

UNIVERSIDAD TÉCNICA DE COTOPAXI

FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

CARRERA DE INGENIERÍA AMBIENTAL

PROYECTO DE INVESTIGACIÓN

Título:

"SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO DE LA CALIDAD DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA"

Proyecto de Investigación presentado previo a la obtención del Título de Ingeniera Ambiental

Autora:

Vásquez Camalle Lisbeth Mireya

Tutor:

Ortiz Bustamante Vladimir Marconi Ing. MSc. Mg.

LATACUNGA – ECUADOR Marzo 2022 DECLARACIÓN DE AUTORÍA

Lisbeth Mireya Vasquez Camalle, con cédula de ciudanía No. 0550190060, declaro ser

autora del presente proyecto de investigación: "Sistematización de los procesos de monitoreo

de la calidad del aire desarrollados en el cantón Latacunga", siendo el Ingeniero MSc. Mg

Vladimir Marconi Ortiz Bustamante, Tutor del presente trabajo; y, eximo expresamente a la

Universidad Técnica de Cotopaxi y a sus representantes legales de posibles reclamos o

acciones legales.

Además, certifico que las ideas, conceptos, procedimientos y resultados vertidos en el

presente trabajo investigativo, son de mi exclusiva responsabilidad.

Latacunga, 18 de marzo del 2022

Lisbeth Mireya Vasquez Camalle

Ing. Mg. Vladimir Marconi Ortiz Bustamante

Estudiante

Docente Tutor

CC: 0550190060

CC: 0502188451

ii

CONTRATO DE CESIÓN NO EXCLUSIVA DE DERECHOS DE AUTOR

Comparecen a la celebración del presente instrumento de cesión no exclusiva de obra, que celebran de una parte VASQUEZ CAMALLE LISBETH MIREYA, identificada con cédula de ciudadanía 0550190060 de estado civil soltera, a quien en lo sucesivo se denominará LA CEDENTE; y, de otra parte, el Ingeniero Ph.D. Cristian Fabricio Tinajero Jiménez, en calidad de Rector, y por tanto representante legal de la Universidad Técnica de Cotopaxi, con domicilio en la Av. Simón Rodríguez, Barrio El Ejido, Sector San Felipe, a quien en lo sucesivo se le denominará LA CESIONARIA en los términos contenidos en las cláusulas siguientes:

ANTECEDENTES: CLÁUSULA PRIMERA. - LA CEDENTE es una persona natural estudiante de la carrera de Ingeniería Ambiental, titular de los derechos patrimoniales y morales sobre el trabajo de grado "Sistematización de los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga", la cual se encuentra elaborada según los requerimientos académicos propios de la Facultad; y, las características que a continuación se detallan:

Historial Académico

Inicio de la carrera: abril 2018- agosto 2018

Finalización de la carrera: octubre 2021 – marzo 2022

Aprobación en Consejo Directivo: 7 de enero del 2022

Tutor: Ing. MSc. Mg. Vladimir Marconi Ortiz Bustamante

Tema: "Sistematización de los procesos de monitoreo de la calidad del aire desarrollados en el Cantón Latacunga"

CLÁUSULA SEGUNDA. - LA CESIONARIA es una persona jurídica de derecho público creada por ley, cuya actividad principal está encaminada a la educación superior formando profesionales de tercer y cuarto nivel normada por la legislación ecuatoriana la misma que establece como requisito obligatorio para publicación de trabajos de investigación de grado en su repositorio institucional, hacerlo en formato digital de la presente investigación.

CLÁUSULA TERCERA. - Por el presente contrato, LA CEDENTE autoriza a LA CESIONARIA a explotar el trabajo de grado en forma exclusiva dentro del territorio de la República del Ecuador.

CLÁUSULA CUARTA. - OBJETO DEL CONTRATO: Por el presente contrato **LA CEDENTE**, transfiere definitivamente a **LA CESIONARIA** y en forma exclusiva los siguientes derechos patrimoniales; pudiendo a partir de la firma del contrato, realizar, autorizar o prohibir:

- a) La reproducción parcial del trabajo de grado por medio de su fijación en el soporte informático conocido como repositorio institucional que se ajuste a ese fin.
- b) La publicación del trabajo de grado.

- c) La traducción, adaptación, arreglo u otra transformación del trabajo de grado con fines académicos y de consulta.
- d) La importación al territorio nacional de copias del trabajo de grado hechas sin autorización del titular del derecho por cualquier medio incluyendo mediante transmisión.
- e) Cualquier otra forma de utilización del trabajo de grado que no está contemplada en la ley como excepción al derecho patrimonial.

CLÁUSULA QUINTA. - El presente contrato se lo realiza a título gratuito por lo que LA CESIONARIA no se halla obligada a reconocer pago alguno en igual sentido LA CEDENTE declara que no existe obligación pendiente a su favor.

CLÁUSULA SEXTA. - El presente contrato tendrá una duración indefinida, contados a partir de la firma del presente instrumento por ambas partes.

CLÁUSULA SÉPTIMA. - CLÁUSULA DE EXCLUSIVIDAD. - Por medio del presente contrato, se cede en favor de LA CESIONARIA el derecho a explotar la obra en forma exclusiva, dentro del marco establecido en la cláusula cuarta, lo que implica que ninguna otra persona incluyendo LA CEDENTE podrá utilizarla.

CLÁUSULA OCTAVA. - LICENCIA A FAVOR DE TERCEROS. - LA CESIONARIA podrá licenciar la investigación a terceras personas siempre que cuente con el consentimiento de LA CEDENTE en forma escrita.

CLÁUSULA NOVENA. - El incumplimiento de la obligación asumida por las partes en la cláusula cuarta, constituirá causal de resolución del presente contrato. En consecuencia, la resolución se producirá de pleno derecho cuando una de las partes comunique, por carta notarial, a la otra que quiere valerse de esta cláusula.

CLÁUSULA DÉCIMA. - En todo lo no previsto por las partes en el presente contrato, ambas se someten a lo establecido por la Ley de Propiedad Intelectual, Código Civil y demás del sistema jurídico que resulten aplicables.

CLÁUSULA UNDÉCIMA. - Las controversias que pudieran suscitarse en torno al presente contrato, serán sometidas a mediación, mediante el Centro de Mediación del Consejo de la Judicatura en la ciudad de Latacunga. La resolución adoptada será definitiva e inapelable, así como de obligatorio cumplimiento y ejecución para las partes y, en su caso, para la sociedad. El costo de tasas judiciales por tal concepto será cubierto por parte del estudiante que lo solicitare.

En señal de conformidad las partes suscriben este documento en dos ejemplares de igual valor y tenor en la ciudad de Latacunga, a los 18 días del mes de marzo del 2022.

Lisbeth Mireya Vasquez Camalle

Ing. Ph.D. Cristian Tinajero Jiménez

LA CEDENTE

LA CESIONARIA

AVAL DEL TUTOR DEL PROYECTO DE INVESTIGACIÓN

En calidad de Tutor del Proyecto de Investigación con el título:

"SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO DE LA CALIDAD

DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA", de Vasquez

Camalle Lisbeth Mireya, de la carrera de Ingeniería Ambiental, considero que el presente

trabajo investigativo es merecedor del Aval de aprobación al cumplir las normas, técnicas y

formatos previstos, así como también ha incorporado las observaciones y recomendaciones

propuestas en la Pre defensa.

Latacunga, 18 de marzo del 2022

Ing. MSc. Mg. Vladimir Marconi Ortiz Bustamante

DOCENTE TUTOR

CC: 0502188451

V

AVAL DE LOS LECTORES DEL PROYECTO DE INVESTIGACIÓN

En calidad de Tribunal de Lectores, aprobamos el presente Informe de Investigación de

acuerdo a las disposiciones reglamentarias emitidas por la Universidad Técnica de Cotopaxi;

y, por la Facultad de Ciencias Agropecuarias y Recursos Naturales; por cuanto, la postulante:

Vasquez Camalle Lisbeth Mireya, con el título del Proyecto de Investigación:

"SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO DE LA CALIDAD DEL

AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA", ha considerado las

recomendaciones emitidas oportunamente y reúne los méritos suficientes para ser sometido al

acto de sustentación del trabajo de titulación.

Por lo antes expuesto, se autoriza realizar los empastados correspondientes, según la

normativa institucional.

Latacunga, 18 de marzo del 2022

Lector 1 (Presidente)

Lector 2

Ing. Mg. Clavijo Cevallos Manuel Patricio

Ing. Mg. Lema Pillalaza Jaime Rene

CC: 0501444582

CC: 1713759932

Lector 3

Ing. Ruiz Depablos Joseline Luisa

CC: 1758739062

vi

AGRADECIMIENTO

Al culminar esta etapa tan maravillosa de mi vida quiero rendir mi más sincero agradecimiento a todos aquellos quienes hicieron posible este sueño y siempre fueron mi apoyo, fortaleza y mi fuente de inspiración. Esta mención en especial para Dios, mis padres Marco, Rosa y a mis hermanos Paty, Kevin, Joel y mi hija April y a mis amigos Wuhanda, Carlos y Ramiro. Muchas gracias a ustedes por demostrarme que "el verdadero amor no es otra cosa que el deseo inevitable de ayudar al otro para que este se supere". Mi gratitud también a mi alma Mater por haberme permitido formarme en sus aulas, mi agradecimiento a mi tutor Vladimir por su ayuda, paciencia y dedicación, a mis docentes por su apoyo y enseñanzas que me dotaron de la base para mi vida profesional. Finalmente agradezco a los futuros lectores de esta tesis, por permitirle a mis experiencias contribuir dentro de su repertorio de conocimiento.

Lisbeth Mireya Vasquez Camalle

DEDICATORIA

Esta tesis está dedicada a mis eternos amores:

A mi hija April Fernanda quien es mi motivo para salir a delante y no rendirme en el camino, quien me apoya con su cariño y amor, hoy he logrado mi sueño de la mano de mi mayor tesoro, te amo Hija.

A mis padres Marco y Rosa por ser mis principales promotores de sueños y mi ejemplo de lucha y constancia, quienes han sido mi soporte, compañía y alegría en los momentos más difíciles de mi vida.

Lis

UNIVERSIDAD TÉCNICA DE COTOPAXI FACULTAD DE CIENCIAS AGROPECUARIAS Y RECURSOS NATURALES

TÍTULO: "SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO DE LA CALIDAD DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA."

AUTORA: Vasquez Camalle Lisbeth Mireya

RESUMEN

Cada año en todo el mundo la exposición a la contaminación del aire causa 7 millones de muertes prematuras y la disminución de los años de vida humana. Uno de los problemas ocasionados por las grandes concentraciones urbanas es la contaminación atmosférica, que se ha venido dando en los últimos años debido al rápido crecimiento de la población, el aumento del parque automotor, el desarrollo industrial entre otras causas. La presente investigación tuvo como objetivo la sistematización de los procesos de monitoreo de la calidad del aire obtenidos en diferentes estudios desarrollados en el cantón Latacunga. La metodología utilizada se basa en procesos de recopilación de datos de investigaciones realizadas en los años comprendidos entre el 2013 y 2020 de monitoreos a la calidad del aire del cantón Latacunga, donde se pudo identificar 3 tipos de contaminantes como son las fuentes fijas, fuentes móviles y el material particulado con 7, 1 y 20 puntos de monitoreo respectivamente, de la misma manera se identificó el procedimiento de monitoreo desarrollados a la calidad del aire del para cada tipo de contaminante, para proceso de monitoreo a fuentes fijas se basó en el Anexo 3 y 4 del libro VI del TULSMA norma de emisiones al aire desde fuentes fijas, para el proceso de monitoreo a fuentes móviles se basó en las instrucciones del Equipo AVL DITEST gas 1000 para contaminantes producto de la combustión del parque automotor a gasolina, para el proceso de monitoreo de la concentración de material particulado (PM10, PM2.5) se basó en la Norma TULSMA para muestreo con el equipo E-BAM. En el análisis de la sistematización de los resultados se identificó que, de los tres tipos de contaminantes, la contaminación por fuentes móviles producto de la combustión del parque automotor a gasolina genera un mayor impacto negativo a la calidad del aire del cantón Latacunga ya que sus parámetros sobrepasan el límite máximo permisible de las normas ambientales vigente, seguido por la contaminación producto de la concentración de material particulado PM10.

Palabras clave: Fuentes fijas, fuentes móviles, límite máximo permisible, material particulado, monitoreo.

TECHNICAL UNIVERSITY OF COTOPAXI FACULTY OF AGRICULTURAL SCIENCE AND NATURAL RESOURCES

TITLE: "SYSTEMATIZATION OF AIR QUALITY MONITORING PROCESSES DEVELOPED IN LATACUNGA CANTON"

AUTHOR: Vasquez Camalle Lisbeth Mireya

ABSTRACT

Every year around the world, exposure to air pollution causes 7 million premature deaths and a decrease in human life expectancy. One of the problems caused by large urban concentrations is air pollution, which has been occurring in recent years due to rapid population growth, the increase in the number of vehicles, industrial development, among other causes. The purpose of this research study was to systematize the air quality monitoring processes obtained in different studies developed in Latacunga Canton. The methodology used is based on data collection processes of research conducted between 2013 and 2020 of air quality monitoring in Latacunga Canton, where it was possible to identify 3 types of pollutants such as stationary sources, mobile sources, and particulate matter with 7, 1, and 20 monitoring points respectively. In the same way, the monitoring procedure developed for air quality was identified for each type of pollutant. The monitoring process for fixed sources was based on Annex 3 and 4 of Book VI of the TULSMA standard for air emissions from fixed sources, for the monitoring process for mobile sources it was based on the instructions of the AVL DITEST gas 1000 equipment for pollutants produced by the combustion of gasoline-powered vehicles; for the monitoring process of the concentration of particulate matter (PM10, PM2. 5) was based on the TULSMA Standard for sampling with E-BAM equipment. In the analysis of the systematization of the results, it was identified that, of the three types of pollutants, pollution from mobile sources resulting from the combustion of gasoline-powered vehicles generates the greater negative impact on air quality in Latacunga, since its parameters exceed the maximum permissible limit of the environmental standards, followed by pollution resulting from the concentration of PM10 particulate matter.

Keywords: stationary sources, mobile sources, maximum permissible limit, particulate matter, monitoring.

