accionar humano, son removidos, evitando problemas de averías en las plantas de tratamiento debido a que, si no son removidos, pueden ocasionar el tapamiento de tuberías y severos daños a los equipos. (FARIAS, 2017)

• Criterios de diseño

Se debe contar con esos criterios de diseño para fundamentar las velocidades de paso del flujo de aguas residuales, a través de ellas. Esta velocidad no debe ser tan baja que promueva la sedimentación de sólidos en el canal, ni tan alta que genere arrastre de sólidos ya retenidos por los barrotes de la reja. (LOZANO, 2012)

Tabla 1 Criterios de diseño cribado

PARÁMETRO	VALOR O RANGO
Velocidad mínima de paso	0,6 m/s (a caudal medio)
Velocidad máxima de paso	1,4 m/s (a caudal punta)
Grado de colmatación estimado entre intervalos de limpieza	30%
Pérdida de carga máxima admisible	15 cm (a caudal medio)

Si no se obtiene estos criterios de diseño es importante aumentar el ancho o la profundidad en el canal donde estará ubicado el cribado, ya que los barrotes disminuyen el área útil y aumentan el flujo entre la rejilla, también se debe tomar en cuenta la perdida de carga y el número de barrotes, con esto se garantiza una criba con un buen rendimiento. (LOZANO, 2012)

8.4.2.2.Etapa Primaria

Sedimentador

Se realiza en tanques rectangulares o cilíndricos, donde son removidas entre un 60% y 65% de los sólidos sedimentables y de un 30% a un 35% de los sólidos suspendidos en las aguas residuales, siendo un proceso de tipo floculento, en el cual los lodos están conformados por partículas orgánicas. (FARIAS, 2017)

• Criterios de diseño y zona de sedimentadores

(OJEDA, 2015)Establece que se encuentra dividido en 4 principales zonas las cuales son:

- -Zona de entrada: Transición suave de flujo de entrada con un flujo de tipo permanente.
- -Zona de salida: Transición suave entre el asentamiento y el flujo efluente.
- **-Zona de lodos:** Recibe el material sedimentado impidiendo que el asentamiento de partículas sea interferido.
- **-Zona de sedimentación:** Suministro del volumen al tanque necesario para un asentamiento sin interferencia.

Tabla 2 Criterios de diseño sedimentador

PARÁMETRO	VALOR O RANGO	
Carga Superficial	40 a 70 m ³ /m ² *h (a caudal punta)	
TRH	100 a 300 sg frecuente (180sg)	
Velocidad horizontal	0.20 a 0.40 m/sg (a caudal punta)	
Longitud	10 a 30 veces la altura de la lámina de agua.	
Altura mínima	1,0m	
Altura máxima	3m	

8.4.2.3. Etapa Secundaria

• Humedal artificial

Incluyen camas de cañas o una serie de métodos similares que proporcionan un alto grado de materia biológica aerobia y pueden utilizarse a menudo en lugar del tratamiento secundario para las poblaciones pequeñas, también para la fitorremediacion. (FARIAS, 2017)

Ventajas de los humedales artificiales

Menor necesidad de superficie, buen suministro de oxígeno, Hidráulica simple, Elevada eficiencia de purificación, Recorridos largos del flujo, que favorecen el establecimiento de gradientes de nutrientes y son posibles la nitrificación y la desnitrificación. (FARIAS, 2017)

Fitorremediacion

El término fitorremediación proviene del griego de Phyto que significa "planta" y remedium que significa "recuperar el equilibrio" y es una técnica que aprovecha la capacidad de algunas plantas para absorber, acumular, metabolizar, volatilizar o estabilizar contaminantes presentes en el suelo, aire, agua, esta técnica es utilizada en el tratamiento de aguas residuales como es el caso de los humedales artificiales. (FARIAS, 2017)

8.4.2.4. Tratamientos alternos

• lecho de secado

El lecho de secado es en general el último componente de una planta de tratamiento de aguas residuales, aunque algunas veces se incluye también en plantas potabilizadoras, principalmente cuando el agua a potabilizar es derivada de un río o arroyo. (AGUASISTEC, 2003)

En el lecho de secado al aire, el lodo proveniente, ya sea de: un tanque Imhoff; o filtro anaerobio de flujo ascendente; o, de los sedimentadores de las plantas depuradoras, el proceso es natural, el agua contenida en los lodos filtra, por efecto de la gravedad, a través de un lecho filtrante de arena y grava, y es recogida por ductos perforados para ser luego conducida al cuerpo receptor final. Otra parte del agua contenida en los lodos se evapora. (AGUASISTEC, 2003)

9. PREGUNTA CIENTIFICA

¿El análisis de eficiencia de la planta de tratamiento de aguas residuales sector el camal del Cantón Salcedo, permitirá proponer alternativas de mejoramiento para el funcionamiento de la misma?

10. METODOLOGIAS Y DISEÑO EXPERIMENTAL

10.1. Aspectos Metodológicos.

• Técnica de Investigación.

La presente propuesta técnica se desarrolló en base a los diferentes tipos de investigación, tuvo un carácter descriptivo, con apoyo en la investigación de campo y bibliográfica.

- Investigación de Campo: Es la más importante, puesto que con visitas In situ al lugar de investigación, se verifico el funcionamiento de cada uno de los procesos que cumple la planta de tratamiento de aguas residuales del Camal de Salcedo de esta manera se determinó si cumplen o no cumplen con la función establecida, de igual manera nos permitió realizar los diferentes muestreos de agua en dos puntos esenciales entrada y salida de la planta.
- **Investigación Bibliográfica:** Fortaleció los conocimientos y criterios técnicos que se utilizó acerca de la implementación de plantas de tratamiento de aguas residuales, su

funcionamiento y además permitió alimentar esta investigación y analizar las alternativas de mejoramiento para la misma.

10.2. Protocolo.

Se utilizó el protocolo establecido por la norma NTE INEN 2169 (1998) (spanish): agua. Calidad del agua. Muestreo. Manejo y conservación de muestras.

• Puntos de muestreo.

El tipo de muestreo realizado fue de manera simple. Este proceso se realizó en dos puntos. El primer se realizó en la entrada de la planta de tratamiento en las coordenadas UTM 78° 59′64"O y 1° 04′65"S. El segundo se realizó en la salida o la descarga de las aguas tratadas en el Río Cutuchi en las coordenadas UTM 78° 59′62" O y 1° 04′72" S

Recolección de la muestra

La cantidad de muestra a recolectada fue de 500ml, bajo una temperatura ambiente entre 16 a 18° C. Para la recolección de la muestra se verificó que se llene los recipientes completamente para que no existe agitación, que el flujo se continuo para garantizar que se representativa y a la vez homogénea para el respectivo análisis de los parámetros necesarios. Los recipientes cuyas muestras se congelaron como método de conservación.

• Etiquetado y envasado

Primeramente, se realizó el lavado de los envases a utilizarse, este proceso se realizó con dos repeticiones con el mismo líquido a muestrear, antes de proceder a recolectar la muestra. De igual manera se realizó el etiquetado de los envases que contienen la muestra estas etiquetas contaron con la siguiente descripción: nombre del proyecto, nombre del que recolecto la muestra, lugar del muestreo, fecha, hora, y preservante.

• Almacenamiento y transporte

Este procedimiento se contó con un cooler ya que las muestras recolectadas fueron enviadas a temperaturas bajas, para su conservación y así no alterar sus características y evitar variaciones en la temperatura.

• Eficiencia de la planta de tratamiento de aguas residuales sector el Camal.

Para la determinación de la eficiencia de la planta se realizó mediante la siguiente fórmula:

$$\%EF = \frac{FZ - FA}{FZ} * 100 =$$

- %EF: Grado de eficiencia en porcentaje

- FZ: Sumatoria de las cargas que ingresan a la planta

- FA: Sumatoria de las cargas en el flujo de salida en la planta

Parámetros evaluados de los dos puntos de muestreo.

PARAMETROS A ANALIZADOS	UNIDAD
Coliformes Fecales	NMP/100ml
Aceites y Grasas	mg/lt
Potencial De Hidrogeno	U Ph
Fosfatos (PO4)	mg/lt
Sulfatos (SO4)	mg/lt
Nitratos (NO3)	mg/lt
Solidos Suspendidos Totales	mg/lt
Solidos Totales	mg/lt
Demanda Química De Oxigeno (DQO)	mg/lt
Demanda Bioquímica de Oxigeno (DBO)	mg/lt

10.3. Métodos y Técnicas.

• Método Inductivo.

Facilitó realizar un análisis ordenado, coherente y a la vez lógico de ideas y determinar un diagnóstico veraz y de esta manera formular las soluciones a la problemática actual en los aspectos ambientales.

• Método Científico.

Aporto a la finalización de la propuesta efectiva para el tratamiento de aguas residuales de la planta mencionada.

• Técnica de Observación.

Se realizó varias visitas a la planta de tratamiento para recolectar la información necesaria, para elaborar el diagnóstico que conducirá a identificar la realidad actual que se encuentra todo el sistema de tratamiento de aguas.

10.4. Diseño de medidas de remediación

Para el diseño de las medidas de remediación se tomó las consideraciones establecidas en la fundamentación científica y los puntos anteriores de la metodología.

Inicialmente se realizó el aforo mediante segmento circular midiendo la altura del agua a tres horas distintas durante 7 días, seguidamente se realizó la vista in-situ para evaluar y diagnosticar la situación actual que se encuentra la planta de tratamiento sector El Camal, así como conocer directamente cada uno de los procesos que desarrolla en el tratamiento de las aguas residuales. Por medio de cálculos se desarrolló las propuestas más factibles y se determinó la eficiencia general esperada.

11. ANALISIS Y DISCUSIÓN DE RESULTADOS

Diagnóstico de la situación actual de la planta de tratamiento de aguas residuales.

La planta de tratamiento El Camal en la actualidad se encuentra en funcionamiento y abarca el 1,50% de aguas residuales de la zona oeste del Cantón Salcedo, la que genera malos olores por consecuencia de los desechos orgánicos que provienen del agua residual descargada hacia el Río Cutuchi, en los alrededores de la misma se presenció una escombrera donde se encuentra diferentes tipos de desechos como: materiales de construcción, basura, restos de animales, restos vegetales, etc., lo cual genera una alteración o perjudica al proceso de tratamiento de la planta.

Determinación de los parámetros (Físicos, Químicos y Biológicos) de los puntos de muestreo.

Resultados análisis de agua.