ÍNDICE DE CONTENIDOS

DE	ECLAR	ACIÓN DE AUTORÍAii	
CC	NTRA'	TO DE CESIÓN NO EXCLUSIVA DE DERECHOS DE AUTOR iii	
ΑV	AL DE	EL TUTOR DEL PROYECTO DE INVESTIGACIÓNv	
ΑV	AL DE	LOS LECTORES DEL PROYECTO DE INVESTIGACIÓNvi	
AC	GRADE	CIMIENTOvii	
DE	EDICAT	ORIA viii	
RE	SUME	Nix	
AE	STRAC	CTx	
ÍN	DICE D	DE CONTENIDOSxi	
ÍN	DICE D	DE TABLASxv	
ÍN	DICE D	DE FIGURASxvi	
1.	INFO	RMACIÓN GENERAL1	
2.		ODUCCIÓN2	
3.	JUST	IFICACIÓN DEL PROYECTO3	
4.		EFICIARIOS DEL PROYECTO DE INVESTIGACIÓN4	
5.	PROE	BLEMA DE INVESTIGACIÓN5	
6.	OBJE	TIVOS7	
6	5.1.	OBJETIVO GENERAL	
6	5.2.	OBJETIVO ESPECÍFICO	7
7.	ACTI	VIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS OBJETIVOS	
		NTEADOS8	
8.	FUNI	DAMENTACIÓN CIENTÍFICO TÉCNICA9	
8	3.1.	MEDIO AMBIENTE	9
8	3.2.	AIRE	9
8	3.3.	CONTAMINANTES ATMOSFÉRICOS	9
	8.3.1.	Dióxido de azufre (SO ₂)9	
	8.3.2.	Dióxido de nitrógeno (NO ₂)10	
	8.3.3.	Monóxido de carbono (CO)10	
	8.3.4.	Ozono (O ₃)10	
	8.3.5.	Ozono al nivel del suelo10	
	8.3.6.	Óxidos de nitrógeno (N0x)	
	8.3.7.	Hidrocarburos (HC)11	

8.3.8. Material particulado (PM)	11
8.4. EMISIÓN	11
8.5. FUENTES ANTROPOGÉNICAS	11
8.5.1. Fuentes móviles	12
8.5.2. Fuentes fijas	12
8.5.3. Fuente fija de combustión	12
8.6. TIPOS DE FUENTES FIJAS	12
8.6.1. Fuentes puntuales	12
8.6.2. Fuentes de área	13
8.6.3. Fuentes naturales	13
8.7. PARQUE AUTOMOTOR	13
8.8. CALIDAD DEL AIRE	13
8.9. ÁREA – FUENTE	14
8.10. MONITOREO DE EMISIONES	14
8.11. SISTEMATIZACIÓN	14
8.11.1. RECOLECCIÓN DE DATOS EN LA SISTEMATIZACIÓN	15
8.11.2. La observación	
8.11.3. El análisis de contenido	15
8.12. SOFTWARE EXCEL PARA LA SISTEMATIZACIÓN DE DATOS	S 15
8.13. SISTEMA DE INFORMACIÓN GEOGRÁFICA	16
8.14. INTEGRACIÓN DE GPS Y SIG	16
8.15. MARCO LEGAL	16
Constitución de la república del Ecuador	17
Norma Ecuatoriana de la calidad del aire	17
Norma técnica Ecuatoriana INEN 2204 Segunda revisión 2017-01	
Límites permitidos de emisiones producidas por fuentes móviles	
terrestres que emplean gasolina	19
Acuerdo Ministerial 097-A	20
9. VALIDACIÓN DE LAS PREGUNTAS CIENTÍFICAS O HIPÓTESIS	22
10. METODOLOGÍA	23
10.1. DESCRIPCIÓN DEL ÁREA DE ESTUDIO	23
10.1.1. Ubicación	
10.2. MODALIDAD BÁSICA DE INVESTIGACIÓN	25
10.2.1. Bibliográfica Documental	25

10.3. S	SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO A LA	
CALIDAI	D DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA	26
10.3.1.	Pasos para desarrollar la sistematización	
• Pas	so 2: El objeto de análisis26	
• Pas	so 3: El eje de sistematización	
10.3.2.	Método Estadístico Descriptivo	
10.3.3.	Método analítico	
11. ANÁ	ÁLISIS Y DISCUSIÓN DE LOS RESULTADOS28	
11.1. I	DENTIFICACIÓN DE LAS ÁREAS, METODOLOGÍA, MÉTODOS Y	
RESULTA	ADOS DE LOS PROCESOS DE MONITOREO DESARROLLADOS A LA	
CALIDAI	D DEL AIRE DEL CANTÓN LATACUNGA	28
11.1.1.	Identificación de las áreas, metodología, métodos y resultados de los procesos	
	monitoreo a la concentración de material particulado desarrollados	
	en el cantón Latacunga	
11.1.2.	Identificación de las áreas, metodología, métodos y resultados de los procesos	
	de monitoreo a fuentes fijas desarrollados en el cantón Latacunga32	
11.1.3.	Identificación de las áreas, metodología, métodos y resultados de	
	los procesos de monitoreo a fuentes móviles desarrollados en el cantón	
	Latacunga37	
11.2. S	SISTEMATIZACIÓN DE LOS RESULTADOS DE LOS PROCESOS DE	
MONITO	REO DE LA CALIDAD DEL AIRE DESARROLLADOS EN EL CANTÓN	
LATACU	NGA, SEGÚN LA NORMATIVA ECUATORIANA VIGENTE	40
11.2.1.	Análisis de resultados de los procesos de monitoreo a la concentración	
	de material particulado en el cantón Latacunga según la normativa ambiental	
	vigente40	
11.2.2.	Análisis de resultados de los procesos de monitoreo a los gases	
	contaminantes identificados en fuentes fijas en el cantón Latacunga según	
	la normativa ambiental vigente	
11.2.3.	Análisis de resultados de los procesos de monitoreo a los gases	
	contaminantes de las fuentes móviles en el cantón Latacunga según la	

r	normativa ambiental vigente	47	
12.	IMPACTOS (TÉCNICOS, SOCIALES, AMBIENTALES O ECONÓMICOS)	52	
12.1	1. IMPACTO SOCIAL		52
12.2	2. IMPACTO AMBIENTAL		52
12.3	3. IMPACTO ECONÓMICO		52
13.	PRESUPUESTO	53	
14.	CONCLUSIONES Y RECOMENDACIONES	54	
14.1	1. CONCLUSIONES		54
14.2	2. RECOMENDACIONES		55
15.	BIBLIOGRAFÍA	56	
16.	ANEXOS	63	

ÍNDICE DE TABLAS

Tabla 1 Beneficiarios del Proyecto	4
Tabla 2 Actividades planteadas en función de los objetivos específicos	8
Tabla 3 Concentraciones de contaminantes criterio que definen los niveles de	
alerta, de alarma y de emergencia en la calidad del aire	16
Tabla 4 Límites máximos de emisiones para fuentes móviles con motor de gasolina	
(prueba dinámica) * a partir del año modelo 2000 (ciclos americanos)	19
Tabla 5 Límites máximos permisibles de concentración de emisión contaminantes	
al aire para calderas (mg/Nm3)	20
Tabla 6 Áreas, metodología, métodos y resultados identificados en los	
procesos de monitoreo a la concentración de material particulado	
desarrollados en el cantón Latacunga	28
Tabla 7 Áreas, metodología, métodos y resultados de los procesos de monitoreo	
realizados a las fuentes fijas en el cantón Latacunga	32
Tabla 8 Área, metodología y métodos de los procesos de monitoreo	
a fuentes móviles desarrollados en el cantón Latacunga	37
Tabla 9 Presupuesto para la elaboración del proyecto	53
Tabla 10 Investigaciones empleadas en la indagación	64
Tabla 11 Norma EPA 40 CFR Apéndice E_to_part_58 - Sonda y	
Supervisión de rutas Emplazamiento Criterios para el Monitoreo de la Calidad	
del Aire Ambiente	101
Tabla 12 Ubicación de los puntos transversales en cañones circulares	103
Tabla 13 Disposición de la Sección Representativa para Chimeneas Rectangulares	104
Tabla 14 Áreas, metodología, métodos y resultados de los procesos de monitoreo	
a fuentes móviles realizados en el cantón Latacunga	105

ÍNDICE DE FIGURAS

Figura 1 Ubicación del Cantón Latacunga	24
Figura 2 Puntos de monitoreo a la concentración de material particulado	31
Figura 3 Puntos de monitoreo a fuentes fijas	36
Figura 4 Punto de monitoreo a fuentes móviles	39
Figura 5 Comparación del parámetro PM10 con la norma de calidad del aire	
ambiente, Anexo 4 del Libro VI	40
Figura 6 Porcentaje de cumplimiento de la normativa ambiental para PM10	41
Figura 7 Comparación del parámetro PM 2.5 con la norma de calidad del aire	
ambiente, Anexo 4 del Libro VI	41
Figura 8 Porcentaje de cumplimento de la norma ambiental para PM 2.5	42
Figura 9 Comparación del parámetro Nox con el anexo 3 del Libro VI de	
la norma de Emisiones al aire desde Fuentes Fijas	43
Figura 10 Porcentaje de cumplimiento de la norma ambiental vigente del parámetro	
NOx para el cantón Latacunga	44
Figura 11 Comparación del parámetro SO ₂ con el anexo 3 del Libro VI de	
la norma de Emisiones al aire desde Fuentes Fijas	45
Figura 12 Porcentaje de cumplimiento de la norma ambiental vigente para el	
parámetro SO ₂ en el cantón Latacunga	45
Figura 13 Comparación del parámetro CO con la Norma Técnica Ecuatoriana	
INEN 2204 (2017)	47
Figura 14 Porcentaje de cumplimiento de la norma ambienta de gases generados	
por fuentes móviles del cantón Latacunga	48
Figura 15 Comparación del parámetro Hidrocarburos (HC) con la Norma Técnica	
Ecuatoriana INEN 2204 (2017)	49
Figura 16 Porcentaje de cumplimiento de la norma para el parámetro HC	50
Figura 17 Equipo E-BAM (Monitoreo de Atenuación Beta)	99
Figura 18 Equipo AVL DITEST GAS 1000	99
Figura 19 Analizador de gases de combustión Testo 350 XL	100
Figura 20 Requisitos para ejecución de medición de emisiones al aire de fuentes fijas	102
Figura 21 Número mínimo de puntos transversales para puntos transversales de	
velocidad (sin partículas)	102

1. INFORMACIÓN GENERAL

Título del Proyecto:

"Sistematización de los procesos de monitoreo de la calidad del aire desarrollados en el Cantón Latacunga".

Lugar de ejecución:

Cantón Latacunga, Provincia de Cotopaxi.

Institución, unidad académica y carrera que auspicia

Universidad Técnica de Cotopaxi, Facultad de Ciencias Agropecuarias y Recursos Naturales, carrera de Ingeniería Ambiental.

Nombres de equipo de investigación:

Tutor: Ing. MSc. Mg. Vladimir Marconi Ortiz Bustamante.

Estudiante: Srta. Lisbeth Mireya Vasquez Camalle.

LECTOR 1: Ing. Mg. Clavijo Cevallos Manuel Patricio

LECTOR 2: Ing. Mg. Lema Pillalaza Jaime Rene.

LECTOR 3: Ing. Ruiz Depablos Joseline Luisa

Área de Conocimiento:

Ciencia Naturales, Medio Ambiente, Ciencias Ambientales.

Línea de investigación:

Análisis, conservación y aprovechamiento de la biodiversidad local.

Sub-línea de Investigación de la Carrera:

Manejo y conservación del recurso Aire.

Línea de Vinculación de la Facultad:

Proyecto de desarrollo de mi Tierra

2. INTRODUCCIÓN

La contaminación del aire es un problema ambiental que se ha acentuado en los últimos años en los grandes conglomerados urbanos, uno de los contaminantes más comunes y notables es la neblina toxica. Sin embargo, existen diferentes tipos de contaminación, invisibles y visibles, que aportan al calentamiento global. La revista National Geographic (2010) considera contaminación del aire a cualquier sustancia, introducida en la atmósfera por las personas, que tenga un efecto perjudicial sobre los seres vivos y el medio ambiente.

De acuerdo con Palacios & Espinoza (2014) la contaminación del aire ha sido reconocida internacionalmente como un problema de salud pública por su asociación c8on problemas de salud que afectan a ciertas poblaciones vulnerables, como niños y adultos mayores.

Según estudios realizados por el Ministerio del Ambiente a nivel nacional, Páez (2007), estableció que entre las 17 ciudades que tienen población urbana superior a 100 000 habitantes, por densidad poblacional y concentración de actividades socioeconómicas, son fuertes candidatas al deterioro de la calidad ambiental.

Debido a los antecedentes, se propuso realizar una sistematización de datos que proporcione información esencial sobre la calidad del aire del cantón Latacunga. Estos permitirán una gestión eficiente y eficaz, en cumplimiento de los requisitos ambientales. En términos generales, el objetivo de este trabajo fue la sistematización de los monitoreos realizados a la calidad del aire para contaminantes como el material particulado, fuentes fijas y móviles y de esta forma implementar una base de datos del comportamiento de estos contaminantes en el Cantón Latacunga.

Para alcanzar el objetivo del trabajo, se propuso evaluar la concentración de los contaminantes de material particulado PM 2,5 y PM 10, fuentes fijas y móviles realizados en diferentes puntos de muestreo del cantón Latacunga. Además de comparar los datos obtenidos con la normativa ambiental vigente en relación a calidad del aire. Estos datos podrían por lo tanto contribuir a determinar la concentración de los contaminantes del cantón Latacunga.

3. JUSTIFICACIÓN DEL PROYECTO

Según la OPS (2021) se estima que cada año en todo el mundo la exposición a la contaminación del aire causa 7 millones de muertes prematuras y la disminución de la vida humana. Esto coloca a la carga de morbilidad derivada de la contaminación del aire a la par con otros importantes riesgos para la salud mundial, como las dietas poco saludables y el tabaquismo.

En América Latina y el Caribe 9 de cada 10 personas que viven en ciudades que excedieron las pautas de calidad del aire de 2005 de la OMS y los datos publicados por la OMS en 2018 muestran que más de 320 000 muertes al año son causadas por la exposición a contaminantes del aire, sin embargo, más de 90 millones de personas continúan dependiendo de combustibles contaminantes para su consumo doméstico.

Las nuevas pautas de la OMS recomiendan niveles de calidad del aire para seis contaminantes de los cuales se dispone los datos más recientes sobre efectos en la salud. Al actuar sobre estos contaminantes clásicos como el material particulado (PM), ozono (O₃), dióxido de nitrógeno (NO₂), dióxido de azufre (SO₂) y monóxido de carbono (CO), otros contaminantes nocivos también se ven afectados.

Según la vigente Constitución de la República del Ecuador (2008) menciona que uno de los derechos de los que gozan los ciudadanos el de vivir en un ambiente sano y ecológicamente equilibrado, garantizando la sostenibilidad, estabilidad y bienestar. Por esta razón el trabajo de investigación se realizó debido a que hasta el momento no existe ninguna investigación sistemática que informe sobre la calidad del aire en el Cantón Latacunga.

Con la obtención de los resultados, la investigación permitió involucrar a todos los sectores y a la población del Cantón ya que se busca la conciencia ambiental a través de los procesos de vinculación social mediante el proyecto de desarrollo de mi tierra por sus beneficios socioambientales, enfocando así acciones de la forma más efectiva para prevenir o reducir los riesgos a la salud, ya que se podrá identificar sus principales fuentes de contaminación del aire. Además, este estudio contribuirá bibliográficamente a futuras investigaciones sobre el tema de la calidad del aire y la protección del medio ambiente.

4. BENEFICIARIOS DEL PROYECTO DE INVESTIGACIÓN

Tabla 1Beneficiarios del Proyecto

BENEFICIARIO	OS DIRECTOS	BENEFICIARIO	S INDIRECTOS	
Habitantes del Ca	nntón Latacunga	Habitantes de la Provincia de Cotopaxi		
Hombres:	82.301	Hombres:	198.625	
Mujeres:	88.188	Mujeres:	210.580	
Total:	170.489	Total:	409.205	

Fuente: (*INEC*, 2010)

5. PROBLEMA DE INVESTIGACIÓN

La contaminación del aire representa uno de los conflictos ambientales más graves, principalmente en las zonas urbanas debido al rápido crecimiento de la población, el aumento del número de vehículos y el desarrollo industrial, entre otros problemas.

La contaminación del aire a menudo tiene múltiples fuentes de emisión y es posible que impactar en una sola fuente no proporcione suficientes beneficios para la salud. Aunque la mayoría de los vehículos de motor más nuevos tienen motores más eficientes y utilizan combustibles más limpios, (Romero et al., 2006) menciona que el número absoluto de vehículos sigue creciendo en muchas ciudades del mundo y, por lo tanto, el nivel de contaminación del aire exterior también aumenta.

La contaminación del aire figura un importante riesgo para la salud ambiental, tanto en los países desarrollados como en los de desarrollo. Las personas que viven en países de ingresos bajos y medianos soportan una carga desproporcionada de contaminación del aire exterior. Las últimas estimaciones de la carga de morbilidad reflejan el importante papel que desempeña la contaminación del aire en las enfermedades cardiovasculares y la mortalidad relacionada. Según estimaciones de OPS (2016) la contaminación del aire en ciudades y zonas rurales de todo el mundo provoca 2 millones de muertes prematuras cada año; Esta mortalidad se debe a la exposición a partículas de 2,5 micrómetros de diámetro o menos (PM2,5) que pueden provocar enfermedades cardiovasculares y respiratorias, así como cáncer.

En estudios realizados por (Ballester et al., 1999) menciona que la exposición a la materia particulada no es la única que plantea un grave riesgo para la salud; ocurre lo mismo con la exposición al ozono (O_3) , dióxido de azufre (SO_2) y al dióxido de nitrógeno (NO_2) . El ozono es un factor importante en la mortalidad y morbilidad por asma, mientras que el dióxido de nitrógeno y el dióxido de azufre pueden estar implicado en casos de insuficiencia respiratoria por asma, alveolitis, síntomas bronquiales, etc.

Según Jara (2021) en el Ecuador los efectos de la contaminación del aire en la economía y la salud aún se desconocen debido a la falta de una cierta comprensión del impacto que genera, ya que existe poca investigación sobre los efectos de la contaminación del aire. La percepción de las personas solo se orienta hacia los efectos que provoca la contaminación en la salud,

esto repercute en la subestimación de los impactos que provoca la contaminación atmosférica en el ámbito del desarrollo social y económico.

En cuanto estudios realizados por Reinoso (2018), aseguran que el crecimiento económico, el desarrollo industrial y la urbanización de las ciudades del mundo están asociados con diversas actividades, que proporcionan el desarrollo de la industria petrolera, agroindustria, los servicios y el incremento del parque automotor, han originado el consumo excesivo de combustibles fósiles; ocasionado la emisión elevada de gases tóxicos, químicos y demás agentes contaminantes, que al relacionarse con condiciones ambientales ocasionan daños a ecosistemas, recursos materiales y a la salud humana.

De acuerdo con la OMS, Latacunga es la cuarta ciudad más contaminada de Ecuador después de Santo Domingo, Milagro y Quito, esta contaminación atmosférica es causada por los Vehículos que utilizan combustibles de baja calidad, de acuerdo a la Dirección Nacional de Hidrocarburos del Ecuador. Uno de los grandes problemas es el inexistente control adecuado de los automóviles que viajan por el país, ya que del 95% de control vehicular que existe se lo realiza de forma manual, sin utilizar tecnología avanzada, según datos de la Agencia Nacional de Tránsito.

En resultado uno de los principales causantes de esta contaminación se encuentra el parque automotor que ha ido en aumento, en Ecuador no ha disminuido la contaminación provocada por los vehículos, esto se debe a que en el país no todos los ciudadanos pueden tener un vehículo de última generación de acuerdo a los datos de la Asociación Automovilística Ecuatoriana. El Telégrafo (2015) menciona que el país cuenta con un parque automotor de más de 2.200.000 vehículos, de los cuales se estima que el 35% de los vehículos que circulan por el país presentan niveles altos de contaminación debido a su antigüedad.

6. OBJETIVOS

6.1. OBJETIVO GENERAL

 Sistematizar los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga, para el análisis del cumplimiento de los parámetros de contaminación del aire establecidos por las normativas Nacionales.

6.2. OBJETIVO ESPECÍFICO

- Identificar las áreas y resultados de los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga.
- Identificar la metodología utilizada en los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga.
- Sistematizar los resultados de los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga.

7. ACTIVIDADES Y SISTEMA DE TAREAS EN RELACIÓN A LOS OBJETIVOS PLANTEADOS

Tabla 2Actividades planteadas en función de los objetivos específicos

Objetivos	Actividades	Metodología	Resultado
O.1 Identificar las áreas y resultados de los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga	Investigación bibliográfica sobre estudios realizados en relación a la calidad del aire del cantón Latacunga.	Recopilación de los datos y determinación de puntos de muestreo de los contaminantes Atmosféricos. Instrumentos: Imágenes satelitales, Gps y computador.	Adquisición de datos y puntos de muestreo relacionados a la calidad del aire de cantón Latacunga. Obtención del mapa de ubicación de los monitoreos realizados de la calidad del aire del Cantón Latacunga.
O.2 Identificar la metodología utilizada en los procesos de monitoreo de la calidad del aire desarrollados en el cantón Latacunga.	Constituir la metodología en base a procesos realizados sobre la calidad del aire	Para la obtención de la metodología utilizada se realizó una investigación bibliográfica de los procesos utilizados para el monitoreo de la calidad del aire de la biblioteca de la UTC – CAREN.	Metodología utilizada con anterioridad de los procesos de monitoreo de la calidad del aire
	Sistematización de los resultados para el análisis de la base de datos con la Normativa Ecuatoriana Vigente.	datos obtenidos, mediante el uso del	Base de datos y análisis comparativo de los resultados con la normativa ambiental

8. FUNDAMENTACIÓN CIENTÍFICO TÉCNICA

8.1. MEDIO AMBIENTE

Las actividades humanas y los fenómenos naturales, generan contaminación al aire mediante partículas sólidas y gases que causan daño al medio ambiente y por consiguiente a los animales, plantas y cosas inmersas en él.

Según Ricaute (2013) el medio ambiente es el conjunto de todos aquellos elementos químicos, físicos y biológicos que interactúan con los seres vivos, en lo que respecta al ser humano se incluye todos los factores culturales y sociales que influyen en su vida.

8.2. AIRE

La contaminación del aire se genera por una mezcla gases y partículas sólidas, producidas por las emisiones de las fábricas, de los automóviles, el polvo, el polen y esporas, etc.

Carnicer (2008) define al aire como un fluido que conforma la atmósfera de la Tierra, constituido por una mezcla gaseosa de oxígeno, nitrógeno y varias proporciones de gas inerte y vapor de agua.

8.3. CONTAMINANTES ATMOSFÉRICOS

La contaminación atmosférica se entiende como la presencia en la atmósfera de sustancias en una cantidad que implica molestias o riesgo para los seres vivos, estos contaminantes provienen de cualquier naturaleza, al igual que puedan afectar a distintos materiales y producir olores desagradables.

Según el INECC (2007) la contaminación del aire consiste en la presencia de materias formas de energía que incluye elementos de origen natural y emisiones de actividades humanas. Los contaminantes pueden ser compuestos gaseosos, aerosoles o partículas, contaminantes gaseosos que incluyen ozono, óxidos de azufre y nitrógeno, monóxido de carbono, dióxido de carbono y compuestos orgánicos e inorgánicos volátiles.

Contaminantes atmosféricos:

8.3.1. Dióxido de azufre (SO_2)

Es un gas incoloro con un olor acre producido por la combustión de combustibles fósiles (carbón y petróleo) y la fundición de minerales que contienen azufre. La principal fuente

humana de SO₂ es la combustión de combustibles fósiles que contienen azufre utilizados para la calefacción doméstica, la generación de energía y en los vehículos de motor (Churata, 2021).

8.3.2. Dióxido de nitrógeno (NO₂)

Fuente principal de los aerosoles de nitrato, que constituyen una parte importante de las PM2.5 en presencia de luz ultravioleta y del ozono, las principales fuentes de emisiones antropogénicas de NO₂ son los procesos de combustión calefacción, generación de electricidad y motores de vehículos y barcos (Chuet, 2017).

8.3.3. Monóxido de carbono (CO)

De acuerdo con Moretton (2021) el CO es un gas tóxico incoloro e inodoro producto de la combustión incompleta de combustibles fósiles.

8.3.4. $Ozono(O_3)$

La revista científica *Acta Bioquím Clín Latinoam* (2012) define al ozono como "un contaminante secundario del aire, que se genera por las reacciones fotoquímicas de los Nox y compuestos orgánicos volátiles".

8.3.5. Ozono al nivel del suelo

Principal componente de la niebla fotoquímica, que se forma como resultado de la reacción fotoquímica entre la luz solar y contaminantes como los óxidos de nitrógeno (Nox) procedentes de las emisiones de vehículos o la industria. Los niveles de ozono más elevados se registran durante los periodos de tiempo soleado (Press, 2017).

8.3.6. Óxidos de nitrógeno (N0x)

Vélez & Lozano (2008) define al Nox como:

La suma del óxido nítrico (NO) y dióxido de nitrógeno (NO $_2$). El NO $_2$, que se forma a partir de la oxidación del NO y el NO es un gas incoloro que se genera por la combinación del nitrógeno (N $_2$) y del oxígeno (O $_2$) de la atmósfera durante los procesos de combustión.

8.3.7. Hidrocarburos (HC)

Compuestos que contienen carbono e hidrógeno, la mayoría de químicos en la gasolina y otros derivados del petróleo.

8.3.8. Material particulado (PM)

En estudios de Gavilanes (2020) se hace referencia a dos tipos de material particulado PM10 y PM2.5 como puede ser hollín, humo, polvo y aerosoles suspendidos en el aire, emitidos por vehículos, por las plantas generadoras de energía eléctrica a carbón y la quema de residuos, estas partículas son un problema mundial de salud pública, incluso a niveles relativamente bajos.

PM10: Partículas cuyo diámetro es menor a 10 micras, pueden inhalarse y aglomerarse en las vías respiratorias.

PM2.5: Partículas cuyo diámetro es menor a 2.5 micras, denominadas también como "partículas finas", se consideran un mayor riesgo para la salud debido a que pueden alojarse en los pulmones.

8.4. EMISIÓN

La contaminación del aire es causada por factores antropogénicos, mediante las emisiones al aire de sustancias gaseosas y particuladas liberadas a la atmosfera, como resultado de los procesos de producción, consumo y acumulación.

Acorde con (Rojano et al., 2016) se refiere a emisión a la descarga de sustancias en estado gaseoso puro o sustancias en suspensión a la atmósfera derivadas de las actividades humanas.

8.5. FUENTES ANTROPOGÉNICAS

Las actividades realizadas por el ser humano que afecten negativamente al equilibrio en el medioambiente, se consideran actividades generadoras de contaminación y estas tiene más impacto que las actividades de contaminación de origen natural, debido al consumo desmedido y al estilo de vida asociado a la urbe que es la principal fuente de contaminación al aire.

(González et al., 2002) clasifican genéricamente las fuentes de emisión de agentes contaminantes en la troposfera considerando su localización fija o móvil.

Así, se habla de:

8.5.1. Fuentes móviles

Son todos los vehículos y maquinaria no fijas que contengan en su estructura motores de combustión o similares, que debido a su operación generen o puedan emitir contaminantes a la atmósfera, las emisiones por fuentes móviles se producen por la quema de combustibles fósiles utilizados por el parque automotor ya que los vehículos automotores son los principales emisores de contaminantes de CO, de compuestos orgánicos volátiles, SO_2 , y NOx, producidos durante la combustión.

8.5.2. Fuentes fijas

Se encuentra situado en un lugar determinado, se subdivide en focos de combustión estacionaria como las zonas industriales, domésticos, vertederos, y otros.

8.5.3. Fuente fija de combustión

Se lo denomina una o más instalaciones en conjunto cuyo fin es desarrollar procesos industriales, de servicios o comerciales, y que despiden contaminantes atmosféricos, ocasionado por los procesos de combustión interna, desde un lugar fijo.

8.6. TIPOS DE FUENTES FIJAS

La contaminación atmosférica es la suma de diferentes fuentes de emisión como una de ellas las fuentes fijas tales como la industria o actividades que producen la quema abierta controlada, como descargas de humo, vapores, polvos, gases o partículas por ductos o chimeneas, a emisiones fugitivas o dispersas de contaminantes por actividades de explotación minera a cielo abierto.

Los tipos de fuentes fijas son tres puntuales, de área y naturales.

8.6.1. Fuentes puntuales

Derivadas de la creación de actividades eléctricas, industriales, químicas, textil, alimentos, madera, metalurgia, metal, fabricación y procesamiento de productos vegetales y animales, entre otros productos. La calidad de emisiones derivadas del proceso de quema en la generación de r energía o vapor depende de la calidad del combustible y la efectividad del quemador, el mantenimiento de equipos y la presencia del dispositivo de control al final del proceso. Los principales contaminantes relacionados con la quema son partículas SO₂, Nox, CO₂, CO e hidrocarburos (Mendoza, 2014).

8.6.2. Fuentes de área

Esta fuente incluye las emisiones de actividades de la generación de emisiones inherentes en procesos y actividades de consumo de limpiezas de superficies y equipos, etc. y almacenamiento de gas Lp, al igual que las emisiones de actividades como de rellenos sanitarios, composteros y tratamiento de aguas residuales (Querol, 2018).

8.6.3. Fuentes naturales

Son aquellas fuentes cuyas emisiones son producidas de manera natural por plantas, océanos, volcanes, emisiones por digestión aerobia y anaerobia de sistemas naturales. Son todo aquello emitido por la flora y la actividad microbiana tanto en la tierra como en el océano, llamados emisiones biogénicas dentro de los cuales están el metano, azufrados, óxido de nitrógeno, hidrocarburos no metanogénicos, dióxido y monóxido de carbono y compuestos nitrogenados (Romero et al., 2006).

8.7. PARQUE AUTOMOTOR

El parque automotor se ha identificado como una de las principales fuentes del total de emisiones contaminantes a la atmósfera, que produce el deterioro ambiental global y el efecto invernadero que existe en la actualidad, además ha provocado efectos en la salud de la población como; enfermedades de agotamiento físico, irritabilidad, insomnio, enfermedades respiratorias entre otras.

Vasquez (2021) denomina al parque automotor como el término utilizado para indicar el número de automóviles que circulan por un determinado país, por un grupo de países o incluso en el conjunto mundial.

8.8. CALIDAD DEL AIRE

Nuestra sociedad actual utiliza los combustibles fósiles como la principal fuente de energía, esto provocó una serie de efectos en los cuales se encuentra la contaminación ambiental y por ende la contaminación atmosférica, debido a la presencia de sustancias en el aire en cantidad suficiente que genere daño, riesgo o molestia a las personas y al medio ambiente en general.

Conforme (Caraballo et., 2019), menciona al concepto de la calidad del aire como:

La calidad del aire compete en relación con las características del aire circundante, como los tipos de sustancias que lo componen, sus concentraciones y el tiempo de aparición en un

14

lugar y tiempo determinado; estas características deben asegurar el equilibrio ecológico, la

salud y el bienestar de la población.

ÁREA – FUENTE 8.9.

Las circunstancias en las zonas o áreas de contaminación atmosférica varían según diferentes

factores atmosféricos, como la dirección del viento, la ubicación de los puntos de incidencia,

la altitud entre otros factores. La contaminación atmosférica es de mayor importancia en

lugares con alta densidad de población y la alta biodiversidad.

Botero (2019) considera como área fuente a una zona o región determinada que alberga

múltiples fuentes de emisión, generadora de sustancias contaminantes al aire.

8.10. MONITOREO DE EMISIONES

Craparo (2017), hace referencia al seguimiento de emisiones como un proceso programado

de recolección muestras, llevar a cabo mediciones, y efectuar el respectivo registro de las

emisiones de fuentes fijas, con el objetivo de verificar el cumplimiento de los límites de

concentración de emisiones fijados en las normativas.

8.11. SISTEMATIZACIÓN

Según de Velde (2008) hace referencia al concepto de sistematización como la organización

y clasificación de datos e información, estructurando correctamente categorías y relaciones, y

posibilitando la creación de bases de datos organizadas.

El objetivo de la sistematización es facilitar la participación de los actores en del proceso de

desarrollo en el proceso de aprendizaje y generar nuevos conocimientos o ideas para

proyectos a partir de experiencias, datos e información previamente documentados y

distribuidos anteriormente

Pasos para desarrollar la sistematización

• Paso 1: Definición del objetivo

• Paso 2: El objeto de análisis

• Paso 3: El eje de sistematización

Paso 4: La estrategia de comunicación

8.11.1. RECOLECCIÓN DE DATOS EN LA SISTEMATIZACIÓN

Criterios a considerar para la selección de una técnica de recolección de datos

La técnica de recolección de datos se determina en base a:

- a) El enfoque de investigación o naturaleza de estudio y el tipo de problema que se va a investigar.
- La definición de la unidad de análisis, el tipo y confiabilidad de las fuentes de información.
- c) El universo bajo estudio, el tipo y tamaño de muestra de las unidades de análisis donde se realizará el estudio.
- d) La disposición de los recursos con los que se cuenta para la investigación dentro de los que se encuentra el dinero, tiempo, personal, etc.
- e) La oportunidad para realizar el estudio en función del tipo de problema a investigar.