Los análisis de agua del Laboratorio de los parámetros físicos, químicos y biológicos, se compararon con la Normativa Ambiental Vigente (TULSMA) Acuerdo Ministerial N. 097 Anexo I, Tabla 9. Límites de descarga a un cuerpo de agua dulce lo cual establece:

Tabla 3 Resultados obtenidos en el ingreso de la PTAR sector El Camal

PARAMETROS ANALIZADOS	UNIDAD	RESULTADO	LIMITE PERMISIBLE	CRITERIO DE RESULTADO
Coliformes Fecales	NMP/100ml	>2420	2000	NO CUMPLE
Aceites y Grasas	mg/lt	11,9	30,0	CUMPLE
Potencial de Hidrogeno	U pH	7,5	6,0-9,0	CUMPLE
Fosfatos (PO4)	mg/lt	NO APLICA	NO APLICA	NO APLICA
Sulfatos (SO4)	mg/lt	46,0	1000,0	CUMPLE
Nitratos (NO3)	mg/lt	NO APLICA	NO APLICA	NO APLICA
Solidos Suspendidos Totales	mg/lt	316	130	NO CUMPLE
Solidos Totales	mg/lt	de68	1600	CUMPLE
Demanda Química de Oxígeno (DQO)	mg/lt	753	200	NO CUMPLE
Demanda Bioquímica de Oxigeno (DBO)	mg/lt	438	100	NO CUMPLE

FUENTE: ANAVANLAB, 2018

Tabla 4 Resultados obtenidos en la salida de la PTAR sector El Camal

PARAMETROS ANALIZADOS	UNIDAD	RESULTADO	LIMITE PERMISIBLE	CRITERIO DE RESULTADO
Coliformes Fecales	NMP/100ml	>2420	2000	NO CUMPLE

Aceites y Grasas	mg/lt	0,2	30,0	CUMPLE
Potencial de Hidrogeno	U pH	7,6	6,0-9,0	CUMPLE
Fosfatos (PO4)	mg/lt	NO APLICA	NO APLICA	NO APLICA
Sulfatos (SO4)	mg/lt	29,0	1000,0	CUMPLE
Nitratos (NO3)	mg/lt	NO APLICA	NO APLICA	NO APLICA
Solidos Suspendidos Totales	mg/lt	87	130	CUMPLE
Solidos Totales	mg/lt	764	1600	CUMPLE
Demanda Química de Oxígeno (DQO)	mg/lt	187	200	CUMPLE
Demanda Bioquímica de Oxigeno (DBO)	mg/lt	138	100	NO CUMPLE

FUENTE: ANAVANLAB, 2018

Determinación de la planta de tratamiento de aguas residuales.

Con la interpretación de los resultados en los parámetros analizados, se logró identificar los más críticos, ayudándonos a demostrar la respectiva eficiencia mediante la fórmula establecida.

$$\%EF = \frac{FZ - FA}{FZ} * 100 =$$

- %EF: Grado de eficiencia en porcentaje
- FZ: Sumatoria de las cargas que ingresan a la planta
- FA: Sumatoria de las cargas en el flujo de salida en la planta

Interpretación de los resultados de los análisis y determinación de la eficiencia.

Se realizó un gráfico de resultados de los parámetros analizados, con la correspondiente interpretación de los mismos y finalmente se determinó la eficiencia según la fórmula establecida.

• Eficiencia Coliformes Fecales

Ilustración 1 Coliformes Totales

Elaborado por: Lorena Bayas, 2019

Este parámetro consta de 2420 NMP/100ml en el ingreso y al ser tratado en los diferentes procesos de la planta se mantiene con el mismo valor, siendo la concentración más alta que el limite permisible según la Normativa Ambiental Vigente que es de 2000 NMP/100ml.

%EF=
$$\frac{FZ - FA}{FZ}$$
 *100
%EF=
$$\frac{2420 \text{NMP} / 100 \text{ml} - 2420 \text{NMP} / 100 \text{ml}}{2420 \text{NMP} / 100 \text{ml}}$$
 *100
%EF=
$$\frac{0,00\%}{}$$

La eficiencia en la reducción de coliformes fecales es de un 0.00%, este valor refleja que la planta no está cumpliendo un adecuado tratamiento para este parámetro.

• Eficiencia Aceites y Grasas

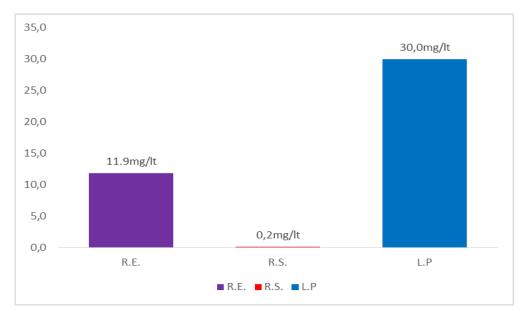


Ilustración 2 Aceites y Grasas

Elaborado por: Lorena Bayas, 2019

El parámetro analizado al ingresar al tratamiento ingresa con 11,9 mg/lt y al salir del proceso tiene una concentración de 0,2 mg/lt, cumpliendo con el límite permisible de 30,0 mg/lt de la normativa ambiental vigente.

$$\%EF = \frac{FZ-FA}{FZ} *100$$

$$\%EF = \frac{11,9mg/l-0,2mg/l}{11,9mg/l} *100$$

$$\%EF = \frac{98,32\%}{}$$

El porcentaje de eficiencia del parámetro analizado es de 98,32%, siendo este un valor adecuado, reduciendo considerablemente las concentraciones de Aceites y Grasas.

• Eficiencia Potencial de Hidrogeno

Ilustración 3 Potencial de Hidrogeno

Elaborado por: Lorena Bayas, 2019

Al ingresar al tratamiento el pH se encuentra en 7,5 y a la salida del proceso realizado es de 7,6 cumpliendo con el límite permisible entre los valores 6,0-9,0.

• Eficiencia Sulfatos

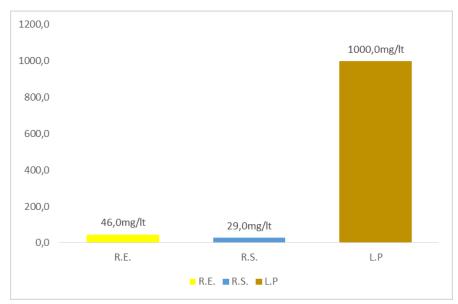


Ilustración 4 Sulfatos

Elaborado por: Lorena Bayas, 2019

El parámetro analizado ingresa con 46,0 mg/lt y al salir de la planta tiene una concentración de 29,0 mg/lt, cumpliendo con el límite permisible de 1000,0 mg/lt de la normativa ambiental vigente.

%EF=
$$\frac{\text{FZ-FA}}{\text{FZ}}$$
 *100
%EF= $\frac{46,0 \text{mg/l-29,0 mg/l}}{46,0 \text{mg/l}}$ *100
%EF= $\frac{36,96\%}{}$

El porcentaje de eficiencia de tratamiento del parámetro es 36,96%, siendo un valor adecuado, reduciendo las concentraciones de sulfatos.

• Eficiencia Solidos Suspendidos Totales

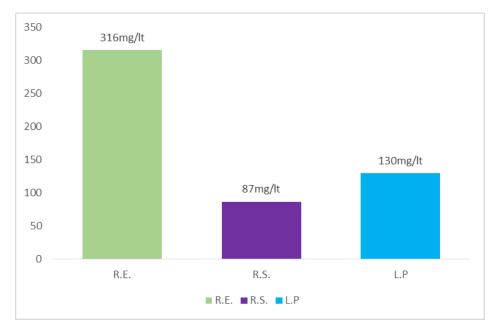


Ilustración 5 Solidos Suspendidos Totales

Elaborado por: Lorena Bayas, 2019

Al ingresar al sistema de tratamiento tiene una concentración de 316 mg/lt y al salir de los procesos respectivos su valor disminuye a 87 mg/lt, cumpliendo con los límites permisibles establecidos de 130 mg/lt.

%EF=	316mg/l-87mg/l	*100
%EГ— -	316mg/l	100
%EF=	<mark>72.47%</mark>	

El porcentaje de eficiencia de tratamiento de este parámetro es 72,47%, siendo un valor adecuado, disminuyendo las unidades de concentración de los sólidos suspendidos totales.

• Eficiencia Solidos Totales

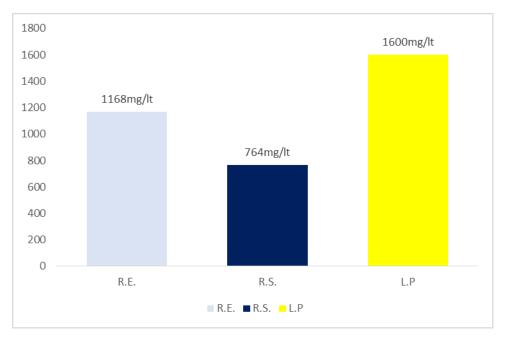


Ilustración 6 Solidos Totales

Elaborado por: Lorena Bayas, 2019

Al ingresar al proceso de tratamiento el parámetro analizado tiene un valor de 1168 mg/lt y al salir del sistema su valor disminuye a 764 mg/lt, cumpliendo con el valor de 1600 mg/lt, límite permisible de la normativa ambiental vigente.

La eficiencia del tratamiento de este parámetro es 34,59% siendo un porcentaje adecuado y disminuyendo su concentración.

• Eficiencia Demanda Química de Oxigeno

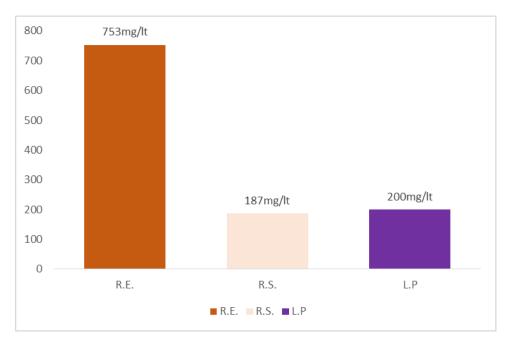


Ilustración 7 Demanda Química de Oxigeno

Elaborado por: Lorena Bayas, 2019

El parámetro analizado al ingresar al proceso de tratamiento tiene una concentración de 753 mg/lt, y al salir de la planta disminuye a 187 mg/lt, cumpliendo con el valor de 200 mg/lt limite permisible establecido en la normativa.

El porcentaje de eficiencia del parámetro analizado es 75,17% siendo un valor considerable y reduciendo los niveles de concentración.

500 450 438mg/lt 400 350 300 250 200 150 138mg/lt 100mg/lt

• Eficiencia Demanda Bioquímica de Oxigeno

R.E.

Ilustración 8 Demanda Bioquímica de Oxigeno

■ R.E. ■ R.S. ■ L.P

R.S.

L.P

Elaborado por: Lorena Bayas, 2019

El parámetro analizado ingresa con una concentración de 438 mg/lt y al salir del proceso de tratamiento reduce a 138 mg/lt, este valor no cumple con el límite permisible establecido en la normativa ambiental de 100 mg/lt.

El porcentaje de eficiencia del parámetro analizado es 68,49% siendo un valor adecuado en el proceso de tratamiento reduciendo las unidades del DBO5.

• Promedio General de Eficiencia

Para la realización del promedio general se suma todos los porcentajes obtenidos y divididos al número de parámetros considerados.

El promedio general de la planta de tratamiento de aguas residuales sector El Camal es de 55,14%, siendo un valor positivo, de igual manera existe algunas unidades que no cumplen satisfactoriamente su función.

Medidas de remediación para disminuir el riesgo ambiental por contaminantes hídricos

La planta de tratamiento abarca el 1,50% del sistema de alcantarillado del Cantón Salcedo, tal motivo es de vital importancia medidas de remediación para reducir los impactos generados por los contaminantes hídricos.

Método de aforo

Para la realización del aforo de la planta de tratamiento se realizó mediante un segmento circular, durante 7 días a distintas horas, lo cual se obtuvo la altura del agua, el promedio semanal fue de 16,03cm, para obtener este dato se debe tener en cuenta la limpieza del conducto y que el flujo de agua sea continuo para evitar algún problema.