8.11.2. La observación

Márquez (2015) la define como un método de recolección que permite tabular o acumular datos y sistematizar la información obtenida sobre un hecho o fenómeno que está ligado al problema que es la razón de la investigación.

Usando esta técnica, el investigador registra las observaciones, pero no entrevista a individuos que están asociados con eventos o fenómenos sociales; es decir, no formula preguntas, de forma oral o escrita, que le permitan obtener los datos necesarios para el estudio del asunto.

8.11.3. El análisis de contenido

El análisis de contenido es una técnica que reduce y sistematiza cualquier tipo de información acumulada, en datos, respuestas o valores correspondientes a variables estudiadas en función de un problema.

8.12. SOFTWARE EXCEL PARA LA SISTEMATIZACIÓN DE DATOS

Excel es un programa de la suite de Microsoft Office, un software de hoja de cálculo que se utiliza principalmente para tareas matemáticas y financieras. Además de permitir visualizar datos, por ejemplo, a través de diferentes tipos de gráficos. Su finalidad puede ser diferente

según las necesidades del usuario, y las posibilidades que permite este software de cálculo son amplías. Pueden pasar de simples sumas a integrales, crear gráficos, generar informes u organizar información.

De hecho, aunque originalmente fue diseñado para satisfacer las necesidades de los sectores administrativos y contable, sus funciones se han ampliado desde entonces a varias áreas, incluidas las bases de datos. Es por esto que es posible llevar algunos registros y controles de las peculiaridades sin ninguna relación con los cálculos y que se compongan esencialmente de

Como se mencionó, Excel es un sistema de hoja de cálculo, es decir, una hoja de cálculo que maneja la información de manera ordenada y sistematizada.

8.13. SISTEMA DE INFORMACIÓN GEOGRÁFICA

Es un sistema de información creado para trabajar con datos referenciados (datos de solo lectura) mediante coordenadas geográficas, también se lo puede definir como un sistema tanto de base de datos, como un conjunto de maniobras para trabajar con esos datos, en síntesis vendría a ser un mapa de orden superior (Garcia, 2021).

8.14. INTEGRACIÓN DE GPS Y SIG

Pogge (2021), define al GPS como un sistema que permite ubicar cualquier objeto (persona, vehículo, etc.) sobre la Tierra con una precisión en la escala de los centímetros, aunque lo habitual son unos pocos metros.

El Sistemas de Posicionamiento Global (GPS) puede utilizarse como una fuente de datos estática, empleado como un instrumento para poder generar de una capa de información geográfica empleada en el Sistema de Información Geográfica para la obtención de mapas entre otros.

8.15. MARCO LEGAL

Las directrices de calidad del aire de la OMS brindan orientación global sobre los umbrales y límites para los principales contaminantes del aire que representan un riesgo para la salud, son de carácter aplicables en todo el mundo y se basan en evaluaciones realizadas por expertos de la OMS de las cuales según la OMS (2021) cuatro están actualmente disponibles.

Valores fijados por las directrices para material particulado (PM2.5) 55 μ g/m³ de media anual y 15 μ g/ m³ de media diaria, para material particulado (PM10) 15 μ g/ m³ de media anual y 45 μ g/m³ 24 de media diaria, para ozono 100 μ g/m³, en 8 horas y 60 μ g/m³ en promedio de periodos de 8 horas, para dióxido de nitrógeno 10 μ g/m³ de media anual y 25 μ g/m³ de media diaria para dióxido de azufre 40 μ g/m³ de media diaria.

Constitución de la república del Ecuador

La Carta Maga publicada en el diario oficial No. 9 del 20 de octubre de 2008 trata sobre las normas básicas que incluyen los principios, derechos y libertades de las personas que integran la sociedad ecuatoriana, mencionadas en el TÍTULO II DERECHO, CAPITULO II DERECHO DEL BUEN VIVIR, el derecho de la comunidad a vivir en un ambiente sano y ecológicamente equilibrado que asegure la sustentabilidad y el buen vivir, sumak kawsay. Se declara de interés público la preservación del ambiente, la conservación de los ecosistemas, la biodiversidad y la integridad del patrimonio genético del país, la prevención del daño ambiental y la recuperación de los espacios naturales degradados. El capítulo VII está dedicado al régimen sancionador, el mismo que pretende ser coherente con el enfoque integral e integrador de esta ley, con los principios que la inspiran, especialmente los principios de quien contamina paga y previene la contaminación en origen y con el hecho específico de los efectos nocivos de la contaminación atmosférica sobre el medio ambiente atmosférico (Constitución de la República del Ecuador, 2008).

Norma Ecuatoriana de la calidad del aire

La Norma de Calidad del Aire de Ecuador (2011) tiene como objetivo principal proteger la salud de las personas, la calidad del aire ambiental, el ecosistema y el medio ambiente en general. Esta establece los límites máximos permisibles para los contaminantes del aire a nivel del suelo. Esta norma internacional también proporciona métodos y procedimientos para determinar las concentraciones de contaminantes en el aire ambiente. Tabla 3

Tabla 3

Concentraciones de contaminantes criterio que definen los niveles de alerta, de alarma y de emergencia en la calidad del aire

Contaminante y Período de Tiempo	Alerta	Alarma	Emergencia	
Monóxido de Carbono Concentración promedio en ocho horas (μg/m3)	15000	30000	40000	
Ozono Concentración promedio en ocho horas (µg/m3)	200	400	600	
Dióxido de Nitrógeno Concentración promedio en una hora (μg/m3)	1000	2000	3000	
Dióxido de Azufre Concentración promedio en veinticuatro horas (µg/m3)	200	1000	1800	
Material particulado PM 10 Concentración en veinticuatro horas (μg/m3)	250	400	500	
Material Particulado PM 2.5 Concentración en veinticuatro horas (μg/m3)	150	250	350	
Contaminante no convencional	Nombre, Descripción, Referencia Nombre: Espectrometría de Absorción Atómica Referencia: Method IO 3.2. Determination of metals in ambient particulate matter using atomic absorption AA Spectroscopy, (EPA/625/R-96/010 ^a)			
Nombre				
Referencia				
Descripción	El método se basa en un muestreo activo, con un muestreador de alto volumen. El análisis se realiza por Absorción Atómica (AA). Mercurio			

Fuente: (Norma ecuatoriana de la calidad del aire, 2011)

Según la Norma ecuatoriana de la calidad del aire (2011) la Autoridad Ambiental de Aplicación responsable acreditada al Sistema Único de Manejo Ambiental podrá proceder a la ejecución de las siguientes actividades mínimas:

En Nivel de Alerta se deberá informar a través de los medios de comunicación a la ciudadanía sobre el establecimiento del Nivel de Alerta, se realizará restricciones al tráfico vehicular, y suspensión de las actividades de las fuentes fijas de combustión en la zona, verificando el nivel de alerta para uno o más contaminantes específicos.

En el Nivel de Alarma: Se informar al público del establecimiento del nivel de alarma. Se restringirá o incluso prohibirá el movimiento de vehículos, así como la operación de fuentes fijas de combustión en la zona, en donde se ha verificado niveles alarmantes.

En el Nivel de Emergencia: Se informar al público sobre el establecimiento de un nivel de emergencia. Se prohibirá el tránsito y estacionamiento de vehículos, así como la operación de fuentes fijas de combustión en el área donde se haya verificado la emergencia. Se debe considerar la extensión de estas prohibiciones a todas las fuentes fijas de combustión, así como a los vehículos automotores, existentes en el territorio bajo la responsabilidad de la Autoridad de Aplicación Ambiental competente aprobada por el Sistema Único de Gestión Ambiental.

Norma técnica Ecuatoriana INEN 2204 Segunda revisión 2017-01 Límites permitidos de emisiones producidas por fuentes móviles terrestres que emplean gasolina

La norma establece los límites permitidos de emisiones de contaminantes producidas por fuentes móviles terrestres (vehículos automotores) que emplean gasolina. Esta norma se aplica a las fuentes móviles terrestres de más de tres ruedas (vehículo automotor, vehículo prototipo). Tabla 4

Tabla 4

Límites máximos de emisiones para fuentes móviles con motor de gasolina (prueba dinámica)
* a partir del año modelo 2000 (ciclos americanos)

Categoría	Peso bruto del vehículo kg	Peso del vehículo cargado Kg i	CO g/km	HC g/km	Nox g/km	CICLOS DE PRUEBA	Evaporativas g/ensayo SHED
Vehículo Liviano			2.10	0.25	0.62		2
Vehículos		≤ 1 700	6.2	0.5	0.75	FTP-75	2
Medianos	≤ 3 860	1 700 – 3 860	6.2	0.5	1.1		2
Vehículos Pesados	> 3860 ≤ 6350		14.4	1.1	5.0	Transiente	3
	>6 350		37.1	1.9	5.0	pesado	4

^{*}prueba realizada a nivel del mar

Fuente: (NTE INEN 2204, 2017).

Acuerdo Ministerial 097-A

De acuerdo a la Normativa Vigente 097-A, en el anexo 4, del Libro VI, del texto unificado de Legislación Secundaria del Ministerio del Ambiente, norma de la calidad del aire ambiente o nivel de inmisión, libro VI, Anexo 4 determina que la norma tiene como objetivo principal proteger la salud humana, la calidad del aire y el bienestar, los ecosistemas y el medio ambiente. Para el cumplimiento de misma se establece los límites permisibles de contaminantes en el aire ambiente a nivel de suelo.

^{**} en g/bHP-h (gramos/breke Horse Power-hora)

Esta norma también proporciona métodos y procedimientos para la determinación de concentraciones de contaminantes en el aire, estableciendo las siguientes concentraciones máximas para partículas PM10 y PM2.5. El valor promedio de las concentraciones de PM10 de no debe exceder los (100 μg/m3 y para PM2.5 los (50 μg/m3) del monitoreo continuo de 24 horas En el marco de la normativa establecida en el anexo 3 del Libro VI de norma de Emisiones al Aire desde Fuentes Fijas, se considerarán el literal 4.1.2 Valores máximos permisibles de concentraciones de emisión. Tabla 5

Tabla 5

Límites máximos permisibles de concentración de emisión contaminantes al aire para calderas (mg/Nm3)

Contaminan	Combustible		entrar en funcionamiento	Fuente fija existente: con autorización de entrar en funcionamiento desde enero de 2003 hasta fecha publicación de la reforma de la norma	Fuente fija nueva: con autorización de entrar en funcionamiento a partir fecha publicación de la reforma de la norma
	Sólido Fósil	Coke			
Material	Líquido	Fuel oíl			
		Crudo	430	180	142
particulado		petróleo Diésel			
	Sólido Fósil	Coke	1330	1030	614
Óxidos de		Fuel oíl			
nitrógeno	Líquido	Crudo	850	670	434
muogeno	1	petróleo			
		Diésel			

	Gaseoso	GLP o GNP	600	486	302
	Sólido Fósil	Coke	2004	2004	600
Dióxido de		Fuel oíl			
azufre	Líquido	Crudo	2004	2004	600
		petróleo Diésel			

Fuente: (*TULSMA*, 2017).

9. VALIDACIÓN DE LAS PREGUNTAS CIENTÍFICAS O HIPÓTESIS

¿Cuál es la fuente de contaminación que presenta mayor impacto en la calidad del aire del Cantón Latacunga?

Mediante la sistematización y análisis de los resultados de los procesos de monitoreo de calidad del aire se identificó a las fuentes móviles como la fuente de contaminación que más afecta a la calidad del aire del cantón Latacunga, debido a la contaminación producto de la combustión del parque automotor a gasolina, según el análisis de los resultados basado en la norma ambiental vigente, identificando así el índices de contaminación de la flota vehicular por CO de un 32% del total de la muestra, mientras que los hidrocarburos no quemados HC representan el 99.7% de contaminación refiriéndonos a valores elevados de Límites Permitidos de Emisiones producidas por Fuentes Móviles Terrestres a gasolina según la NTE INEN 2204:2017.

¿Cuál de los puntos monitoreados del Cantón Latacunga se encuentra más afectada por la contaminación atmosférica?

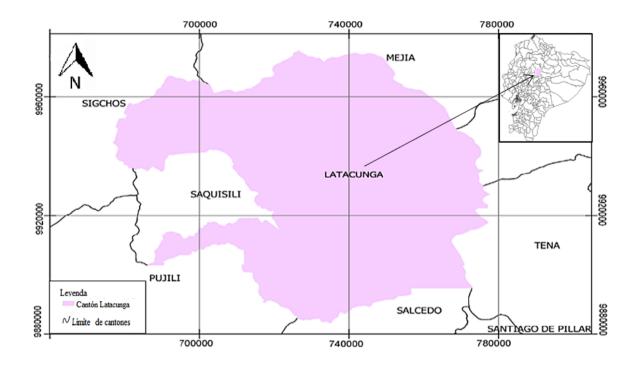
De acuerdo al análisis de los resultados de los procesos de monitoreo a la calidad del aire del cantón Latacunga se identificó a la parroquia Ignacio flores como el punto de monitoreo más afectado por la contaminación atmosférica en relación a contaminantes de fuentes móviles ya que se idéntico un índice de contaminación alto del 99.7% para HC y del 32% para CO, debido al alto incumplimiento de los límites máximos permisibles para fuentes móviles según la norma INEN 2204:2017.

10. METODOLOGÍA

10.1. DESCRIPCIÓN DEL ÁREA DE ESTUDIO

10.1.1. Ubicación

El cantón Latacunga es un cantón de la Provincia de Cotopaxi, Ecuador, está ubicada en el centro del Ecuador a una de Latitud: -0.933659 y Longitud de -78.614973 es el punto de enlace entre la Costa, Andes y Amazonía GAD Cotopaxi (2014). Limitada al norte con la Provincia de Pichincha, al sur el Cantón Salcedo, al este, la Provincia de Napo y al oeste


con los cantones Sigchos, Pujilí y Saquisilí (Fig1). Está conformado por 5 Parroquias urbanas (Eloy Alfaro, Ignacio Flores, Juan Montalvo, La Matriz, San Buenaventura) y 10 Parroquias rurales (Aláquez, Belisario Quevedo, Guaytacama, José guango Bajo, Mulaló, 11 de noviembre, Poaló, San Juan de Pastocalle, Tanicuchi, Toacaso).

Cuenta con un clima que va desde el gélido de las cumbres andinas hasta el cálido húmedo en el subtrópico occidental, el clima varía de muy húmedo temperado, a seco en diferentes épocas del año, según la clasificación climática de Köppen, Latacunga experimenta un clima mediterráneo frío (Csb). La zona ecuatorial cuenta con solo dos estaciones: un invierno lluvioso, que dura de octubre a mayo, y un verano más seco y ligeramente más fresco, entre junio y septiembre, su temperatura media anual es de 13,6 °C.

En varias zonas del cantón Latacunga, principalmente en la zona norte se asientan importantes industrias productoras de alimentos y bebidas, madereras, metalúrgicas, muebles, cemento y construcción, etc. El sector de la artesanía también juega un papel importante en el desarrollo económico de la ciudad. En Latacunga, los productos son elaborados por hábiles artesanos como: zapatería, costura, carpintería, oropel, talabartería, cerámica, tejido (Heredia, 2019).

Figura 1

Ubicación del Cantón Latacunga

10.2. MODALIDAD BÁSICA DE INVESTIGACIÓN

10.2.1. Bibliográfica Documental

Para la realización de la investigación académica se desarrolló una investigación documental, bibliográfica "se entiende por investigación documental, bibliográfica a la etapa de la investigación científica donde se explora la producción de la comunidad académica sobre un tema en particular, comprendiendo un conjunto de actividades encaminadas a localizar documentos relacionados con un tema o un autor concretos" (Gallardo et al., 2016), de proyectos de titulación de la Universidad Técnica de Cotopaxi desarrollados en el cantón Latacunga en relación a la calidad del aire, generados por el proyecto "DETERMINACIÓN DE LOS CONTAMINANTES PRODUCTO DE LA COMBUSTIÓN DEL PARQUE AUTOMOTOR A GASOLINA" de la carrera de Ingeniería Ambiental, obteniendo una base documental de 15 proyectos de titulación (tabla 6) sobre procesos de monitoreo desarrollados a la calidad del aire del cantón Latacunga en los que se encontraron datos numéricos.

Los mismo que permitió recoger aportes sobre la conceptualización, desarrollos operativos, etc., los cuales se emplearon para el proceso de recolección, indagación, análisis de información y para la sustentación de la fundamentación científica teórica facilitando así la

identificación del problema de la investigación y estableciendo conocimientos requeridos para la ejecución de la misma.

Una vez obtenido la base documental se procedió a la identificación de las áreas, resultados y metodología de los procesos de monitoreo a la calidad del aire desarrollados al cantón Latacunga.

10.3. SISTEMATIZACIÓN DE LOS PROCESOS DE MONITOREO A LA CALIDAD DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA

Para realizar la sistematización de los procesos de monitoreo desarrollados a la calidad del aire del cantón Latacunga, se siguió las recomendación de (Acosta, 2005), en cual menciona en su obra "GUÍA PRÁCTICA PARA LA SISTEMATIZACIÓN DE PROYECTOS Y PROGRAMAS DE COOPERACIÓN TÉCNICA", los pasos para la sistematización de datos:

10.3.1. Pasos para desarrollar la sistematización

• Paso 1: Definición del objetivo

El objetico se definió en sistematizar los procesos de monitoreo realizados al cantón Latacunga, para la generación de conocimientos de los resultados y metodologías de los estudios realizados, permitiendo comprender y explicar de una manera más organizada los resultados obtenidos y permitiendo también emitir recomendaciones de los mismos.

• Paso 2: El objeto de análisis

El segundo paso consistió en definir el objeto de la sistematización que consiste en la calidad del aire realizados al cantón Latacunga

• Paso 3: El eje de sistematización

Este paso se utilizó para facilitar la orientación en el desarrollo del proceso de sistematización, orientando la recolección de información y permitiendo enfocar el proceso hacia los factores que se pretende destacar mediante una tabla de valores.

• Paso 4: La estrategia de comunicación

Se sintetizó la metodología y los resultados de los procesos de monitoreo realizados en el cantón Latacunga mediante el programa Excel por medio de una tabla de valores y una gráfica de barras para mejorar su comprensión.

En el proceso se utilizaron los siguientes Instrumentos:

10.3.2. Método Estadístico Descriptivo

(Acoltzin, 2014) define a la estadística descriptiva como "la sintetización, estimación inferencia de datos".

Mediante este método se organizó, resumió y presento los valores obtenidos mediante la recopilación de datos de proyectos de titulación de la UTC de los contaminantes monitoreados a Fuentes fijas, móviles y del material particulado, al igual que ayudo al análisis e interpretación de los resultados obtenidos.

10.3.3. Método analítico

Conforme a Patino & Arbelaz (2016) "un método científico de análisis del discurso basado en unos procedimientos generales que se aplican en el caso por caso a partir de la escucha de una situación concreta" (p. 573).

Este método se empleó para la comprobación del estado en que se encuentran la calidad del aire en la Ciudad de Latacunga en relación a los datos recopilados de los procesos de monitoreo de la calidad del aire del cantón Latacunga, permitiendo llevar a cabo la comparación con la normativa ecuatoriana vigente y los resultados obtenidos, determinando el cumplimiento o incumplimiento de los mismos.

11. ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS

11.1.IDENTIFICACIÓN DE LAS ÁREAS, METODOLOGÍA, MÉTODOS Y RESULTADOS DE LOS PROCESOS DE MONITOREO DESARROLLADOS A LA CALIDAD DEL AIRE DEL CANTÓN LATACUNGA

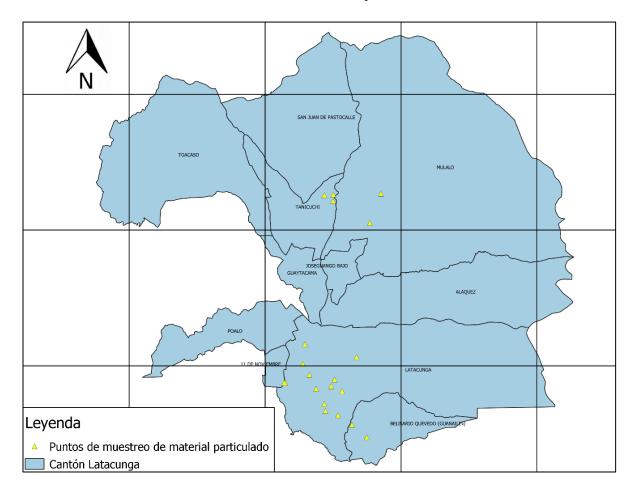
11.1.1. Identificación de las áreas, metodología, métodos y resultados de los procesos de monitoreo a la concentración de material particulado desarrollados en el cantón Latacunga

Tabla 6

Áreas, metodología, métodos y resultados identificados en los procesos de monitoreo a la concentración de material particulado desarrollados en el cantón Latacunga

	ÁREA DE	COOPDENA	COORDENA	CONTA	MÍNATE	METODOL			
N.º	MUESTRE O	DA X	DA Y	PM10 μg/m3	PM2.5 μg/m3	OGÍA	MÉTODO	EQUIPO	
1	Estación de Lasso	766028	9916743	22.79	14.75		Selección del sitio de muestreo Para la selección del sitio de muestreo	E-BAM	
2	Grupo familia Lasso	765992	9916043	13.88	9.29		se buscó un sitio óptimo para el monitoreo del aire ambiental en el que el equipo E-BAM este más cerca de la zona de respiración humana. Sin	E-BAM	
3	Sector Niagara	766106	9893374	20.4	8.4	La	embargo, por consideraciones prácticas, como prevención de	E-BAM	
4	Sector la Laguna	766588	9895934	37.6	13	metodología utilizada se	vandalismo, seguridad, accesibilidad adecuada, disponibilidad de energía,	E-BAM	

5	El Salto			13.17	6.45	basada según	etc., se instaló el equipo E-BAM	E-BAM
6	San Agustín			14.13	14.6	la Norma TULSMA la	(Fig.18) en un sitio elevado. En el caso del espaciamiento desde	E-BAM
7	Barrio San Sebastián	765813	9897160.1	9.16	3.24	misma que se preside de la	Obstrucciones El Equipo E-BAM se colocó sobre un techo u otra estructura, manteniendo una distancia mínima de 2	E-BAM
8	Barrio San José	768192	9899496	10.92	3.88	Norma EPA 40 CFR	metros de separación de paredes, barandillas, viviendas, etc.	E-BAM
9	Barrio Galpón Bajo	767559	9892351	11.67	5.88	Apéndice E_to_part_58	En un área abierta, se colocó a una distancia entre el obstáculo y el equipo	E-BAM
10	Barrio Belisario Quevedo centro	769123	9890976	11.21	4.21	- Sonda y Supervisión de rutas Emplazamient	de al menos el doble de la altura a la que el obstáculo sobresale del mismo. Para el Espaciamiento desde la carretera o cominos el equipo se localizó a una distancia considerable de	E-BAM
11	Barrio Loma Grande	763831	9896202	9.96	4.33	o Criterios para el	la pluma de partículas concentradas generadas por el tráfico para que las	E-BAM
12	Barrio La Calera	762704	9900931	23.21	13.21	Monitoreo de la Calidad del	partículas más pesadas re-suspendidas por el tráfico dominen los niveles de concentración medidos.	E-BAM
13	Barrio San Rafael centro	764661	9894611	18	7.35	Aire Ambiente, la cual muestra	En la autopista el equipo se situó por debajo del nivel de la misma (5 metros o más), localizándose a	E-BAM
14	Barrio San Rafael sur	764774	9893856	45	7.54	la forma correcta de	aproximadamente a 25 (metros) desde el borde de la pista de tráfico más cercana.	E-BAM
15	San Felipe calle Jamaica	762453	9898859	124	27	realizar el muestreo de material	Monitoreo de material particulado	E-BAM
16	San Felipe calle	763129	9897729	81	27	particulado	Para PM10 y PM2.5, el muestreo se	E-BAM


	Paraguay					realizó durante 24 horas por cada	
17	Vía e35 intercambiad or Pujilí - Latacunga punto 1	760560	9896919	15	9	punto, tal como lo exige el Acuerdo Ministerial 097 del Libro VI del del Texto Unificado de Legislación Secundaria de Medio Ambiente, que exige un monitoreo total de partículas de 24 horas según la legislación	E-BAM
18	Vía e35 intercambiad or Pujilí - Latacunga punto 2	760447	9896906	10	7	nacional aplicable y el uso del suplemento PM2.5 por parte del equipo E-BAM.	E-BAM
19	Mulaló San Ramón			0.01	0.02		E-BAM
20	Mulaló centro			0.01	0.03		E-BAM

Fuente: (Ortega, Viera, Rodríguez, 2019); (Benavides, Zavala, Rivera, Lema, 2020).

En la tabla 6 se identificaron las áreas, la metodología, los métodos y los resultados utilizados para el proceso de monitoreo desarrollado a la concentración de material particulado en el cantón Latacunga, en la cual se identificaron 20 puntos de monitoreo (Fig.2) al igual que se identificó las coordenadas de cada punto, para las áreas de monitoreo de El salto, San Agustín y Mulaló no se encontró coordenadas de los puntos, al igual que se identificó el quipo utilizado para el monitoreo.

Figura 2

Puntos de monitoreo a la concentración de material particulado

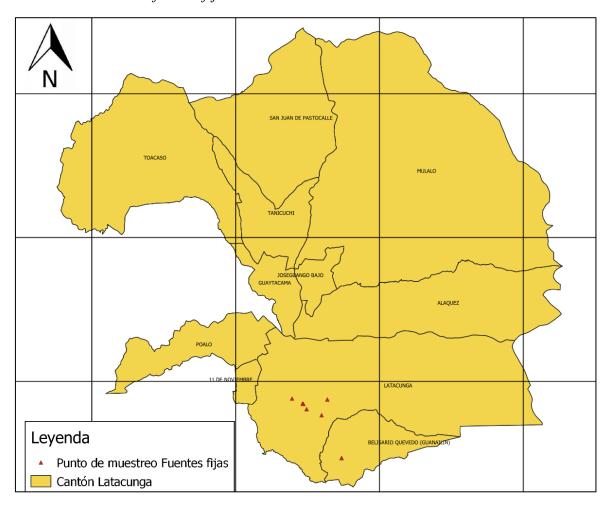
11.1.2. Identificación de las áreas, metodología, métodos y resultados de los procesos de monitoreo a fuentes fijas desarrollados en el cantón Latacunga

Tabla 7

Áreas, metodología, métodos y resultados de los procesos de monitoreo realizados a las fuentes fijas en el cantón Latacunga

	ÁREA DE	COODDE	COORDE	CONTAMINANTE					
N.º	MUESTREO	NADA X	NADA Y	CO mg/Nm3	Nox	SO ₂ mg/Nm3	METODOLOGÍA	MÉTODO	EQUIPO
1	Hospital General Latacunga	765210	9896360	3.3	123.5	719.2		• Requisitos y métodos de medición Para permitir la medición de emisiones de contaminantes del aire desde fuentes fijas de combustión, estas fuentes deben cumplir con las	Testo 350 XL

2	Hospital IEES Latacunga	765526	9895843	1105	192.9	741.3	Para la realización del monitoreo de gases en fuentes fijas se aplicó la metodología establecida en el TULSMA norma de emisiones al	siguientes especificaciones mínimas (Fig21). a. Plataforma de trabajo, con las características descritas en la Figura 4. b. Escalera de acceso a la plataforma de trabajo. c. Suministro de energía	Testo 350 XL
3	Empresa ALCOPESA - San Felipe	764087	9896921	103.6	693.3	963.7	aire desde fuentes fijas: Métodos (USEPA) (tabla) para la medición de gases	eléctrica cercano a los puertos de muestreo. Para la selección del sitio de muestreo se realizó en un sitio localizado al	Testo 350 XL
4	Hospital General Latacunga	765141	9896417	12710	89.33	12002	contaminantes.	menos a ocho diámetros después de la última perturbación en contracorriente o dos diámetros antes de cualquier perturbación en	Testo 350 XL


5	Empresa La Pradera Belisario Quevedo caldero 1	768957	9890893	278.8	121.6	13.4	el mismo sentido del flujo (Fig.22). • Número de puertos de muestreo para chimeneas Se identificó el número de puertos de muestreo requeridos se de acuerdo al siguiente criterio: • Dos (2) puertos para aquellas chimeneas o	Testo 350 XL
6	Empresa La Pradera Belisario Quevedo caldero 2	768957	9890893	161.0	121.0	44.6	conductos de diámetro menores 3,0 metros. • Cuatro (4) puertos para chimeneas o conductos de diámetro igual o mayor a 3,0 metros. • Chimeneas Circulare localice los puntos transversales sobre dos diámetros perpendiculares	Testo 350 XL
7	La Laguna- ladrillera artesanal 1	767027	9895207	16443.35	301.8	408.8	de acuerdo con la Tabla 12. • Para conductos de sección rectangular, se utilizó el diámetro equivalente para definir el número y la ubicación de los puertos de muestreo según la Tabla 13. • Tiempo de	Testo 350 XL

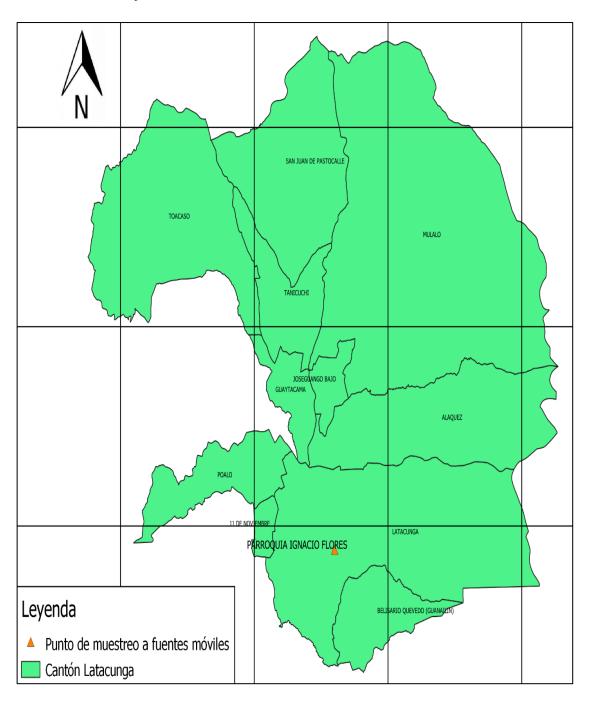
8	La Laguna - ladrillera artesanal 2	767631	9896772	15.811.128	409.7	418.4	(Monóvido de carbono)	sto XL
---	--	--------	---------	------------	-------	-------	-----------------------	-----------

Fuente: Rea y Taco, (2013); (Remachi, 2017); (Fonseca, 2018) y (Lidioma, 2018).

En la tabla 7 se identificaron las áreas, la metodología, los métodos y los resultados de procesos de monitoreo a fuentes fijas en el cantón Latacunga, en el cual se identificaron 7 puntos de monitoreo (Fig.3), también se identificó una repetición del monitoreo a que el al igual que se identificaron las coordenadas de cada punto de muestreo y el equipo utilizado en el proceso de monitoreo.