Tabla 5 Altura del agua en el segmento circular

HORA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7
07:00am	14,6cm	17,5cm	15,2cm	16,5cm	16,4cm	16,8cm	17,4cm
13:00pm	15,00cm	16,10cm	16,4cm	10,00cm	15,9cm	16,2cm	16,5cm
19:00pm	16,00cm	17,00cm	15,5cm	16,8cm	16,2cm	16,00cm	17,5cm
PROMEDIO DIARIO	15,2cm	16,86cm	15,7cm	14,43cm	16,16cm	16,33cm	17,13cm
PROMEDIO SEMANAL				16,03cm			

Elaborado por: Lorena Bayas, 2019

Diagrama de proceso de la planta de tratamiento de aguas residuales sector El Camal

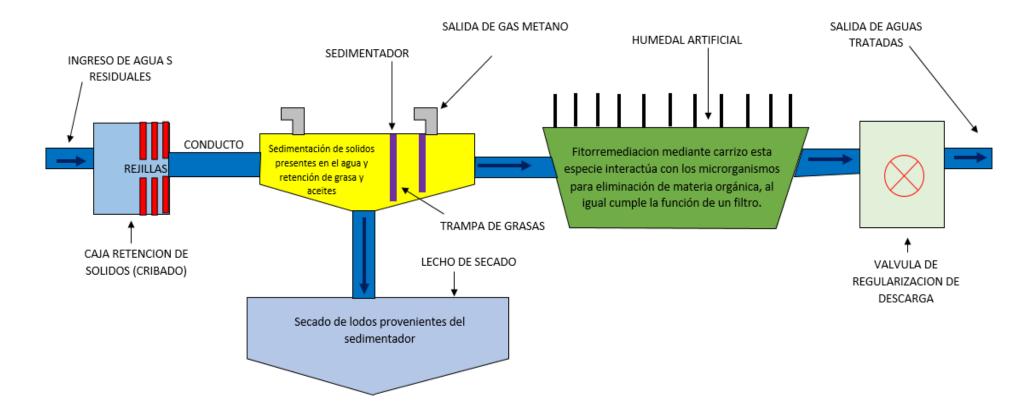


Ilustración 9 Diagrama del proceso de la PTAR El Camal

Elaborado por: Lorena Bayas, 2019

Segmento Circular

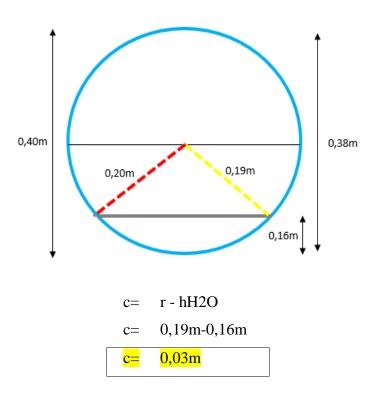
El agua residual proveniente de la red de alcantarillado del Cantón Salcedo ingresa a la planta de tratamiento por medio de un segmento circular con unas dimensiones de: diámetro de 0.40m, radio de 0,20m, diámetro interno 0.38m y un radio interno de 0,19m, la altura del agua residual entrante es de 16,03cm.

En donde:

d = 0.40m

r = 0.20m

di = 0.38m


ri = 0.19m

h = 16,03cm = 0,16m

c= altura entre el punto medio del segmento y el agua residual

r= radio interno

h= altura del agua residual

Como resultado tenemos la altura entre el punto medio del segmento y el agua residual: 0,03m.

• Calculo del triángulo referencial

En donde:

a= ancho medio del agua residual con el diámetro interno del segmento, unidad en (m)

 $\mathbf{b} = (0,19\text{m})$ radio interno

c= (0,03m) altura entre el punto medio del segmento y el agua residual

B= ancho total del agua residual, unidad en (m)

a=
$$\sqrt{b^2 - c^2}$$

a= $\sqrt{(0,19\text{m})^2 - (0,03\text{m})^2}$
a= $0,19\text{m}$
2B= $0,38\text{m}$

Como resultado tenemos el ancho total del agua residual es: 0,38m.

• Área del triangulo

En donde:

At= área del triángulo, unidad en (m²)

 $\mathbf{B} = (0.38 \,\mathrm{m})$ ancho total de agua residual

h= (0,03m) altura entre el punto medio del segmento y el agua residual

At=
$$\frac{B * h}{2}$$
At=
$$\frac{0,38m*0,03m}{2}$$
At=
$$\frac{0,0057m^2}{}$$

Como resultado del área del triángulo es: 0,0057m²

• Calculo de alfa y omega

En donde:

h= (0,03m) altura entre el punto medio del segmento y el agua residual

a= (0,19m) ancho medio del agua residual con el diámetro interno del segmento

Sen
$$\alpha$$
= $\frac{H}{A}$
Sen α = $\frac{0.03}{0.19}$
Sen α = 0.16

$$\alpha$$
= arcosen (0,16)
$$\alpha$$
= 9,21°

$$Ω = 180 + 2α$$
 $Ω = 180 + 2(9,21)$
 $Ω = 198,42°$

• Área del arco:

En donde:

A arco= área del arco, unidad en (m²)

 $\mathbf{r} = (0,19\text{m})$ radio interno

 π = 3.1416

 Ω = 198,42°

A arco=
$$r^2 * \pi * \Omega/360^\circ$$

A arco= $(0,19m)^2* 3,1416 * 198,42^\circ/360^\circ$
A arco= $0,063m^2$

Como resultado del área del arco tenemos de: 0,063m²

• Área del circulo

En donde:

Ao= área del círculo, unidad en (m²)

 $\mathbf{r} = (0,19\text{m})$ radio interno

 $\pi = 3.1416$

Ao=
$$r^2 * \pi$$

Ao= $(0,19m)^2 * 3,1416$
Ao= $0,113m^2$

Como resultado del área del círculo tenemos de: 0,113m²

• Área total

En donde:

AT= área total, unidad en (m²)

 $At = (0.0057 \text{m}^2)$ área del triangulo

 \mathbf{A} arco= (0.063m^2) área del arco

$$AT = At + A \text{ arco}$$

 $AT = 0.0057 \text{m}^2 + 0.063 \text{m}^2$

 $AT = 0.069 \text{m}^2$

Como resultado del área total tenemos de: 0,069m²

• Área hidráulica

En donde:

AH= área hidráulica, unidad en (m²)

 $At = (0.069 \text{ m}^2)$ área total

 $\mathbf{Ao} = (0,113\text{m}^2)$ área del circulo

$$AH = AT - Ao$$

 $AH = 0.069 \text{m}^2 - 0.113 \text{m}^2$

 $AH = 0.044 \text{m}^2$

Como resultado del área hidráulica tenemos de: 0,044m²

• Perímetro mojado

En donde:

PM1= perímetro mojado 1, unidad en (m)

d= (0,38m) diámetro interno

 π = 3.1416

 Ω = 198, 420

PM1=
$$D * \pi * \Omega/360^{\circ}$$

$$PM1 = 0.38m* \ 3.1416* \ 198.42^{\circ}/360^{\circ}$$

 $\frac{PM1}{0,66m}$

Como resultado del perímetro mojado 1 tenemos que es: 0,66m

• Perímetro mojado 2

En donde:

PM2= perímetro mojado 2, unidad en (m)

d= (0,38m) diámetro interno

 $\pi = 3.1416$

PM2= $D * \pi$

Como resultado del perímetro mojado 2 tenemos que es: 1,19m

• Perímetro mojado total

En donde:

PMT= perímetro mojado total, unidad en (m)

PM1= (0,66m) perímetro mojado 1

PM2= (1,19m) perímetro mojado 2

Como resultado del perímetro mojado total tenemos un valor de: 0,53m

• Radio hidráulico

En donde:

RH= radio hidráulico, unidad en (m)

 $\mathbf{AH} = (0.044 \,\mathrm{m}^2)$ área hidráulica

PMT= (0,53m) perímetro mojado total

$$RH = \frac{AH}{PMT}$$

$$RH = \frac{0,044m^2}{0,53m}$$

$$RH = \frac{0,083m}{0,083m}$$

Como resultado del radio hidráulico tenemos un valor de: 0,083m.

• Velocidad de Manning

En donde:

V= velocidad, unidad en (m/sg)

n= (0,016) rugosidad de Manning

RH= (0,083m) radio hidráulico

i=(0,001) pendiente

$$V = \frac{1}{N} * RH^{2/3} * i^{1/2}$$

$$V = \frac{1}{0,016} * 0,083^{2/3} * 0,001^{1/2}$$

$$V = 62,5 * 0,190 * 0,03$$

$$V = \frac{0,38m/sg}{}$$

Como resultado de la velocidad tenemos un valor de: 0,38m/sg

• Caudal

En donde:

Q= caudal, unidad en (m³/sg) o también (lt/sg)

AH= (0,044m²) área hidráulica

V= (0,38m/sg) velocidad de Manning

Q= AH * V
Q=
$$0.044 \text{m}^2 * 0.38 \text{m/sg}$$

Q= $0.017 \text{m}^3/\text{sg}$
Q= 17 lt/sg

El caudal aforado que recibe la planta de tratamiento de aguas residuales sector El Camal es: 17 lt/sg.

• Caudal Unitario

En donde:

Qu= caudal unitario, unidad en (lt/sg)

Q= (17lt/sg) caudal

BD= (875hab.) beneficiarios directos

$$Qu = \frac{Q}{BD}$$

$$Qu = \frac{17 \text{ lt/sg}}{875 \text{hab.}}$$

$$Qu = \frac{0,019 \text{ lt/sg}}{}$$

El caudal unitario que descarga cada habitante del sector es: 0,019 lt/sg

• Población Futura.

En donde:

Pf= población futura, unidad en (hab.)

Po= (875hab.) población inicial

r=(0,01) taza de crecimiento

n= (25 años) proyección en años

Pf= Po
$$(1+r)^n$$

Pf= 875hab. $(1+0,01)^{25}$
Pf= 1122 hab.

Las medidas propuestas de remediación para incrementar la eficiencia de la planta, están establecidas para una proyección de 25 años, para una población futura de 1122 habitantes.

• Caudal de Diseño.

En donde:

Qd= caudal de diseño, unidad en (m³/sg) o también (lt/sg)

Qu= (0,019lt/sg) caudal unitario

Pf= (1122hab.) población futura

El valor del caudal de diseño es 0,02132m³/sg.

DESARROLLO DE LA PROPUESTA DE REPOTENCIACION DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES SECTOR EL CAMAL

Introducción

La presente propuesta de repotenciación de la planta de aguas residuales, se desarrolló con la finalidad de dar soluciones a los problemas que impiden un óptimo funcionamiento de sus procesos para cumplir con el tratamiento de las aguas residuales. Se realizó el cálculo detallado de las medidas de remediación para la implementación en la planta.

Para el desarrollo de la propuesta se realizó una serie de cálculos de los nuevos procesos de tratamiento, que permitirá llegar al cumplimiento de los objetivos, meta propuesta y el desarrollo de las conclusiones y recomendaciones correspondientes.

Antecedentes

La planta de tratamiento de aguas residuales sector El Camal, se encuentra en funcionamiento, actualmente genera malos olores generados por la materia orgánica proveniente del agua residual, en los alrededores se encuentra un escombrera que contiene desechos de construcciones, desechos de animales, restos vegetales, entre otros, no cuenta con un cerramiento adecuado por esta razón existen personas que ubican a sus animales de granja en el interior de la planta, alterando el proceso de tratamiento. La eficiencia actual de la planta es de 55,14%, debido a que ciertos parámetros como: coliformes fecales y DBO₅, sobrepasan los límites permisibles estipulados en la normativa vigente y una deficiencia en la reducción de sulfatos con 36,96% y solidos totales con 34,59%.

Objetivos

General

• Aumentar la eficiencia del funcionamiento de la planta de tratamiento de aguas residuales sector El Camal, mediante nuevos procesos factibles para su implementación.