Figura 3Puntos de monitoreo a fuentes fijas

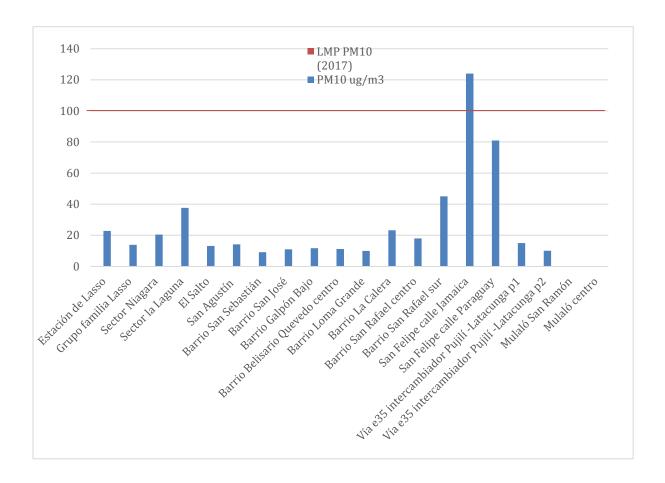
11.1.3. Identificación de las áreas, metodología, métodos y resultados de los procesos de monitoreo a fuentes móviles desarrollados en el cantón Latacunga


Tabla 8 Área, metodología y métodos de los procesos de monitoreo a fuentes móviles desarrollados en el cantón Latacunga

Área	Metodología	Método	Equipo
Parroquia Ignacio Flores	Para la realización del proceso de monitoreo a las fuentes móviles se basó de acuerdo a las instrucciones que dispone el equipo AVL DITEST GAS 1000, el cual es el principal equipo para el monitoreo Opacímetro: Opacidad en %	-Registrar los datos del vehículo en el equipo (marca del vehículo, tipo de vehículo, placa y el kilometraje) que va a ser medido, esperar de 60 a 15 minutos para que el equipo almacene los datos y proceda a la fase de estabilizaciónConfigure el sensor de encendido el motor hasta que la luz cambie de rojo a verde, la luz indicadora trasera indica que el vehículo está haciendo más vibraciones. Con el motor en ralentí, realice al menos tres aceleraciones consecutivas desde la posición de ralentí normal hasta la posición de velocidad máxima para despejar el colector de escape y conecte la sonda de escape a la salida del colector de escape, asegurándose de que permanezca estacionario durante toda la pruebaAplicar aceleración hasta 3000 rpm al vehículo y permitir que el motor regrese a condición de ralentí normal con el fin de obtener los resultados de monóxido de carbono (CO) e hidrocarburos (HC); que son los mayores contaminantes generados por los vehículos a gasolina. Después de la medición correspondiente, se imprimirá el informe de prueba de emisiones obtenidoDespués de medir cada	AVL DITEST GAS 1000

vehículo, el instrumento se	
limpia durante unos 10	
minutos para evitar datos	
incorrectos en la próxima	
medición.	
- Luego de acabar con todas	
las mediciones programadas	
en un día se realiza el	
respectivo mantenimiento	
donde se procede al cambio	
de filtros evitando consigo	
daños a largo plazo del	
equipo.	
-Finalmente, se desconectan	
los accesorios e instalaciones	
eléctricas del equipo,	
colocándolos en posición con	
todas las precauciones	
necesarias.	

En la tabla 8 y 14 se identificaron las áreas, la metodología, métodos y los resultados de los procesos de monitoreo a fuentes móviles en el cantón Latacunga, identificando 300 vehículos según su placa, tipo de auto, kilometraje y marca además se identificó las coordenadas del punto de muestreo (Fig.4) y el equipo utilizado en el proceso de monitoreo a las fuentes móviles.


Figura 4Punto de monitoreo a fuentes móviles

- 11.2. SISTEMATIZACIÓN DE LOS RESULTADOS DE LOS PROCESOS DE MONITOREO DE LA CALIDAD DEL AIRE DESARROLLADOS EN EL CANTÓN LATACUNGA, SEGÚN LA NORMATIVA ECUATORIANA VIGENTE
- 11.2.1. Análisis de resultados de los procesos de monitoreo a la concentración de material particulado en el cantón Latacunga según la normativa ambiental vigente

Figura 5

Comparación del parámetro PM10 con la norma de calidad del aire ambiente, Anexo 4 del Libro VI

En la figura 5 se presenta la comparación entre los valores obtenidos de los 20 puntos de muestreo para PM10 y el límite máximo permisible para PM10, evidenciando que de los 20, 19 puntos cumplen con los límites máximos permisibles, mientras que en el punto de San

Felipe (Calle Jamaica) este excede el límite máximo permisible para Material Particulado PM10, según la normativa ambiental vigente del año 2017. Obteniendo así un 95% de cumplimiento y un 5% de incumplimiento de la normativa ambiental en PM10 para el cantón Latacunga. (Fig.6)

Figura 6

Porcentaje de cumplimiento de la normativa ambiental para PM10

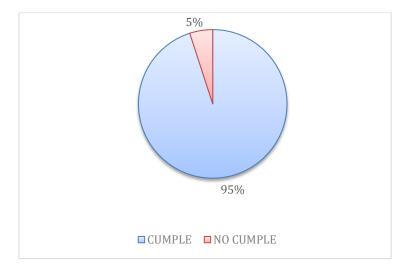
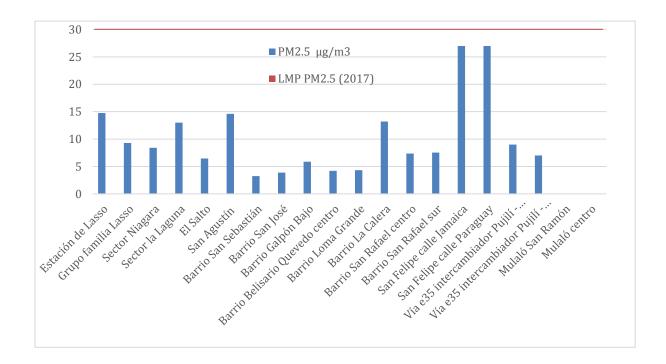
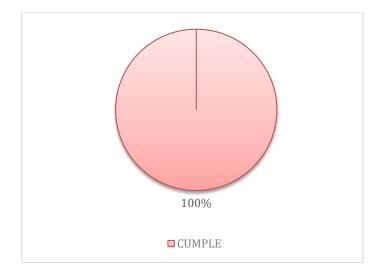



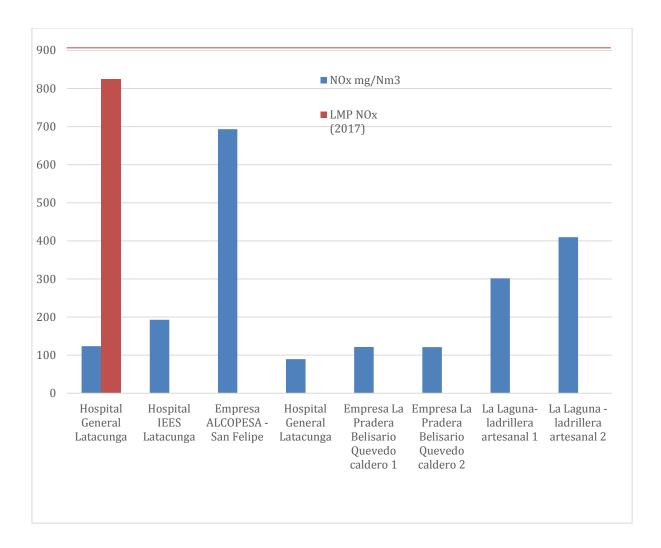
Figura 7


Comparación del parámetro PM 2.5 con la norma de calidad del aire ambiente, Anexo 4 del Libro VI

En la figura 7 se presenta la comparación de los valores obtenidos en los procesos de monitoreo para PM 2.5 y el límite máximo permisible para PM2.5, evidenciando que este no sobrepasa los límites máximos permisibles establecidos en la norma de calidad del aire ambiente del Libro VI anexo 4, en ninguno de los puntos de monitoreo. Obteniendo un 100% de cumplimiento de la norma ambiental del parámetro PM2.5 según muestra la figura 8 para el cantón Latacunga.

Figura 8

Porcentaje de cumplimento de la norma ambiental para PM 2.5



11.2.2. Análisis de resultados de los procesos de monitoreo a los gases contaminantes identificados en fuentes fijas en el cantón Latacunga según la normativa ambiental vigente

En los resultados obtenidos de la investigación en relación a los gases monitoreados a fuentes fijas, se identificaron 3 parámetros como es el monóxido de carbono (CO), Óxidos de nitrógeno (Nox) y Dióxido de azufre (SO₂), para el parámetro CO según los límites máximos permisibles actuales establecidos en el anexo 3 del Libro VI del TULSMA norma de emisiones al aire desde fuentes fijas del año 2017 no aplica por lo tanto no se puede realizar una comparación con el resultado obtenido.

Figura 9

Comparación del parámetro NOx con el anexo 3 del Libro VI de la norma de Emisiones al aire desde Fuentes Fijas

Según la Figura 9 para el parámetro NOx según la normativa actual vigente del año 2017 este no sobrepasa el límite máximo permisible en ninguno de los puntos de monitoreo realizados al cantón Latacunga. Manteniendo así un 100% de porcentaje de cumplimiento de la norma ambiental vigente (Fig.10) para el parámetro NOx para el cantón Latacunga.

Figura 10

Porcentaje de cumplimiento de la norma ambiental vigente del parámetro NOx para el cantón Latacunga

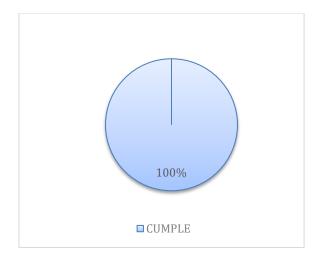
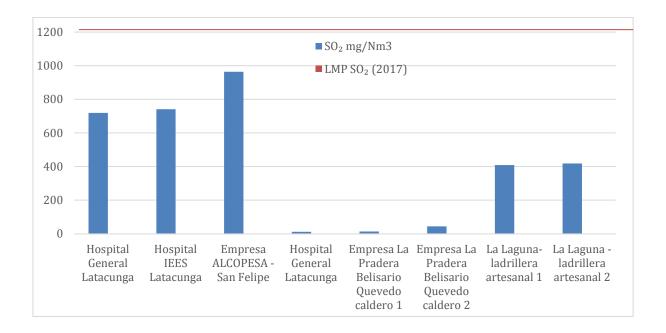
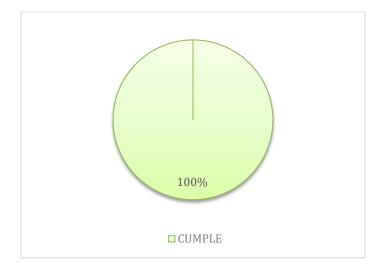
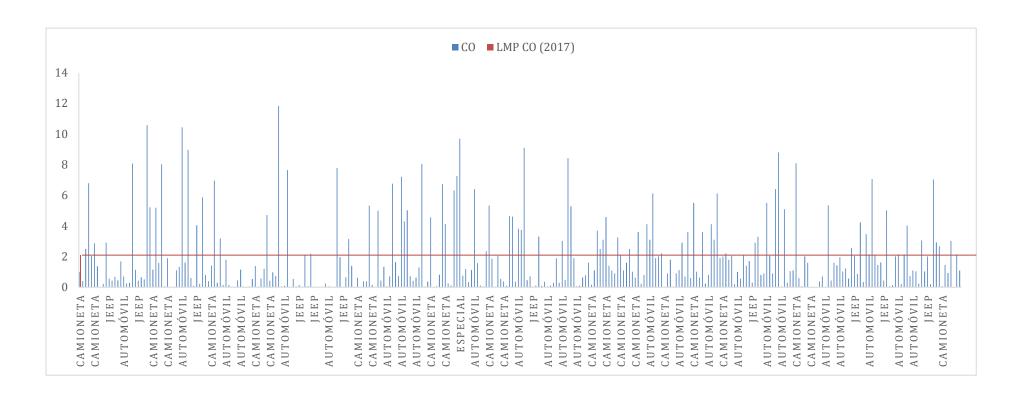



Figura 11

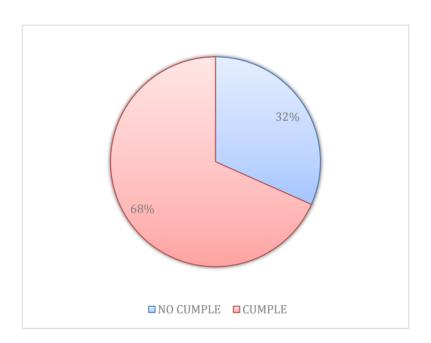

Comparación del parámetro SO_2 con el anexo 3 del Libro VI de la norma de Emisiones al aire desde Fuentes Fijas

Según la figura 11 para el parámetro SO_2 según la normativa actual vigente del año 2017 este no sobrepasa el límite máximo permisible en ninguno de los puntos de monitoreo realizados al cantón Latacunga. Obteniendo así un 100% de porcentaje de cumplimiento de la normativa ambiental vigente (fig.12) para el cantón Latacunga en relación al parámetro SO_2 .

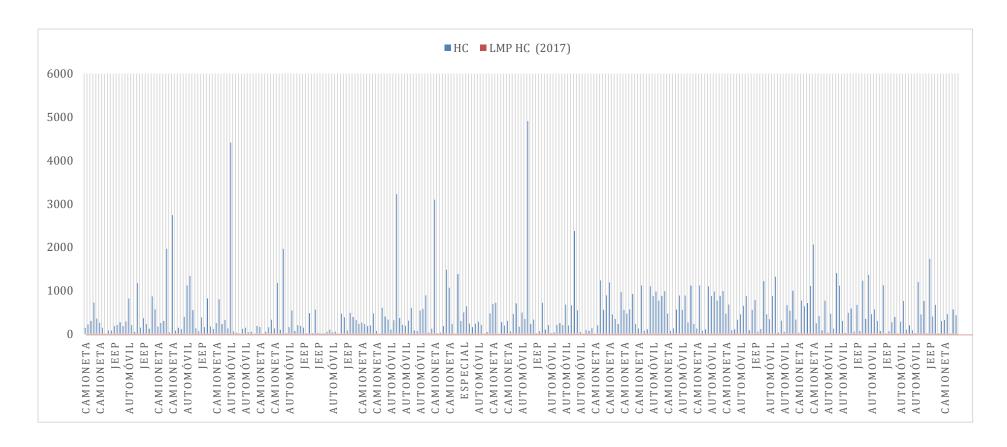

Figura 12

Porcentaje de cumplimiento de la norma ambiental vigente para el parámetro $SO_2\,$ en el cantón Latacunga

11.2.3. Análisis de resultados de los procesos de monitoreo a los gases contaminantes de las fuentes móviles en el cantón Latacunga según la normativa ambiental vigente

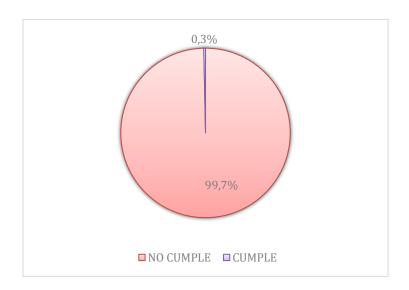

Figura 13 Comparación del parámetro CO con la Norma Técnica Ecuatoriana INEN 2204 (2017)

En la figura 13 se muestra la comparación del parámetro CO con la norma técnica *INEN 2204* vigente del año 2017 identificando que de las 300 muestras de vehículos monitoreados 95 vehículos de tipo liviano exceden los límites máximos permisibles emitidas por la norma, mientras que 205 vehículos de tipo liviano cumplen con la norma, obteniendo así un 68% de cumplimiento y un 32% de incumplimiento (Fig.14) del parámetro de CO emitido por fuentes móviles del cantón Latacunga.


Figura 14

Porcentaje de cumplimiento de la norma ambiental de gases generados por fuentes móviles del cantón Latacunga

Nota: En la figura se muestra el porcentaje de cumplimiento de la norma ambiental de los gases generados por la combustión incompleta del parque automotor a gasolina de las 300 muestras a los vehículos monitoreados.