Específicos

- Diseñar los nuevos procesos de tratamiento a implementar, para disminuir los impactos generados por contaminantes hídricos.
- Determinar la remoción esperada con la implementación de los nuevos procesos de tratamiento.
- Evaluar la eficiencia esperada del funcionamiento general de la planta de tratamiento con la implementación de la propuesta.

Meta

• Mejorar la eficiencia en el funcionamiento de la planta de tratamiento en un 90%.

Metodología

Filtro lento de arena

Según el Centro Nacional de los Servicios de Medio Ambiente (NESC, 2009) menciona: "Que son un proceso simple y fiable, al igual que baratos. Este sistema filtra el agua no tratada lentamente por medio de una cama porosa de arena, donde el agua entra por la superficie y descarga por el fondo. El filtro consiste de una cama de arena fina, una capa de grava y subdrenajes para recolectar el agua filtrada." (p. 1)

• Área superficial

En donde:

As= área superficial, unidad en (m²)

Vf= (0,3m/h) velocidad de filtración

Qd = (21,32)t/sg caudal de diseño es igual a $0,02132m^3/sg * 3600sg = \frac{76,75m^3/h}{3}$

N= número de unidades

As=
$$\frac{Qd}{N * VF}$$
As= $\frac{76,75m^3/h}{1 * 0,3m/h}$
As= $\frac{256m^2}{}$

El área superficial del filtro es 256m², lo cual la medida propuesta es la implementación de 3 filtros lentos de arena con un área superficial de: 85,3m².

• Coeficiente de mínimo de costo

En donde:

K= coeficiente de mínimo de costo

N= número de unidades

$$K = \frac{2 * N}{N + 1}$$

$$K = \frac{2 * 3}{3 + 1}$$

$$K = \frac{1,5}{N + 1}$$

El coeficiente de costo es: 1,5

• Longitud de la unidad

En donde:

L= longitud (m)

 $As = (85,3m^2)$ área superficial

 \mathbf{K} = (1,5) coeficiente de costo

L=
$$(As * K)^{1/2}$$

L= $(85,3m^2 * 1,5)^{1/2}$
L= $11,31m$

La longitud que tendrá el tanque es: 11,31m

• Ancho de la unidad

En donde:

b = ancho(m)

 $As= (85,3m^2)$ área superficial

 \mathbf{K} = (1,5) coeficiente de costo

b=
$$(As * K)^{1/2}$$

b= $(85,3m^2 * 1,5)^{1/2}$
b= $11,31m$

El ancho del tanque es: 11,31m

• Velocidad de filtración real

En donde:

VR= velocidad de filtración real (m/h)

Qd= (76.75m/h) caudal de diseño

L=(11,31m) largo del filtro

b= (11,31m) ancho del filtro

$$VR = \frac{Qd}{2 * L * b}$$

$$VR = \frac{76,75 \text{ m/h}}{2 * 11,31 \text{m} * 11,31 \text{m}}$$

$$VR = \frac{0,30 \text{m/h}}{2 * 11,31 \text{m} * 11,31 \text{m}}$$

La velocidad de filtración real no se debe superar es de 0,30m/h, lo cual el resultado obtenido de 0,30m/h encontrándose dentro del rango y es adecuado para el diseño.

• Alturas del tanque

El filtro es ascendente contara con una altura de 1,60m distribuido en capas de la siguiente manera: un sub-drenaje con espesor de 0,30m, grava gruesa con un espesor de 0,30m, grava fina 0,30m, arena 0,30m y una caja de recolección ubicada a 0,40m del medio filtrante.

• Cámara de cloración

Fibras y Normas Colombia (FNC, 2018) menciona que: "Es el método más utilizado para la desinfección del agua, para reducir concentraciones de agentes patógenos, oxidar sustancias inorgánicas, eliminar microorganismos."

Volumen resultante

En donde:

Vr = volumen resultante (m³)

 $\mathbf{Q} = (21,32 \text{lt/sg}) \text{ caudal}$

T= (15minutos) tiempo de contacto mínimo requerido

$$Vr = \frac{Q * T * 60sg}{1000m^{3}}$$

$$Vr = \frac{21,32lt/sg * 15min * 60sg}{1000m^{3}}$$

$$Vr = \frac{19,2m^{3}}{1000m^{3}}$$

El volumen de la cámara de cloración es: 19,2m³

Volumen total

En donde:

Vt = volumen total (m³)

H= (1,50m) altura resultante del tirante de agua

L=(2,80m) largo escogido

A=(2,75m) ancho escogido

Área de la cámara de cloración

En donde:

$$A = \text{área } (m^2)$$

h= (1,50m) altura resultante del tirante de agua

a=(2,75m) ancho escogido

El área de la cámara de cloración es: 4,12m²

• Dosificación del cloro para el proceso de Desinfección del agua.

Datos:

Cl/día= cantidad de cloro al día (kg/día)

 \mathbf{Q} = (21,32lt/sg) caudal

 $\mathbf{D} = (0.5 \,\mathrm{mg/lt})$ dosis de cloro libre

C= (0,6) concentración de cloro hipoclorito

$$\begin{array}{c} \text{Cl/día=} & \frac{\text{Q * D}}{\text{C}} & * 86,4/1000 \\ \text{Cl/día=} & \frac{21,32 \text{lt/sg * 0,5mg/lt}}{0,6} & *86,4/1000 \\ \hline \\ \hline \text{Cl/día=} & \frac{1,53 \text{kg/día}}{\text{lt/día=}} & \frac{1,53 \text{kg/día}}{\text{lt/día=}} & \frac{1}{1,53 \text{kg/día}} & \frac{1}{1$$

CALCULO DE REMOCIÓN ESPERADA CON LAS MEDIDAS PROPUESTAS

Filtro lento de arena

Es de gran importancia la presencia de un filtro lento de arena en las plantas de tratamiento, para filtrar el agua hacer tratada, se propone la implementación de 3 filtros que contara con las siguientes dimensiones:

- área superficial de 85,3m²,
- coeficiente de costo 1,5,
- longitud y ancho de 11,31m,
- altura de 1,60m
- distribuido con tres tipos de capas con espesor de 0,30m,
- velocidad de filtración de 0,30m/h, encontrándose dentro del rango donde no se debe superar los 0,30m/h.

Coliformes fecales en 75%

Para determinar la remoción esperada se debe realizar una simple regla de tres, donde el 100% es equivalente al resultado del parámetro en el punto de entrada., véase en la tabla 3, luego el 75% es la remoción esperada de los coliformes fecales en el filtro.

En donde:

100% = 2420 NMP/100ml

75% = remoción esperada

CF= $\frac{75\% * 2420 \text{NMP} / 100 \text{ml}}{100\%}$ CF= $\frac{1815 \text{NMP} / 100 \text{ml}}{100 \text{ml}}$

• Remoción esperada de los coliformes fecales

En donde:

RE = remoción esperada

RUT= remoción en la unidad de tratamiento

LPFR= limite permisible fuera del rango

RE = LPFR - RUT

RE= 2420NMP/100ml - 1815NMP100/ml

RE= 605NMP/100ml

Con la implementación del filtro lento de arena se espera un resultado de remoción de 605 NMP/100ml de coliformes fecales, cumpliendo con el limite permisible de 2000NMP/100ml estipulado en la normativa vigente del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

• Sulfatos al 85%

Para determinar la remoción esperada se debe realizar una simple regla de tres, donde el 100% es equivalente al resultado del parámetro en el punto de entrada., véase en la tabla 3, luego el 85% es la remoción esperada de los sulfatos en el filtro.

En donde:

100% = 46.0 mg/lt

85%= remoción esperada

$$S = \frac{85\% * 46,0 \text{mg/lt}}{100\%}$$

$$S = \frac{39,1 \text{mg/lt}}{}$$

• Remoción esperada

En donde:

RE = remoción esperada

RUT= remoción en la unidad de tratamiento

LPDR= limite permisible dentro del rango

Con la implementación del filtro lento de arena se espera un resultado de remoción de 6,9mg/lt de sulfatos, cumpliendo con el limite permisible de 1000mg/lt estipulado en la normativa vigente del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

• Solidos Totales al 90%

Para determinar la remoción esperada se debe realizar una simple regla de tres, donde el 100% es equivalente al resultado del parámetro en el punto de entrada., véase en la tabla 3, luego el 90% es la remoción esperada de los sólidos totales en el filtro.

En donde:

100% = 1168 mg/lt

90%= remoción esperada

$$ST = \frac{\frac{90\% * 1168 \text{mg/lt}}{100\%}}{\frac{ST =}{1051,2 \text{mg/lt}}}$$

• Remoción esperada

Datos:

RE = remoción esperada

RUT= remoción en la unidad de tratamiento

LPDR= limite permisible dentro del rango

RE= LPDR - RUT

RE = 1168 mg/lt - 1051,2 mg/lt

RE= 116,8mg/lt

Con la implementación del filtro lento de arena se espera un resultado de remoción de 116,8mg/lt de sólidos totales, cumpliendo con el límite permisible de 1600mg/lt estipulado en la normativa vigente del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

• Demanda Bioquímica de Oxigeno (DBO₅) al 90%

Para determinar la remoción esperada se debe realizar una simple regla de tres, donde el 100% es equivalente al resultado del parámetro en el punto de entrada., véase en la tabla 3, luego el 90% es la remoción esperada de los sólidos totales en el filtro.

En donde:

100% = 438 mg/lt

90%= remoción esperada

$$ST = \frac{90\% * 438 \text{mg/lt}}{100\%}$$

$$ST = \frac{394,2 \text{mg/lt}}{}$$

Remoción esperada

Datos:

RE = remoción esperada

RUT= remoción en la unidad de tratamiento

LPDR= limite permisible fuera del rango

RE= LPFR-RUT

RE = 438 mg/lt - 394,2 mg/lt

 $RE= \frac{43,8 \text{mg/lt}}{}$

62

Con la implementación del filtro lento de arena se espera un resultado de remoción de 43,8mg/lt

de DBO₅, cumpliendo con el limite permisible de 100mg/lt estipulado en la normativa vigente

del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua

Dulce.

Cámara de Cloración

La implementación de esta medida propuesta, permitirá reducir microorganismos paragónenos

presentes en el agua, se encontrará en la parte final de la planta de tratamiento, donde ya se

podrá descargar al Río Cutuchi, tendrá unas dimensiones de:

• un volumen de 19,2m³,

• un área de 4,12m²,

• cantidad de cloro a invectar en el agua residual será de 1,53kg/día por medio de una

bomba dosificadora.

Coliformes fecales en 85%

Para determinar la remoción esperada se debe realizar una simple regla de tres, donde el 100%

es equivalente al resultado del parámetro en el punto de entrada., véase en la tabla 3, luego el

85% es la remoción esperada de los coliformes fecales en el filtro.

En donde:

100% = 605 NMP/100ml

85% = remoción esperada

85% * 605NMP/100ml

CF= 100%

10070

CF= 514,25NMP/100ml

• Remoción esperada de los coliformes fecales.

En donde:

RE = remoción esperada

RUT= remoción en la unidad de tratamiento

LPFR= limite permisible fuera del rango

RE= LPFR-RUT

RE = 605NMP/100ml - 514,25NMP100/ml

RE= 90,75NMP/100ml

Con la implementación de la cámara de cloración se espera un resultado de remoción de 90,75 NMP/100ml, cumpliendo con el limite permisible de 2000NMP/100ml estipulado en la normativa vigente del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

REMOCIÓN ESPERADA

Tabla 6 Remoción esperada

UNIDAD DE TRATAMIENTO		Filtro Lento de Arena	Cámara de Cloración	Remoción esperada	Limite permisible	Observaciones
PARAMETRO	UNIDADES	ue Arena	Cioración	total	permisible	
Coliformes Fecales	NMP/100ml	605	90,75	90,75	2000	CUMPLE
Sulfatos	mg/lt	6,9		6,9	1000	CUMPLE
Solidos Totales	mg/lt	116,8		116,8	1600	CUMPLE
Demanda Bioquímica de Oxigeno	mg/lt	43,8		43,8	100	CUMPLE

Elaborado por: Lorena Bayas, 2019

EFICIENCIA GENERAL ESPERADA

La eficiencia esperada según las medidas propuestas para reducir la contaminación al cuerpo de agua dulce Río Cutuchi, se lo desarrollo en base a los resultados de laboratorio del punto de entrada de la tabla N. 3 y los resultados obtenidos de remoción esperada de la tabla N. 6

$$\%EF = \frac{FZ - FA}{FZ} * 100 =$$

- %EF: Grado de eficiencia en porcentaje
- FZ: Sumatoria de las cargas que ingresan a la planta
- FA: Sumatoria de las cargas en el flujo de salida en la planta

• Eficiencia Coliformes Fecales

%EF = FZ - FA *100

La eficiencia en la reducción de coliformes fecales actualmente es 0.00%, mientras que la eficiencia esperada con las propuestas establecidas es 96,25%, siendo un valor positivo por la reducción de los niveles de este parámetro.

• Eficiencia Sulfatos

$$\%EF = \frac{FZ - FA}{FZ} *100$$

$$\%EF = \frac{46,0 \text{mg/lt} - 6,9 \text{mg/lt}}{46,0 \text{mg/lt}} *100$$

$$\%EF = \frac{85\%}{}$$

La eficiencia en la reducción de sulfatos actualmente es 36,96%, mientras que la eficiencia esperada con las propuestas establecidas es 85%, siendo un valor positivo por la reducción de los niveles de este parámetro.

• Eficiencia Solidos Totales

La eficiencia en la reducción de sólidos totales actualmente es 34,59%, mientras que la eficiencia esperada con las propuestas establecidas es 90%, siendo un valor positivo por la reducción de los niveles de este parámetro.

• Eficiencia Demanda Bioquímica de Oxigeno

La eficiencia en la reducción de la demanda bioquímica de oxigeno actualmente es 68,49% valor positivo, pero no mantiene la reducción bajo el nivel permisible mientras que la eficiencia esperada con las propuestas establecidas es 90%, siendo un valor positivo por la reducción de los niveles de este parámetro.

• Promedio General de Eficiencia

Para la realización del promedio general se suma todos los porcentajes obtenidos y divididos al número de parámetros considerados.

EFICIENCIA GENERAL ESPERADA

Tabla 7 Cuadro comparativo de eficiencias

PARAMETRO	EFICIENCIA ACTUAL	EFICIENCIA ESPERADA
Coliformes Fecales	0,00%	96,25%
Sulfatos	36,96%	85%
Solidos Totales	34,59%	90%
Demanda Bioquímica de Oxigeno	68,49%	90%

Elaborado por: Lorena Bayas, 2019

COMPARACION DE LA EFICIENCIA ACTUAL Y LA ESPERADA

66

Actualmente la eficiencia de la planta de tratamiento sector El Camal es 55,14%, mientras que

la eficiencia esperada con la propuesta establecida es 90,31%, aumentando en un 35,17% su

eficiencia general, demostrando que la propuesta es factible para su implementación inmediata.

Cerramiento de toda el área de la Planta de Tratamiento.

Se propone la construcción de un cerramiento en toda el área de la planta para evitar el ingreso de personas no autorizadas y animales como ganado. Este cerramiento contara con las siguientes dimensiones:

• Altura Total: 2,00m

• Altura de pared: 0,50m

• Altura de la malla: 1,50m

• Ancho de la puerta: 4,00m

• Altura de la puerta: 2,00m

• Ancho de la columna y pared: 0,20m

Tabla 8 Plan de ejecución de la propuesta PTAR El Camal

PLAN DE EJECUCION DE LA PROPUESTA								
LUGAR DE APLICACIÓN: Planta de Tratamiento de Aguas Residuales sector El Camal								
RESPONSABLE	RESPONSABLE: Departamento de agua potable y alcantarillado del GAD Municipal del Cantón Salcedo.							
ASPECTO	IMPACTO		MEDIDAS PROPUESTAS	MEDIO DE	PLAZO			
AMBIENTAL	IDENTIFICAD	00			VERIFICACION			
AGUA	Altos niveles de conce de coliformes fecales y Eficiencia baja		Implementación de filtros lentos de arena y una cámara de cloración	Aumento de la eficiencia en el funcionamiento de la planta de tratamiento.	Análisis de eficiencia del funcionamiento de la planta mensual.	5 meses		
	solidos totales Interacción de dinorgánicos, escudesechos vegetales, de animales, basura con	n el agua	Recolección de los desechos presentes en los alrededores de la planta por parte del recolector municipal Mantenimiento general de la planta de tratamiento	Cumplimiento de los límites permisibles de la normativa vigente Ausencia de cualquier tipo de desecho en los alrededores de la planta de tratamiento Ausencia de personas sin autorización	Resultados de laboratorio y comparación con el Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.			
AIRE	en tratamiento y d Cutuchi Presencia de malos olor		Construcción de un cerramiento seguro en toda el área de la planta.	y animales de granja en el interior de la infraestructura Ausencia de malos olores	Inspecciones periódicas a la planta de tratamiento			

Elaborado por: Lorena Bayas, 2019

PRESUPUESTO DE LA PROPUESTA

MEDIDA PROPUESTA	PRECIO
Filtros Lentos de Arena	1700
Cámara de Cloración y Bomba	1200
dosificadora	
Cerramiento	2000
Puerta Metálica	350
Mantenimiento	1200
Total	6450

Conclusiones

- Se ha realizado el diseño respectivo de varias medidas como: tres filtros lentos de arena y una cámara de cloración, para mitigar los impactos actualmente se evidencia por parte de los contaminantes hídricos.
- La implementación de los nuevos procesos de tratamiento propuestos, se espera cumplir con el Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce, como se evidencia en la tabla N. 6.
- Con las medidas diseñadas se pretenden aumentar la eficiencia de la planta a un 90,31%, cumpliendo con la meta establecida de 90%, y demostrando teóricamente que las propuestas diseñadas son viables para su ejecución.

Recomendaciones

- Realizar la respectiva implementación de las medidas diseñadas, para reducir los impactos generados por contaminantes hídricos y garantizar un tratamiento adecuado de las aguas residuales.
- Desarrollar una limpieza de los alrededores de la planta de tratamiento, retirando los escombros de construcción, materia orgánica e inorgánica y reubicarlos en una zona adecuada para la disposición final de estos desechos.
- Construir un cerramiento adecuado en toda el área para evitar que las personas sin autorización y animales ingresen a la planta.

12. IMPACTOS (TÉCNICOS, SOCIALES, AMBIENTALES O ECONÓMICOS)

• Impactos Técnicos

Debido a la deficiencia que presenta la planta de tratamiento de 55,14%, se han desarrollado diferentes propuestas como son: los filtros lentos de arena que filtrara el agua eliminado agentes patógenos, reduciendo los niveles de los sólidos totales, sulfatos y DBO₅, la cámara de cloración que desinfectara el agua tratada para descargar directamente al Río Cutuchi. En la tabla N. 6 se evidencia los resultados esperados por las medidas propuestas incrementando la eficiencia general a un 90,31% y cumplir con los niveles permisibles del Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce.

• Impactos Ambientales

La planta de tratamiento sector El Camal, se encuentra generando malos olores lo cual causa una contaminación al aire, la presencia de desechos inorgánicos tales como desechos sólidos causando una contaminación al suelo y ciertas unidades de tratamiento no se encuentra en un funcionamiento adecuado para el tratamiento de aguas residuales, descargando directamente y produciendo una contaminación al cuerpo receptor en un 44,86%.

Por medio de un mantenimiento adecuado por parte del Departamento de agua potable y alcantarillado del GAD Municipal de Salcedo, y la construcción respectiva de las medidas propuestas, permitirá operar y funcionar de una manera eficiente la planta de tratamiento en un 90,31%, reduciendo los impactos que actualmente genera la planta de tratamiento a un 9,69%, para garantizar el cumplimiento de los límites permisibles de descargas a un cuerpo de agua dulce.

• Impactos Económicos

El impacto a mitigar por la contaminación que genera la planta de tratamiento sector El Camal es evitar sanciones por parte del Ministerio de Ambiente del Ecuador (MAE), según el acuerdo ministerial 061.

Tomando en cuenta el costo y beneficio, las medidas propuestas son las más adecuadas y factibles para aumentar la eficiencia general de la planta de tratamiento en un 35,17%.

• Impactos Sociales

La ciudadanía se beneficiará de una a la planta de tratamiento de calidad, evitando problemas a la salud pública por contaminación al agua, suelo, y aire, el agua tratada podrá ser utilizada para diferentes actividades como riego y consumo de animales garantizando una buena calidad de vida de la población en 90%.

13. PRESUPUESTO DEL PROYECTO

	PRESUPUESTO PARA LA ELABORACIÓN DEL PROYECTO				
RECURSOS	CANTIDAD	v. unitario \$	V. TOTAL \$		
TALENTO HUMANO					
SALIDAS DE CAMPO	10	10\$	100\$		
RECURSOS MATERIALES	BADDEGIONEG 100	0.100777	10\$		
MATERIALES DE OFICINA	IMPRESIONES 100	0,10CTV			
ANALISIS DE LABORATORIO	1	2500	2500\$		
RECURSOS TECNOLOGICOS					
HORAS DE ALQUILER DEL COMPUTADOR	20	0,80	16\$		
AUTOCAD	1	25	25\$		
		Su	ıb Total	2651	
			12%	318,12	
		7	ГОТАL	2969,12	

14. CONCLUSIONES Y RECOMENDACIONES

• CONCLUSIONES

Mediante visitas in-situ se realizó su respectivo diagnostico actual de la planta de tratamiento, identificando y conociendo cada uno de los procesos unitarios que cuenta en su interior, se evidencio los impactos ambientales que genera esta planta en los recursos aire, suelo, agua y a la salud pública de la población que habitan en los alrededores de la planta de tratamiento.

Se determinó los parámetros (físicos, químicos y biológicos) estos fueron coliformes fecales, aceites y grasas, potencial de hidrogeno (pH), sulfatos, solidos suspendidos totales, solidos totales, demanda química de oxigeno (DQO), demanda bioquímica de oxigeno (DBO₅) mediante el protocolo establecido de recolección, envasado, etiquetado, almacenamiento y transporte de las muestras de los dos puntos de muestreo (entrada y salida), con los resultados obtenidos se comparó con la normativa vigente.

Mediante los resultados obtenidos de los puntos de muestreo (entrada y salida), se constató que cierto parámetro no cumple con el Acuerdo Ministerial 097, Anexo 1, Tabla 9. Límites de Descarga a un Cuerpo de Agua Dulce, como son: coliformes fecales con un valor de 2420NMP/100ml y la demanda bioquímica de oxigeno (DBO₅) con 138mg/lt, mientras que otros parámetros analizados se encuentran dentro de los límites permisibles con valor de: 0,2mg/lt de aceites y grasas, 7,6 de potencial de hidrogeno (pH), 29,0mg/lt de sulfatos, 87mg/lt de solidos suspendidos totales, 764mg/lt de solidos totales, 187mg/lt demanda química de oxigeno (DQO).