Figura 15 Comparación del parámetro Hidrocarburos (HC) con la Norma Técnica Ecuatoriana INEN 2204 (2017)

En la figura 15 se muestra la comparación del parámetro de HC con la norma técnica Ecuatoriana INEN 22004 vigente del año 2017 donde se evidencia que de las 300 muestra de vehículos monitoreados en la parroquia Ignacio Flores, 299 vehículos del tipo liviano sobrepasan los límites máximos permisibles, mientras que solo 1 vehículo de tipo liviano se encuentra dentro de la norma. Obteniendo un 0.33% de cumplimiento y un 99.7% de incumplimiento del parámetro HC a la norma técnica INEN 2204 vigente para el cantón Latacunga. (Fig.16)

Figura 16

Porcentaje de cumplimiento de la norma para el parámetro HC

De acuerdo con la OPS, (2021) en su estudio de las "Nuevas directrices mundiales de la OMS sobre calidad del aire buscan evitar millones de muertes debidas a la contaminación", se menciona las nuevas Directrices mundiales de la Organización Mundial de la Salud (OMS) sobre la calidad del aire, respecto a los contaminantes como partículas en suspensión (PM), ozono (O₃), dióxido de nitrógeno (NO₂), dióxido de azufre (SO₂), el cual recomienda nuevos niveles de calidad del aire para proteger la salud de las poblaciones a través de la reducción de los niveles de los contaminantes principales, algunos de los cuales también aportan al cambio climático.

Desde la última actualización realizada por la OMS en 2005 a nivel mundial, se ha generado un notable aumento de la contaminación al aire que afecta diferentes aspectos de la salud que

han dejado pruebas notables de su afección. Por ello, tras una revisión sistemática de la evidencia recopilada la OMS ha establecido una baja a casi todos los parámetros de la calidad del aire e indica que la superación de estos niveles ocasionara riesgos significativos para la salud, al igual que el cumplimiento de las mismas podría salvar millones de vidas.

Conforme a las nuevas directrices para el parámetro de la concentración del material particulado PM2.5 y PM 10, 18 de los 20 puntos monitoreados cumplen con los valores fijados por las directrices, mientras que 2 de los puntos ubicados en el barrio San Felipe en las calles Paraguay y Jamaica sobrepasan los nuevos niveles de la calidad del aire para PM2.5 con 27 µg/m3 de la media diaria y para PM10 con 124µg/m3 y 81µg/m3 para la calle Jamaica y Paraguay.

Para el parámetro de Dióxido de azufre (SO₂), conforme a los resultados obtenidos en los 7 puntos monitoreados ninguno cumple con los nuevos valores fijados por las directrices, por lo que se deben establecer acciones para combatir la contaminación del aire y mejorar la vigilancia epidemiológica, así como la aceleración de políticas públicas para mitigar la contaminación del aire en el cantón Latacunga.

Complementario a las directrices, la Norma ecuatoriana de la calidad del aire (2011) indica los niveles de alerta, de alarma y de emergencia en la calidad del aire, en donde mediante la sistematización de los resultados obtenidos al monitoreo del aire en el cantón Latacunga, se puede identificar que los parámetros no sobrepasan los límites de la Norma.

12. IMPACTOS (TÉCNICOS, SOCIALES, AMBIENTALES O ECONÓMICOS)

12.1. IMPACTO SOCIAL

La contaminación del aire es el principal riesgo ambiental para la salud pública, la exposición a altos niveles de contaminación del aire implica una variedad de resultados adversos para la salud como pueden ser; vulnerabilidad ante infecciones respiratorias, enfermedades cardiovasculares, cáncer de pulmón y derrames cerebrales, las cuales afectan en mayor escala a la población vulnerable (niños, adultos mayores y mujeres).

Mediante la socialización de la investigación se pretende generar una concientización ambiental que busque la disminución de los niveles de contaminación del aire ya la salud (cardiovascular y respiratoria) de la población y los niveles de contaminación del aire son parámetros inversamente proporcionales, tanto a largo como a corto plazo.

12.2. IMPACTO AMBIENTAL

La contaminación del aire figura un importante riesgo medioambiental, gran parte de las fuentes contaminantes del aire exterior están fuera del control de las personas por lo que se requiere adopción de medidas a una escala mayor, en la ciudad de Latacunga el porcentaje de incumplimiento de la norma ambiental para fuentes móviles como son vehículos de tipo liviano de combustión a gasolina representan un 99.7% de incumplimiento, mientras que solo un 0.33 % representa cumplimiento de la norma para por ello mediante la socialización de la investigación se busca concientizar a la población sobre temas de mitigación de la contaminación producto de las emisiones atmosféricas, por lo que la investigación presenta un impacto positivo al ambiente ya que la sistematización de datos ayuda a la identificación de los puntos más contaminados al aire ambiente.

12.3. IMPACTO ECONÓMICO

En cuanto a la valoración del recurso aire, al igual que otros recursos ambientales que son fundamentales para la existencia humana, su existencia es invaluable, pero su disrupción estructural provocará impactos negativos para las personas. Esto implica que la contaminación del aire crea valor por el costo de remediar el daño emergente, debido a la mala calidad del aire, se genera un aumento de los costos médicos, el aumento de las bajas por enfermedad y afecta la productividad. Aunque el control de la calidad el aire genera mejor condición de vida que repercuta en una economía más estable.

13. PRESUPUESTO

Tabla 9Presupuesto para la elaboración del proyecto

RECURSOS	DESCRIPCIÓN	UNIDADES	VALOR NITARIO (USD)	VALOR TOTAL (USD)	
HUMANO	Investigador				
	Tutor				
TECNOLÓGICO	Manual digital	1	\$ 30,00	\$	30,00
OFICINA	Resmas de papel	3	\$ 4,50	\$	13,50
	Esferos	5	\$ 0,75	\$	3,75
	Marcadores	3	\$ 2,70	\$	2,70
	Libreta de Campo	1	\$ 1,50	\$	1,50
OTROS	Impresiones	1250	\$ 0,15	\$	187,50
	Anillados	4	\$ 20,00	\$	60,00
	Empastado	1	\$ 15,00	\$	25,00
	Transporte	1	\$ 50,00	\$	50,00
	Internet	250 horas	\$ 0.50	\$	125
SUBTOTAL					
		498.95 \$			
TOTAL					498.95
		\$			

14. CONCLUSIONES Y RECOMENDACIONES

14.1. CONCLUSIONES

- Se estableció las áreas en donde se desarrollaron los procesos de monitoreo a la calidad del aire, identificando 20 puntos de monitoreo a la concentración de material particulado, 7 puntos de monitoreo a fuentes fijas y 1 puntos de monitoreo a fuentes móviles, al igual que se identificó los resultados de los procesos de monitoreo para cada punto.
- Se determinó la metodología utilizada en los procesos de monitoreo de acuerdo a cada tipo de contamínate, para el proceso de monitoreo a gases en fuentes fijas se aplicó la metodología mencionada en la normativa basada en el ANEXO 3 del libro VI y 4 del Libro VI del TULSMA norma de emisiones al aire desde fuentes fijas, para el proceso de monitoreo a fuentes móviles se utilizó la metodología basada en la utilización del Equipo AVL DITEST gas 1000 para contaminantes producto de la combustión del parque automotor a gasolina, en el proceso de monitoreo de la concentración de material particulado (PM10, PM2.5) se utilizó la metodología basada en la Norma TULSMA la misma que se preside de la Norma EPA 40 CFR Apéndice E_to_part_58 Sonda y Supervisión de rutas Emplazamiento Criterios para el Monitoreo de la Calidad del Aire Ambiente, para muestreo con el equipo E-BAM.
- En el análisis de la sistematización de los resultados se comparó los resultados de los procesos de monitoreo a la calidad del aire desarrollados en el cantón Latacunga, mediante la norma ambiental vigente para cada tipo de contaminante, identificando que de los tres tipos de contaminantes ,la contaminación por fuentes móviles producto de la combustión del parque automotor a gasolina genera un mayor impacto negativo a la calidad del aire del cantón Latacunga ya que sus parámetros sobrepasan el límite máximo permisible como es el caso de CO que presenta un 32% de incumplimiento, mientras que HC presenta un 99.7% de incumplimiento de las normas ambientales vigente, seguido por la contaminación producto de la concentración de material particulado PM10 con un 5% de incumplimiento de la norma ambiental vigente.

14.2. RECOMENDACIONES

- Se recomienda realizar un seguimiento a este trabajo de investigación, puesto que la densidad demográfica sigue en constante crecimiento lo que genera el incremento de nuevas industrias y la demanda de movilidad, ya que con la actualización de la sistematización de los datos se puede obtener un inventario a futuro de emisión de gases contaminantes en el Cantón Latacunga.
- En el caso de las futuras reformas a la normativa ambiental de la calidad del aire se debe tomar en cuenta los parámetros derrocados, además de actualizar los límites máximos permisibles según las normativas a nivel mundial en relación a la calidad del aire.
- Continuar con los procesos de monitoreo a la calidad del aire por lo menos 1 vez al año con la finalidad de verificar si las concentraciones han disminuido o aumentado, al igual que crear una base de datos sólida para el análisis de la calidad del aire del cantón de manera que se tomen medidas más fuertes que eviten la degradación total de la calidad de aire del cantón Latacunga

15. BIBLIOGRAFÍA

- Acoltzin, C. (2014). Estadística descriptiva y selección de la prueba. *Revista mexicana de cardiología*, 25(2), 129-131.
- Acosta, L. (2005). Guía práctica para la sistematización de proyectos y programas de cooperación técnica. Oficina Regional de la FAO para América Latina y El Caribe. https://www.fao.org/3/ah474s/ah474s.pdf
- ANEXO 3 DEL LIBRO VI DEL TEXTO UNIFICADO DE LEGISLACIÓN SECUNDARIA

 DEL MINISTERIO DEL AMBIENTE NORMA DE EMISIONES AL AIRE DESDE

 FUENTES FIJAS NORMA DE EMISIONES AL AIRE DESDE FUENTES FIJAS.

 (2015).
- AVL DITEST FAHRZEUGDIAGNOSE GMBH. (2011).
- Benavides, D. (2020). "DETERMINACIÓN DE MATERIAL PARTICULADO PM_{1 0} Y

 PM_{2 ,5} EN CANTERAS DE PUZOLANA DEL BARRIO SAN FELIPE, PARROQUIA

 ELOY ALFARO, CANTÓN LATACUNGA, PROVINCIA DE COTOPAXI, PERIODO

 2019-2020". UNIVERSIDAD TÉCNICA DE COTOPAXI.
- Botero, L. (2019, abril 30). *Plan de Gestión de La Calidad Del Aire | PDF | Oxígeno | La contaminación del aire*. Scribd. https://es.scribd.com/document/408177986/Plan-de-Gestion-de-La-Calidad-Del-Aire
- Caraballo, V. N., Rojas, R. R., Gómez, L., Moya, I. H., & Pérez, M. C. M. (2019). *Emisiones* de dióxido de azufre a la atmósfera por fuentes jas del MINAG y su in uencia en la calidad del aire en la provincia de Villa Clara. 10.
- Carnicer, J. (2008). *Módulo 1 Contaminación Ambiental*. 11-13. Censo de Población y Vivienda. (2010).

- Chuet, P. (2017, febrero 25). NO2, el peligroso contaminante que afecta a la capacidad de atención de los niños. La Vanguardia.

 https://www.lavanguardia.com/natural/20170226/42280025427/no2-dioxido-denitrogeno-peligroso.html
- Churata, M. (2021, septiembre 22). *Contaminación del aire ambiente OMS* (2).

 https://www.slideshare.net/maribelchuratasalced/contaminacin-del-aire-ambiente-oms-2/
- Constitución de la República del Ecuador, A. C. de. (2008). *Constitución de la República del Ecuador*. http://biblioteca.defensoria.gob.ec/handle/37000/823
- Cortez, M. (2016). DETERMINACIÓN DE LOS CONTAMINANTES PRODUCTO DE LA COMBUSTIÓN DEL PARQUE AUTOMOTOR A GASOLINA EN LA PARROQUIA IGNACIO FLORES, CIUDAD DE LATACUNGA, PERÍODO 2015. UNIVERSIDAD TÉCNICA DE COTOPAXI.
- Craparo, M. (2017). Sistemas de monitoreo continuo de emisiones (CEMS): Lineamientos de diseño, características y normativa de aplicación. AADECA REVISTA, Argentina. https://www.editores-srl.com.ar/sites/default/files/aa5_cv_control_cems.pdf
- de Velde, H. V. (2008). Sistematización, Texto de referencia y consulta. 127.
- EL OZONO ESTRATOSFÉRICO. (2012). Redaly. https://www.redalyc.org/pdf/535/53559383005.pdf
- Fonseca, J. (2018). DETERMINACIÓN DE LOS CONTAMINANTES ATMOSFÉRICOS

 EMITIDOS EN LADRILLERAS ARTESANALES EN LA PARROQUIA IGNACIO

 FLORES, CANTÓN LATACUNGA, PROVINCIA DE COTOPAXI. UNIVERSIDAD

 TÉCNICA DE COTOPAXI.
- Forero, N. A. G. (2007). Metodología, método y propuestas metodológicas en Trabajo Social. 17.

- GAD Cotopaxi. (2014, julio 3). *Latacunga*. https://www.cotopaxi.gob.ec/index.php/2015-09-20-00-13-36/2015-09-20-00-15-41/latacunga
- Gallardo, P. S., Canales, C. B., & Sánchez, A. F. G. (2016). Puesta al día en la búsqueda de información científica. La revisión bibliográfica: Primera etapa en la actividad científica. *Metas de enfermería*, 19(4), 8.
- Garcia, P. (2021, agosto 11). ¿Qué es un SIG, GIS o Sistema de Información Geográfica?

 Geoinnova. https://geoinnova.org/blog-territorio/que-es-un-sig-gis-o-sistema-de-informacion-geografica/
- Gavilanes, S. (2020). 1.1 Contaminación Del Aire 20-20 / PDF / La contaminación del aire / Contaminación. Scribd. https://es.scribd.com/document/554824749/1-1-Contaminacion-del-aire-20-20
- González, M., Orozco, C., Pérez, A., Alfayate, J., & Rodríguez, F. (2002). *Contaminación ambiental. Una visión desde la química* (Paraninfo S.A.).

 https://www.paraninfo.es//catalogo/9788497321785/contaminacion-ambiental--una-vision-desde-la-química
- Heredia, M. (2019). *PLAN DE ORDENAMIENTO TERRITORIAL DEL CANTÓN LATACUNGA 2016-2019*. 58.
- INECC. (2007, noviembre 15). Instituto Nacional de Ecología.
 http://www2.inecc.gob.mx/publicaciones2/libros/396/tipos.html
- Lema, R. (2020). "EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL

 PARTICULADO PM2,5 PM10 EN LA PARROQUIA DE MULALÓ, DE LA

 PROVINCIA DE COTOPAXI EN EL PERIODO 2019-2020.". UNIVERSIDAD

 TÉCNICA DE COTOPAXI.
- Lidioma, P. (2018). DETERMINACIÓN DE LOS GASES CONTAMINANTES EN FUENTES

 FIJAS EN LA EMPRESA DE CEREALES LA PRADERA Y LA INSTITUCIÓN

- PÚBLICA DEL HOSPITAL GENERAL DE LATACUNGA. UNIVERSIDAD
 TÉCNICA DE COTOPAXI.
- Márquez, A. (2015). *LA RECOLECCIÓN DE DATOS EN LA SISTEMATIZACIÓN ppt*descargar. https://slideplayer.es/slide/8045546/
- Mendoza, H. (2014). *Procedimiento de Control Operacional de las Emisiones a la Atmosfera*(N.º 0; pp. 1-3). Universidad Politécnica de Tulancingo.

 http://www.upt.edu.mx/contenido/certificaciones/pdf/iso/2/PR-SGI-016/Procedimiento/PR-SGI_016.pdf
- Moretton, J. (2021). *Monóxido de carbono | SoCalGas*. https://www.socalgas.com/es/stay-safe/emergency-information/carbon-monoxide
- Norma ecuatoriana de la calidad del aire. (2011). *Norma Ecuatoriana de la Calidad del Aire*. http://www.quitoambiente.gob.ec/index.php/norma-ecuatoriana-de-la-calidad-del-aire *NORMA TÉCNICA ECUATORIANA NTE INEN 2204*. (2017).
- OMS. (2021, septiembre 22). Calidad del aire ambiente (exterior) y salud.

 https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- OPS. (2021, septiembre 22). *Nuevas directrices mundiales de la OMS sobre calidad del aire buscan evitar millones de muertes debidas a la contaminación*.

 https://www.paho.org/es/noticias/22-9-2021-nuevas-directrices-mundiales-oms-sobre-calidad-aire-buscan-evitar-millones
- Ortega, L. (2019). "EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL

 PARTICULADO PM10 Y PM2.5 EN LA PARROQUIA JUAN MONTALVO CANTÓN

 LATACUNGA PROVINCIA DE COTOPAXI PERÍODO 2018 2019."