Por medio de la fórmula de la eficiencia se obtuvo el porcentaje de rendimiento de los parámetros determinados como: 0,00% en coliformes fecales, 98,32% en aceites y grasas, 36,96% en sulfatos, 72,47% en solidos suspendidos totales, 34,59% en solidos totales, 75,17% en demanda química de oxigeno (DQO), 68,49% en demanda bioquímica de oxigeno (DBO₅), posteriormente se obtuvo el porcentaje general de eficiencia de la planta de tratamiento sector El Camal de 55,14% siendo un valor positivo bajo, por el motivo que los parámetros de coliformes fecales y demanda bioquímica de oxigeno superan los límites permisibles, mientras que los sulfatos y solidos totales su porcentaje de eficiencia es bajo.

Durante 7 días a distintas horas se tomó medidas de la altura del agua en el ingreso de la planta de tratamiento para proceder al aforamiento del caudal que recibe siendo este de 17lt/sg, seguidamente con una población futura de 1122 habitantes en una proyección de 25 años, se obtuvo el caudal de diseño de 21,32/lt/sg, seguidamente se realizó el diseño de las medias de remediación propuestas que son: 3 unidades de filtros lentos de arena que cumplirán la función de reducir los niveles de coliformes fecales, detener sólidos, aumentar la eficiencia de sulfatos y (DBO₅), y el diseño de una cámara de cloración para desinfectar el agua y realizar la descarga directa cumpliendo con los límites permisibles estipulados en la normativa vigente.

Con las medidas propuestas se pretende mitigar los impactos y aumentar la eficiencia de la planta de tratamiento sector El Camal, con una remoción esperada de coliformes fecales de 2420NMP/100ml a un 90,75NMP/100ml, sulfatos de 46,0mg/lt a un 6,9mg/lt, solidos totales de 1168mg/lt a un 116,8mg/lt, demanda bioquímica de oxigeno (DBO₅) de 438mg/lt a un 43,8mg/lt y cumplir con los límites permisibles de la normativa ambiental vigente.

La planta de tratamiento de aguas residuales sector El Camal tiene una eficiencia de 55,14%, y con las nuevas medidas de remediación propuestas la eficiencia esperada es de 90,31%, lo cual se incrementa en un 35,17% es necesario y de vital importancia llevar acabo la implementación de estas medidas y mitigar los impactos actuales que existen en la planta.

RECOMENDACIONES

Se recomienda al Departamento de agua potable y alcantarillado del GAD Municipal del Cantón Salcedo, realizar un mantenimiento de la planta de tratamiento en todos sus procesos de manera periódica con la finalidad de optimizar la eficiencia de los mismos.

Se debe realizar una limpieza o recolección de los desechos sólidos como son: escombros, basura, materia inorgánica, desechos vegetales, desechos orgánicos, que se encuentran alrededor de la planta de tratamiento y la construcción de un cerramiento adecuado, una puerta segura ya que el existente se encuentra en mal estado con una puerta provisional de madera, garantizando que no ingrese personas sin autorización y animales como ganado.

Por medio de este proyecto de investigación el GAD Municipal del Cantón Salcedo, tendrá una propuesta técnica para mitigar los impactos que actualmente se producen por la planta de tratamiento, con el fin de evitar posibles sanciones del Ministerio del Ambiente del Ecuador (MAE) y garantizar la preservación del recurso hídrico, es de suma importancia la implementación inmediata de las medidas propuestas en este estudio.

15. BIBLIOGRAFÍA

- AGUASISTEC. (2003). Obtenido de AGUASISTEC: http://www.aguasistec.com/planta-de-tratamiento-de-aguas-residuales.php
- AMBIENTE, B. M. (1991). *LIBRO DE CONSULTA PARA EVALUACION AMBIENTAL*. ATV, A. A. (1998).
- CAMPOS, M. (2018). *SCRIBD.INC*. Obtenido de SCRIBD.INC: https://es.sribd.com

 CIDTA. (2015). Obtenido de CIDTA:

 http://cidta.usal.es/cursos/ETAP/modulos/libros/Caracteristicas.PDF
- FARIAS, B. (2017). *IAGUA-BLOG*. Obtenido de IGUA-BLOG: https://www.iagua.es/blogs/bettys-farias-marquez/conocimientos-basicos-plantas-tratamiento-aguas-residuales-ptar-modulo-i
- FIBRAS Y NORMAS. (MARZO de 2004). Obtenido de FIBRAS Y NORMAS: https://www.fibrasynormasdecolombia.com/terminos-definiciones/tipos-de-aguaresiduales/
- FNC. (10 de DICIEMBRE de 2018). *FIBRAS Y NORMAS*. Obtenido de FIBRAS Y NORMAS: https://www.fibrasynormasdecolombia.com/terminos-definiciones/cloracion-definicion-y-factores/
- GARCIA, K. (22 de MAYO de 2014). *PREZI*. Obtenido de PREZI: https://prezi.com/2ldqqtphdsvc/propiedades-fisicas-y-de-agregacion-de-las-aguas-residuales/
- GEORGE, T. (1995).
- LOZANO. (2012). *LECCION* 8. Obtenido de TRATAMIENTO: http://datateca.unad.edu.co/contenidos/358039/ContenidoLinea/leccion_8_desbaste.ht ml
- MARTINEZ, E. (1995). *TRATAMIENTO*, *VERTIDO Y REUTILIZACION*. Obtenido de https://www.dspace.espol.edu.ec/bitstream/123456789/6087/5/CAPITULO%202.pdf
- NESC. (2009). FILTRACION LENTA CON ARENA. TECNOLOGIA EN BREVE, 1.
- ODIAGA, F. (. (2014). AGUAS RESIDUALES. *FISCALIZACION AMBIENTAL*, 6-8. Obtenido de https://www.oefa.gob.pe/?wpfb_dl=7827
- OJEDA, M. (12 de JUNIO de 2015). *PREZI*. Obtenido de PREZI: https://prezi.com/ednk_pyuhe4t/sedimentacion-tipos-y-criterios-de-diseno-de-sedimentadores/
- ROMERO, J. (2010).

- SEPULVEDA, C. (12 de JUNIO de 2014). *PREZI*. Obtenido de PREZI: https://prezi.com>vertederos-triangulares
- VILLACRES, R. (2011). METODOLOGÍA DE MUESTREO Y AFORO DE AGUAS RESIDUALES. 5.

16. ANEXOS

16.1. Hoja de vida Autor

Datos Personales:

• Apellidos: Bayas Vizcaíno

• Nombres: Jessica Lorena

• **C.I.** 180450197-9

• Fecha de Nacimiento: 25 de marzo de 1991

• Estado civil: Soltera

• **Domicilio:** Tungurahua – Ambato – Santo Suelo – Av. Galo Vela y Gran Colombia

• **Celular:** 0997313344

• **Correo:** jessica.bayas9@utc.edu.ec

Formación Académica:

• Primaria: Unidad Educativa Alfonso Troya

• Secundaria: Unidad Educativa Ambato

• Superior: Universidad Técnica de Cotopaxi

Títulos obtenidos:

• Químico Biólogo

Título universitario a obtener:

• Ingeniera en Medio Ambiente

Cursos realizados:

- 2016, Introducción sobre el cambio climático, un cc: learn
- 2016, Capacitación en calidad ambiental, CONGOPE
- 2018, Los recursos hídricos en la provincia de Cotopaxi, Universidad Técnica de Cotopaxi.
- 2018, Manejo de instrumentación ambiental, Universidad Técnica de Cotopaxi.
- 2018, Seminario nacional ambiental, Prefectura de Cotopaxi.
- 2018, Seminario científico petróleo, ambiente, salud y sociedad, Universidad Andina Simón Bolívar.

16.2. Hoja de vida Tutor

Datos Personales:

• Apellidos: Lara Landázuri

• Nombres: Renán Arturo

• **C.I.** 040048801-1

• Fecha de Nacimiento: 17 de abril de 1956

• Estado civil: Casado

• **Domicilio:** Latacunga. Locoa

• **Celular:** 0984795339

• Correo: renan.lara@utc.edu.ec

• EN CASO DE EMERGENCIA CONTACTARSE CON: (NOMBRE Y TELÉFONO)

Martha Viera 032-809-576

Estudios realizados y Títulos obtenidos:

• **Tercer nivel:** Ingeniero civil (hidrólogo)

• Cuarto nivel: Diplomado en educación superior

• Cuarto nivel: Maestría en gestión de la producción

Historial profesional:

• Facultad académica en la que labora CAREN

• Carrera a la que pertenece: Medio Ambiente

• Periodo académico de ingreso a la UTC: 3 de septiembre 2001

16.3. Resultados análisis de aguas

ANALÍTICA AVANZADA - ASESORÍA Y LABORATORIOS ANAVANLAB CIA. LTDA.

Muestra AAALab No: 9331-5

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec

Pág 1 de 3

INFORME DE RESULTADOS No. 9331-5

1.- DATOS GENERALES

CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	03700420
DIRECCIÓN:	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA:	CUMPLE	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL		FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	ENTRADA PTAR EL CAMAL		RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018		PERÍODO DE REALIZACIÓN DE ANÁLISIS:	12/10/2018 al 31/10/2018

AA	PARAMETRO	METODO ANALITICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBR
1	Aceites y Grasas	AAA-PE-A001/ SM 5520 C	mg/L	11,9	30,0	CUMPLE	32,3
1	Aluminio	AAA-PE-A022/ SM 3111 D. EPA 3015	mg/L	< 1,000	5	CUMPLE	NA.
1	Arsénico	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	0,0104	0,1000	CUMPLE	30,0000
1	Bario	AAA-PE-A022/ SM 3111 D. EPA 3015	mg/L	< 1,0	2	CUMPLE	20
1	Cadmio	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,010	0,02	CUMPLE	20
1	Cianuros	AAA-PE-A004/ SM 4500 - CN E.	mg/L	< 0,010	0,1	CUMPLE	9,2
1	Cloro libre residual	AAA-PE-A005/ SM 4500 Cl G.	mg/L	0,24	0,50	CUMPLE	19,30
1	Cloruros	AAA-PE-A006/ SM 4500-CI - B	mg/L	54,6	1000,0	CUMPLE	5,1
1	Cobalto	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0.3	0,5	CUMPLE	20
1	Cobre	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0.05	1	CUMPLE	20
1	Cromo Hexavalente	AAA-PE-A009/ SM3500 B	mg/L	0,055	0,500	CUMPLE	16,600
1	Demanda Bioquímica de Oxígeno 5	AAA-PE-A010/ SM 5210 D	mg/L	438	100	NO CUMPLE	33
1	Demanda Química de Oxígeno	AAA-PE-A011/ SM 5220	mg/L	753	200	NO CUMPLE	14
1	Tensoactivos MBAS	AAA-PE-A012/SM 5540 C	mg/L	>2,92	0,5	NO CUMPLE	11
1	Fenoles	AAA-PE-A016/ SM 5530 B-C	mg/L	0.250	0,200	NO CUMPLE	15,200
1	Fluoruros	AAA-PE-A017/ SM 4500-F D	mg/L	0,48	5.00	CUMPLE	7.4
1	Fósforo Total	AAA-PE-A019/ SM 4500-P C.	mg/L	8,6	10,0	CUMPLE	13.4
1	Hierro	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	1,11	10,00	CUMPLE	20
1	Manganeso	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0.1	2	CUMPLE	20
1	Material Flotante	AAA-PE-A021/ SM 2530 B.	N/A	AUSENCIA	AUSENCIA	CUMPLE	NA NA

NOTAS:

AA (Acreditaciones):	*Interpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje y se han estimado con K=2, nivel de confianza 95,45%			
 Ensayos que se encuentran dentrol del alcance de acreditación SAE. 	N1: No es posible evaluar el cumplimiento debido a que el lí	mite superior del método es inferior a la norma			
(*): Los ensayos marcados con (*) no están incluídos en el alcance de acreditación SAE.					
2: Ensayos subcontratados. En el apartado de observaciones se indica el labo	ratorio subcontratado. ANAVANLAB asume la responsabilidad por los an	sálisis subcontradados			
El presente informe solo afecta a la muestra analizada.	Procedimiento de Toma de muestra utilizado por ANAVANI AR: AAA.PLADO3 / AAA.PLSD01				

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

MC0703-06

Muestra AAALab No:

9331-5

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec Pág 2 de 3

INFORME DE RESULTADOS No. 9331-5

1 DATOS GENERAL	ES			
CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	03700420	
DIRECCIÓN:	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA	

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA:	CUMPLE	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL		FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	ENTRADA PTAR EL CAMAL		RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018		PERÍODO DE REALIZACIÓN DE ANÁLISIS:	12/10/2018 al 31/10/2018

AA	PARAMETRO	METODO ANALÍTICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBE
1	Mercurio	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	< 0,0050	0,005	CUMPLE	20
1	Níquel	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,30	2	CUMPLE	20
1	Nitrógeno Amoniacal	AAA-PE-A026/ SM 4500 NH3 F / HACH 8155	mg/L	>50	30	NO CUMPLE	
1	pH	AAA-PE-A029/ SM 4500 H+B.	unid pH	7,5	6,0 - 9,0	CUMPLE	1.0
1	Plata	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,1	0,1	CUMPLE	1,0
1	Plomo	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,2	0,2	CUMPLE	20
1	Selenio	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	< 0,005	0,1	CUMPLE	20
1	Sólidos Suspendidos	AAA-PE-A034/ HACH 8006	mg/L	316	130	NO CUMPLE	
1	Sólidos Totales	AAA-PE-A035/SM 2540 B	mg/L	1168	1600		9
1	Sulfatos	AAA-PE-A037/ SM 4500 SO42- E	mg/L	46.0	1000,0	CUMPLE	6
1	Hidrocarburos Totales de Petróleo	AAA-PE-A020/ SM 5520 F	mg/L	2,88	20,00	CUMPLE	16,0 34,50
1	Zinc	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0.05	5	CUMPLE	
*)	Boro	SM 4500-B C	mg/L	0,700	2,000	CUMPLE	20
2	Estaño	PEE-GQM-FQ-33	mg/L	0,0062	5,0000		20,000
L	Sulfuros	AAA-PE-A030/ SM 4500 S2 / HACH 8131	mg/L	2.80	0,50	CUMPLE	NA
2	Nitrógeno Total Kjedahl	SM 4500 N org C	mg/L	67	50	NO CUMPLE	14,10
1	Color real dilución 1/20		U. Pt-Co	125		NO CUMPLE	NA
	Temperatura (in situ)	AAA-PI-A002/ SM 2550 B	°C	20,2	40.0	NO CUMPLE CUMPLE	NA

NOTAS:

AA (Acreditaciones):	*Interpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje y se han estimado con K=2, nivel de confianza 95,45%			
 Ensayos que se encuentran dentrol del alcance de acreditación SAE. 	N1: No es posible evaluar el cumplimiento debido a que el l				
(*): Los ensayos marcados con (*) no están incluidos en el alcance de acreditación SAE.		No es posible evaluar el cumplimiento debido a que el límite superior del método es inferior a la norma No es posible evaluar el cumplimiento debido a que el límite de cuantificación del método es superior a la norma			
2: Ensayos subcontratados. En el apartado de observaciones se indica el labo	ratorio subcontratado. ANAVANI AR asuma la responsabilidad e en la contrata	40			
El presente informe solo afecta a la muestra analizada.	Procedimiento de Toma de muestra utilizado por ANAVANLAB: A				

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió. Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

MC0703-06

Muestra AAALab No:

9331-5

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec Pág 3 de 3

INFORME DE RESULTADOS No. 9331-5

1.- DATOS GENERALES

CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	03700420
DIRECCIÓN:	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA:	CUMPLE	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL		FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	ENTRADA PTAR EL CAMAL		RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018		PERÍODO DE REALIZACIÓN DE ANÁLISIS:	12/10/2018 al 31/10/2018

3. RES	ULTADOS: Norma de Comparación	n: TULAS, AM097, ANEXO 1, TABLA 9.	LÍMITES DE DESCAF	RGA A UN CUERF	O DE AGUA DU	JLCE	
AA	PARAMETRO	METODO ANALITICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBR
1	COLIFORMES FECALES NMP	AAA-PE-A015/ SM 9223 B	NMP/100mL	>2420	2000	NO CUMPLE	
2	Pesticidas Organoclorados	EPA 8270D Modificado	mg/L	< 0,0001	0,05	CUMPLE	45
2	Pesticidas Organofosforados	EPA 8270D MODIFICADO	mg/L	< 0,002	0,1	CUMPLE	45

NOTAS:

AA (Acreditaciones):	*Interpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje y se han estimado con K=2, nivel de confianza 95,45%			
 Ensayos que se encuentran dentrol del alcance de acreditación SAE. 	N1: No es posible evaluar el cumplimiento debido a que el lí	mite superior del método es inferior a la norma			
(*): Los ensayos marcados con (*) no están incluídos en el alcance de acreditación SAE.					
2: Ensayos subcontratados. En el apartado de observaciones se indica el labo	ratorio subcontratado. ANAVANLAB asume la responsabilidad por los an	iálicis subenotradados			
El presente informe solo afecta a la muestra analizada.	Procedimiento de Toma de muestra utilizado por ANAVANIAR: AAA-PLACO3 / AAA-PLACO3				

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió.

4. OBSERVACIONES

Resultado de Estaño realizado por el Laboratorio GQM, acreditado por el SAE con N° OAE LE 2C 05-001. Resultado de Nitrógeno Total Kjedahl realizado por el Laboratorio CORPLAB, acreditado por el SAE con N° OAE LE 2C 05-005

INFORME APROBADO Y AUTORIZADO POR:

Lcda. Alejandra Hidalgo Gerente Técnica ANAVANLAB CIA. LTDA.

Quito, 4 de noviembre del 2018

MC0703-06

Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

Muestra AAALab No:

9331-6

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec

Pág 1 de 3

INFORME DE RESULTADOS No. 9331-6

1 DATOS GENERALES			
CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	03700420
DIRECCIÓN:	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA:	CUMPLE	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL		FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	SALIDA PTAR EL CAMAL		RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018		PERÍODO DE REALIZACIÓN DE ANÁLISIS:	12/10/2018 al 31/10/2018

AA	PARAMETRO	METODO ANALITICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBF
1	Aceites y Grasas	AAA-PE-A001/ SM 5520 C	mg/L	0,2	30,0	CUMPLE	6,1
1	Aluminio	AAA-PE-A022/ SM 3111 D. EPA 3015	mg/L	< 1,000	5	CUMPLE	NA
1	Arsénico	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	0,0054	0,1000	CUMPLE	30,0000
1	Bario	AAA-PE-A022/ SM 3111 D. EPA 3015	mg/L	< 1,0	2	CUMPLE	20
1	Cadmio	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,010	0,02	CUMPLE	20
1	Cianuros	AAA-PE-A004/ SM 4500 - CN E.	mg/L	< 0,010	0,1	CUMPLE	9.2
L	Cloro libre residual	AAA-PE-A005/ SM 4500 Cl G.	mg/L	0,05	0,50	CUMPLE	19,30
1	Cloruros	AAA-PE-A006/ SM 4500-CI - B	mg/L	49,6	1000,0	CUMPLE	5,1
1	Cobalto	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,3	0,5	CUMPLE	20
1	Cobre	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,05	1	CUMPLE	20
1	Cromo Hexavalente	AAA-PE-A009/ SM3500 B	mg/L	0,067	0,500	CUMPLE	16,600
1	Demanda Bioquímica de Oxígeno 5	AAA-PE-A010/ SM 5210 D	mg/L	138	100	NO CUMPLE	8,8
ı	Demanda Química de Oxígeno	AAA-PE-A011/ SM 5220	mg/L	187	200	CUMPLE	8,6
	Tensoactivos MBAS	AAA-PE-A012/ SM 5540 C	mg/L	>2,92	0,5	NO CUMPLE	11
l	Fenoles	AAA-PE-A016/ SM 5530 B-C	mg/L	0,150	0,200	CUMPLE	15,200
1	Fluoruros	AAA-PE-A017/ SM 4500-F D	mg/L	0,54	5,00	CUMPLE	7.4
l	Fósforo Total	AAA-PE-A019/ SM 4500-P C.	mg/L	4,0	10,0	CUMPLE	6,6
1	Hierro	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	0,29	10,00	CUMPLE	20
i	Manganeso	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,1	2	CUMPLE	20
1	Material Flotante	AAA-PE-A021/ SM 2530 B.	N/A	AUSENCIA	AUSENCIA	CUMPLE	NA

NOTAS:

AA (Acreditaciones):	*Interpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje y se han estimado con K=2, nivel de confianza 95,45%			
1: Ensayos que se encuentran dentrol del alcance de acreditación SAE.	N1: No es posible evaluar el cumplimiento debido a que el límite superior del método es inferior a la norma				
(*): Los ensayos marcados con (*) no están incluídos en el alcance de acreditación SAE.	N2: No es posible evaluar el cumplimiento debido a que el l				
2: Ensayos subcontratados. En el apartado de observaciones se indica el labor	ratorio subcontratado. ANAVANLAB asume la responsabilidad por los a	nálisis subcontradados.			
El presente informe solo afecta a la muestra analizada.	Procedimiento de Toma de muestra utilizado por ANAVANLAB: AAA-PI-A003 / AAA-PI-S001				

MC0703-06

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió. Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

Muestra AAALab No:

9331-6

Pág 2 de 3

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec

INFORME DE RESULTADOS No. 9331-6

1.- DATOS GENERALES

CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	03700420
DIRECCIÓN:	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA:	CUMPLE	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL		FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	SALIDA PTAR EL CAMAL		RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018		PERÍODO DE REALIZACIÓN DE ANÁLISIS:	12/10/2018 al 31/10/2018

AA	PARAMETRO	METODO ARAEITICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBE
1	Mercurio	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	< 0,0050	0,005	CUMPLE	20
1	Niquel	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,30	2	CUMPLE	20
1	Nitrógeno Amoniacal	AAA-PE-A026/ SM 4500 NH3 F / HACH 8155	mg/L	45,00	30,00	NO CUMPLE	23,80
1	pН	AAA-PE-A029/ SM 4500 H+B.	unid pH	7,6	6,0 - 9,0	CUMPLE	1,0
1	Plata	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,1	0,1	CUMPLE	20
1	Plomo	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0,2	0,2	CUMPLE	20
1	Selenio	AAA-PE-A023/ SM 3114 C, 3112 B. EPA 3015	mg/L	< 0,005	0,1	CUMPLE	20
1	Sólidos Suspendidos	AAA-PE-A034/ HACH 8006	mg/L	87	130	CUMPLE	9
l	Sólidos Totales	AAA-PE-A035/ SM 2540 B	mg/L	764	1600	CUMPLE	6
l	Sulfatos	AAA-PE-A037/ SM 4500 SO42- E	mg/L	29,0	1000,0	CUMPLE	16.0
	Hidrocarburos Totales de Petróleo	AAA-PE-A020/ SM 5520 F	mg/L	0,90	20,00	CUMPLE	14,6
l	Zinc	AAA-PE-A022/ SM 3111 B. EPA 3015	mg/L	< 0.05	5	CUMPLE	20
*)	Boro	SM 4500-B C	mg/L	< 0,250	2	CUMPLE	20
2	Estaño	PEE-GQM-FQ-33	mg/L	0,0035	5,0000	CUMPLE	NA NA
	Sulfuros	AAA-PE-A030/ SM 4500 S2 / HACH 8131	mg/L	0,49	0,50	CUMPLE	14,10
2	Nitrógeno Total Kjedahl	SM 4500 N org C	mg/L	50	50	CUMPLE	NA NA
	Color real dilución 1/20		U. Pt-Co	50	1	NO CUMPLE	NA NA
	Temperatura (in situ)	AAA-PI-A002/ SM 2550 B	°C	20,1	40,0	CUMPLE	3,5

NOTAS:

MC0703-06

AA (Acreditaciones):	*Interpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje y se han estimado con K=2, nivel de confianza 95,45%			
 Ensayos que se encuentran dentrol del alcance de acreditación SAE. 	N1: No es posible evaluar el cumplimiento debido a que el li	mite superior del método es inferior a la norma			
(*): Los ensayos marcados con (*) no están incluídos en el alcance de acreditación SAE.					
2: Ensayos subcontratados. En el apartado de observaciones se indica el labo	ratorio subcontratado. ANAVANLAB asume la responsabilidad por los ar	nálitis subcontradados			
El presente informe solo afecta a la muestra analizada.	Procedimiento de Toma de muestra utilizado por ANAVANLAB: AAA-PI-A003 / AAA-PI-S001				

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió. Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

os O Muestra AAALab No:

9331-6

Pág 3 de 3

La Primavera I, Leonardo Da Vinci S6-236 y Alberto Durero, Cumbayá. Contactos: 3550122 / 5143303 / servicioalcliente@aaalab.com.ec

INFORME DE RESULTADOS No. 9331-6

1.- DATOS GENERALES

CLIENTE:	GOBIERNO AUTONOMO DESCENTRALIZADO MUNICIPAL DEL	TELÉFONO:	T
DIRECCIÓN:		TELEFONO:	03700420
DIRECCIOIV.	BOLIVAR S/N Y SUCRE	ATENCIÓN A:	ING. CARLOS GARCIA

2. INFORMACION DE LA MUESTRA	INTEGRIDAD DE LA MUESTRA: CUM		
	INTEGRIDAD DE LA MUESTRA: CUM	LUGAR DE MUESTREO:	CAMAL
TIPO DE MUESTRA:	AGUA RESIDUAL	FECHA DE MUESTREO:	12/10/2018
IDENTIFICACIÓN DE LA MUESTRA: (Dada por el cliente)	SALIDA PTAR EL CAMAL	RESPONSABLE DEL MUESTREO:	ANAVANLAB
FECHA DE RECEPCIÓN MUESTRA:	12/10/2018	PERÍODO DE REALIZACIÓN DE ANÁLISIS	12/10/2018 at 21/10/2018

3. RES	ULTADOS: Norma de Comparació	n: TULAS, AM097, ANEXO 1, TABLA 9	LÍMITES DE DESCAI	RGA A UN CUERI	PO DE AGUA DI	JLCE	
AA	PARAMETRO	METODO ANALÍTICO	UNIDADES	RESULTADO	VALORES DE NORMA	* CUMPLI- MIENTO	**INCERTIDUMBR
1	COLIFORMES FECALES NMP	AAA-PE-A015/ SM 9223 B	NMP/100mL	>2420	2000	NO CUMPLE	± %U NA
2	Pesticidas Organoclorados Pesticidas Organofosforados	EPA 8270D Modificado	mg/L	< 0,0001	0,05	CUMPLE	45
	r esticidas Organofosforados	EPA 8270D MODIFICADO	mg/L	< 0.002	0.1	CLIMPLE	AE.

NOTAS:

AA (Acreditaciones):	*Inte	erpretaciones fuera del alcance de acreditación SAE	**Los valores de incertidumbre se expresan en porcentaje se han estimado con K=2, nivel de confianza 95,45%	
1: Ensayos que se encuentran dentrol del alcance de acreditación SAE.	N1:	No es posible evaluar el cumplimiento debido a que el li		
(*): Los ensayos marcados con (*) no están incluídos en el alcance de acceditación SAE.	N2:	No es posible evaluar el cumplimiento debido a que el límite superior del método es inferior a la norma No es posible evaluar el cumplimiento debido a que el límite de cuantificación del método es superior a la norma		
2: Ensayos subcontratados. En el apartado de observaciones se indica el labo	ratorio subco			
El presente informe solo afecta a la muestra analizada.		dimiento de Toma de muestra utilizado por ANAVANLAB: A		

Si el cliente suministró la muestra, los resultados aplican a la muestra como se recibió.

4. OBSERVACIONES

Resultado de Estaño realizado por el Laboratorio GQM, acreditado por el SAE con N° OAE LE 2C 05-001. Resultado de Nitrógeno Total Kjedahl realizado por el Laboratorio CORPLAB, acreditado por el SAE con N° OAE LE 2C 05-005

INFORME APROBADO Y AUTORIZADO POR:

Lcda. Alejandra Hidalgo Gerente Técnica ANAVANLAB CIA. LTDA. Quito, 4 de noviembre del 2018

MC0703-06

Se prohibe su reproducción total o parcial sin autorización de ANAVANLAB CIA LTDA.

16.4. Registro de alturas del caudal

UNIVERSIDAD TECNICA DE COTOPAXI

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES INGENIERIA EN MEDIO AMBIENTE FICHA DE CAMPO NOMBRE: BAYAS VIZCAINO JESSICA LORENA FECHA: 11/01/19 AL 17/01/19 PROYECTO: ANALISIS DE EFICIENCIA DE LA PLANTA DE **PROVINCIA** CANTON **PARROQUIA BARRIO** TRATAMIENTO DE AGUAS RESIDUALES, SECTOR EL CAMAL **AUGUSTO** DEL CANTON SALCEDO, PROVINCIA DE COTOPAXI, COTOPAXI SALCEDO SAN MIGUEL **DAVALOS** PERIODO 2018 (CAMAL) **HORA** DIA 1 DIA 2 DIA 3 DIA 4 DIA 5 DIA 6 DIA 7 7:00am 14,6 cm 17,5 cm 15,2 cm 16,5 cm 16,4 cm 16,8 cm 17, Hcm 13:00pm 15,00 cm 16,10 cm 16,4 cm 16,5 cm 10 cm 16,2 cm 15,9 cm 19:00pm 16,00 cm 15,5 cm 17:00 cm 16,8 cm 17,5 cm 16,2 cm 16 cm **PROMEDIO** 15,2 cm 15,7 cm 16,86 cm 17,13 cm 16,33 cm DIARIO 14,43 cm 16,16 cm PROMEDIO 16,03 cm **SEMANAL**

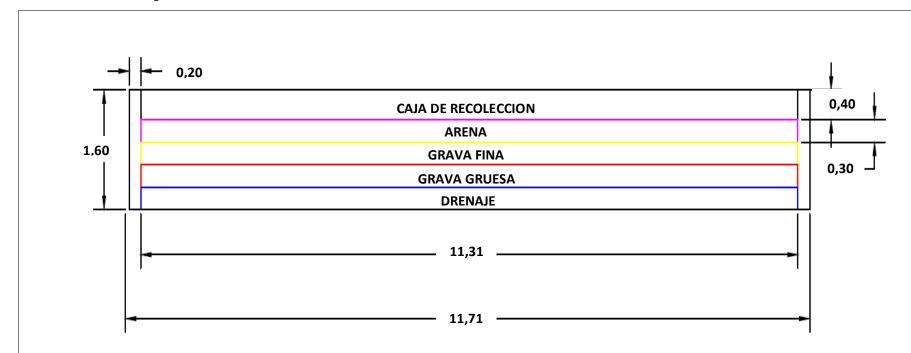
16.5. Planta de tratamiento sector El Camal

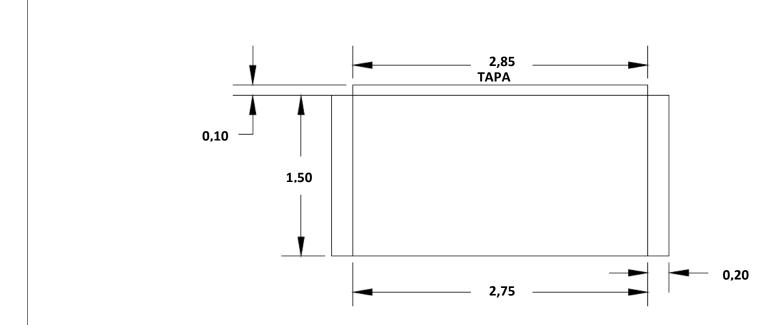
Ilustración 10 PTAR sector El Camal

Ilustración 11 Recolección de muestras

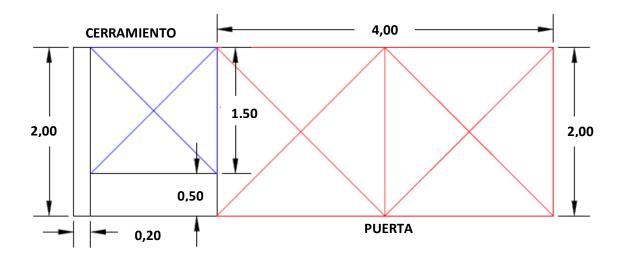
Ilustración 12 Muestras recolectadas

Ilustración 13 Visita in-situ y estado de los procesos de tratamiento


Ilustración 14 Alrededores y cerramiento de la PTAR


Ilustración 15 Registro de alturas del caudal

16.6. Medidas Propuestas


ESPECIFICACIONES	
Longitud y ancho: 11,31m	Grava Fina: 0,30m
Profundidad: 1,60m	Arena: 0,30m
Drenaje: 0,30m	Caja de recolección: 0,40m
Grava Gruesa: 0,30m	Grosor de las paredes: 0,20m

FILTRO LENTO DE ARENA	UBICACIÓN: PTAR EL CAMAL, CANTON SALCEDO
LEVANTADO: JESSICA LORENA BAYAS VIZCAINO	FECHA: 24/03/2019
REVIZADO POR: ING. RENÁN LARA	DETALLE: VISTA EN CORTE

ESPECIFICACIONES	
Longitud: 2,80m	Tapa largo: 2,85m
Ancho: 2,75m	Grosor: 0,10m
Profundidad: 1,50m	Grosor de pared: 0,20m

CAMARA DE CLORACION	UBICACIÓN: PTAR EL CAMAL, CANTON SALCEDO
LEVANTADO: JESSICA LORENA BAYAS VIZCAINO	FECHA: 24/03/2019
REVIZADO POR: ING. RENÁN LARA	DETALLE: VISTA EN CORTE

ESPECIFICACIONES	
Altura Total: 2,00m	Ancho de la puerta: 4,00m
Altura de pared: 0,50m	Altura de le puerta: 2,00m
Altura de la malla: 1,50m	Ancho de la columna y pared: 0,20m

CERRAMIENTO Y PUERTA DE INGRESO	UBICACIÓN: PTAR EL CAMAL, CANTON SALCEDO
LEVANTADO: JESSICA LORENA BAYAS VIZCAINO	FECHA: 24/03/2019
REVIZADO POR: ING. RENÁN LARA	DETALLE: VISTA EN CORTE