 UNIVERSIDAD TÉCNICA DE COTOPAXI.

- Patino, J. D. P., & Arbelaz, I. C. L. (2016). GESTIÓN HUMANA DE ORIENTACIÓN ANALÍTICA: UN CAMINO PARA LA RESPONSABILIZACIÓN. Revista de Administración de Empresas, 56(1), 101-113. https://doi.org/10.1590/S0034-759020160109
- Pogge, R. W. (2021). GPS. En *Wikipedia, la enciclopedia libre*. http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html
- Press, E. (2017, julio 20). *La contaminación por ozono empeora tu salud cardiovascular*.

 Europa Press. https://www.infosalus.com/salud-investigacion/noticia-contaminacion-ozono-empeora-salud-cardiovascular-20170720074943.html
- Protocolo de Monitoreo de Calidad de Aire y Emisiones. (s. f.). 40.
- Querol Carceller, X. & Fundación?? Gas Natural Fenosa. (2018). La calidad del aire en las ciudades: Un reto mundial.
- Rea, M., & Taco, M. (2013). DETERMINACIÓN DE LAS CONCENTRACIONES DE GASES

 DE COMBUSTIÓN DE FUENTES FIJAS DEL HOSPITAL GENERAL LATACUNGA

 Y EL HOSPITAL DE SEGURO SOCIAL DE LA CIUDAD DE LATACUNGA,

 PROVINCIA DE COTOPAXI PERIODO 2013. UNIVERSIDAD TÉCNICA DE

 COTOPAXI.
- Reinoso, L. (2018, agosto 18). Aire contaminado en Latacunga. *La Hora*. https://www.pressreader.com/
- Remachi, J. (2017). "DETERMINACIÓN DE LOS GASES CONTAMINANTES EN FUENTES FIJAS EN LA PARROQUIA ELOY ALFARO DE LA CIUDAD DE LATACUNGA." UNIVERSIDAD TÉCNICA DE COTOPAXI.
- Ricaute. (2013). *Atmosfera y calidad del aire emisiones*. J. http://www.mapama.gob.es/es/calidad-y-evaluacionambiental/ temas/atmosfera-y-calidad-del-aire/emisiones/prob-amb/particulas.aspx. Obtenido de

- http://www.mapama.gob.es/es/calidad-y-evaluacionambiental/ temas/atmosfera-y-calidad-del-aire/emisiones/prob-amb/particulas.aspx:
 http://www.mapama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-
- Rivera, M. (2020). "DETERMINACIÓN DE LAS CONCENTRACIONES DEL MATERIAL PARTICULADO 2022 2021, EN LA VÍA E35 INTERCAMBIADOR PUJILÍ LATACUNGA PERÍODO 2019-2020" (Repositorio Digital UTC). UNIVERSIDAD TÉCNICA DE COTOPAXI.

ycalidad- del-aire/emisiones/prob-amb/particulas.aspx

- Rodríguez, J. (2019). EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL

 PARTICULADO DE PM 2.5 Y PM 10 EN LA PARROQUIA LA MATRIZ EN EL

 CANTÓN LATACUNGA, PROVINCIA DE COTOPAXI EN EL PERÍODO 2018 –

 2019. UNIVERSIDAD TÉCNICA DE COTOPAXI.
- Rojano, R. E., Mendoza, Y. I., Arregoces, H., & Restrepo, G. M. (2016). Dispersión de
 Contaminantes del Aire (PM10, NO2, CO, COV y HAP) emitidos desde una Estación
 Modular de Compresión, Tratamiento y Medición de Gas Natural. *Información*tecnológica, 27(5), 99-110. https://doi.org/10.4067/S0718-07642016000500012
- Romero, M., Diego Olite, F., & Álvarez Toste, M. (2006). La contaminación del aire: Su repercusión como problema de salud. *Revista Cubana de Higiene y Epidemiología*, 44(2), 0-0.
- Soluciones de alquiler ecológico / Alquiler y venta de equipos ambientales. (2020). https://eco-rentalsolutions.com/
- Testo 350XL. (2019). http://express.cleanair.com/PortableGasAnalyzers/spanish/testo.html Universidad Técnica de Cotopaxi. (2020). https://www.utc.edu.ec/
- Vasquez, C. (2021, diciembre 2). ¿Qué es el parque automotor? https://todosloshechos.es/que-es-el-parque-automotor

- Vélez, Á. U., & Lozano, J. (2008). MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL. 287.
- Viera, J. (2019). "EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL PARTICULADO PM10 Y PM2.5 EN LA PARROQUIA ELOY ALFARO DE LA PROVINCIA DE COTOPAXI EN EL PERIODO 2018-2019". UNIVERSIDAD TÉCNICA DE COTOPAXI.
- Zavala, J. (2020). "DETERMINACIÓN DE MATERIAL PARTICULADO PM₁₀ Y PM₂. ₅

 PRODUCTO DE LA EXPLOTACIÓN DE CANTERAS EN EL SECTOR SAN

 RAFAEL DE LA CIUDAD DE LATACUNGA". UNIVERSIDAD TÉCNICA DE

 COTOPAXI.

16. ANEXOS

ANEXOS 1 Aval del Traductor

ANEXOS 2 Investigaciones utilizadas en el desarrollo del proyecto

Tabla 10
Investigaciones empleadas en la indagación

N.º	TITULO	AÑO	AUTOR	RESUMEN	CONCLUSIÓN	ÁREA DE ESTUDIO	BIBLIOTECA
1	DETERMINACIÓN DE LAS CONCENTRACIONES DE GASES DE COMBUSTIÓN DE FUENTES FIJAS DEL HOSPITAL GENERAL LATACUNGA Y EL HOSPITAL DE SEGURO SOCIAL DE LA CIUDAD DE LATACUNGA, PROVINCIA DE COTOPAXI PERIODO 2013"	2013	Rea Toasa Myrian Lucia Taco Sánchez María Eulalia	Se efectuó con el propósito de llevar a cabo la medición de los gases de fuentes fijas, en los Hospitales en mención, trabajo que se realizó con la participación de Técnicos del Laboratorio de Química de la Facultad de Ingeniería de Minas y Petróleos de la Universidad Central del	Través de la medición en los dos Hospitales de Latacunga, se pudo comprobar el nivel de gases emitidos por los calderos de las instituciones de Salud, datos con los cuales nos permitieron comprobar el cumplimiento de la Ley de Gestión Ambiental y del Reglamento a la Ley de Gestión Ambiental para la prevención y control de la Contaminación ambiental.	Ciudad de Latacunga	Repositorio UTC

				Ecuador, entidad que está acreditada para la realización este tipo de trabajo. El presente proyecto fue	La comparación de los datos obtenidos se		
2	"DETERMINACIÓN DE LOS GASES CONTAMINANTES EN FUENTES FIJAS EN LA PARROQUIA ELOY ALFARO DE LA CIUDAD DE LATACUNGA."	2017	Remachi Moreno Jessica Noemi.	ejecutado en la parroquia Eloy Alfaro de la Ciudad de Latacunga se basa en la determinación de la concentración de gases contaminantes que se producen en fuentes fijas de combustión en las empresas que se encuentran en el lugar de estudio.	realizó con normativa TULSMA, Libro VI, Anexo 3 "Norma de Concentraciones de Emisión al Aire desde Fuentes Fijas de Combustión, Límites Máximos Permisibles de Concentraciones de Emisión para Calderos Generadores de Vapor (mg/Nm3), teniendo como resultado que los parámetros monitoreados se encuentran dentro de los límites permisibles; debido a que se da un monitoreo constante al	Parroquia Eloy Alfaro	Repositorio UTC

3	DETERMINACIÓN DE LOS GASES CONTAMINANTES EN FUENTES FIJAS EN LA EMPRESA DE CEREALES LA PRADERA Y LA INSTITUCIÓN PÚBLICA DEL HOSPITAL GENERAL DE LATACUNGA.	2018	Lidioma Lomas Margarita Paulina	. Se inició con la identificación de ciertas características que deben de cumplir las chimeneas a monitorear, la empresa cumple con las normas establecidas en el TULSMA, Libro VI, Anexo 3; como son el puerto de muestreo y el andamio que sirve para colocar la línea de vida y para la movilidad con el equipo	caldero. Los datos obtenidos en el monitoreo atmosférico en el Hospital General de Latacunga y Empresa Cereales la Pradera genera información para la toma de decisiones de políticas ambientales a nivel empresarial; estas políticas incluyen constantes monitoreos, el mantenimiento oportuno, cumplimiento de la normativa y evitar sanciones rigurosas, con el objetivo de mejorar la calidad ambiental del aire de la ciudad. El análisis de datos se	Belisario Quevedo Ciudad de Latacunga	Repositorio UTC
4	DE LOS CONTAMINANTES	2018	Fonseca Torres	proyecto fue ejecutado en la	comparó con los valores máximos permisibles por	Parroquia Ignacio Flores	Repositorio UTC

ATMOSFÉRICOS	Parroquia	la normativa vigente. La	
EMITIDOS EN	Ignacio Flores	interpretación de los	
LADRILLERAS	del cantón	datos es de importancia	
ARTESANALES EN	Latacunga se	para la toma de	
LA PARROQUIA	realizó la	decisiones técnicas y con	
IGNACIO FLORES,	medición de las	ello dar posibles	
CANTÓN	emisiones de	soluciones a los	
LATACUNGA,	contaminantes	problemas ambientales	
PROVINCIA DE	atmosféricos	al disminuir el impacto a	
COTOPAXI."	emitidas por	la calidad del aire de	
	fuentes fijas	población de la	
	como son las	Parroquia Ignacio	
	chimeneas de	Flores.	
	ladrilleras		
	artesanales,		
	teniendo como		
	propósito la		
	identificación y	,	
	determinación		
	de los		
	contaminantes		
	atmosféricos		
	emitidos por la	3	
	mismas, esta		
	investigación		
	será de utilidad		
	para los entes		

				reguladores, así como para posteriores actualizaciones e investigaciones sobre emisiones de gases contaminantes en esta área. En la			
5	"EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL PARTICULADO PM _{1 0} Y PM2,5 EN EL SECTOR LASSO DE LA PROVINCIA DE COTOPAXI EN EL PERIODO 2018 – 2019"	2019	Martínez Vásconez Johanna Elizabeth	investigación se realizó la caracterización y evaluación de las emisiones de material particulado PM _{1 0} y PM2,5, del área de estudio, realizado en dos puntos del sector de Lasso, en donde se destacan la presencia de	Los puntos monitoreados se encuentran dentro los límites máximos permisibles. Sin embargo, por la creciente industrialización y el aumento del parque automotriz a nivel cantonal, se proponen medidas ambientales preventivas a efectuarse en el área de estudio.	Lasso	Repositorio UTC

				industrias como			
				Parmalat y			
				Grupo Familia,			
				así como la			
				presencia de			
				movilidad			
				vehicular. Se			
				realizó el			
				monitoreo			
				continuo de la			
				concentración			
				de PM _{1 0} y			
				PM2, 5,			
				tomando en			
				cuenta la			
				metodología de			
				la EPA.			
	"EVALUACIÓN DE			La	Es necesario realizar		
	LA			investigación se	mediciones en los		
	CONCENTRACIÓN			desarrolló con	diferentes sectores de la		
	DE MATERIAL		Taguada	el objetivo de	parroquia y de manera		
6	PARTICULADO	2019	Tenorio	evaluar la	continua para conocer la	Parroquia Ignacio Flores	Repositorio UTC
	$PM_{1\ 0}\ Y\ PM_{2\ ,5}\ EN$	2017	Jenny	concentración	concentración de este	Tarroquia ignació i lores	Repositorio e re
	LA PARROQUIA		Maricela	de material	contaminante y evaluar		
	IGNACIO FLORES			particulado	su comportamiento en el		
	DE LA PROVINCIA			$PM_{1 \ 0} \ y$	espacio y el tiempo, los		
	DE COTOPAXI EN EL			PM_2 , en la	cuales permitan orientar		

	PERIODO 2018 –			Parroquia	estrategias ambientales		
	2019"			Ignacio Flores	de control, de mitigación		
				del cantón	y dar seguimiento por		
				Latacunga, para	parte de las autoridades		
				determinar si	ambientales		
				está generando	competentes.		
				impactos			
				atmosféricos en			
				dichos lugares,			
				producidos por			
				emisión de			
				partículas			
				sólidas y gases,			
				causando			
				molestias en los			
				habitantes e			
				induciendo			
				efectos			
	,			ambientales.			
	"EVALUACIÓN DE			La	Se concluye que los		
	LA			investigación se	valores obtenidos en los		
	CONCENTRACIÓN		Rodríguez	realizó para	dos puntos d cada una de		
7	DE MATERIAL	2019	Castro Jason	evaluar la	son menores para	Parroquia La Matriz	Repositorio UTC
'	PARTICULADO DE	2017	Cristhian	concentración	$PM_{1\ 0}\ (100\ \mu g/m3)\ y$	T WITO YOUR DU TITUMED	
	$PM 2.5 Y PM_{1 0} EN$		Cristilian	de material	PM2, 5 (50 μg/m3)		
	LA PARROQUIA LA			particulado de	cumpliendo con la		
	MATRIZ EN EL			PM 2,5 y	Normativa Ecuatoriana		

	CANTÓN LATACUNGA, PROVINCIA DE COTOPAXI EN EL PERÍODO 2018 – 2019"			PM _{1 0} en los puntos de muestreo como es la plaza Rafael Cajiao denominada también plaza El Salto y en la Plaza de San Agustín.	TULSMA.		
8	"EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL PARTICULADO PM _{1 0} Y PM _{2 ,5} EN LA PARROQUIA JUAN MONTALVO CANTÓN LATACUNGA PROVINCIA DE COTOPAXI PERÍODO 2018 – 2019."	2019	Ortega Escobar Luis Gerardo	investigación se realizó en la parroquia Juan Montalvo de la ciudad de Latacunga con el fin de evaluar la concentración de Material particulado presente en la misma, así como elaborar una propuesta de mitigación,	Los puntos muestreados están por debajo de los límites máximos permisibles según normativa vigente, pero se realizó una propuesta de mitigación haciendo énfasis en los resultados obtenidos del muestreo medidas para las actividades generadoras de material particulado.	Parroquia Juan Montalvo	Repositorio UTC

				el monitoreo de material particulado PM _{1 0} y PM _{2 ,5} El principal objetivo del presente trabajo de			
9	"EVALUACIÓN DE LA CONCENTRACIÓN DE MATERIAL PARTICULADO PM _{1 0} Y PM _{2 ,5} EN LA PARROQUIA BELISARIO QUEVEDO DE LA PROVINCIA DE COTOPAXI EN EL PERIODO 2018 – 2019".	2019	Chiluiza Ramirez Clara Nataly	investigación es evaluar la concentración del material particulado PM _{1 0} y PM _{2 ,5} que se genera por los vehículos industrias entre otras actividades generadas por el ser humano existentes en la parroquia, se realizó la ubicación de	En el monitoreo realizado en la parroquia Belisario Quevedo se obtuvieron valores que no sobrepasan los límites permisibles.	Parroquia Belisario Quevedo	Repositorio UTC

				dos puntos que se encuentran en la zona rural sector Galpón			
				bajo y la zona			
				urbana en el			
				sector centro de			
				la Parroquia			
				Belisario			
				Quevedo.			
				El presente	Una vez analizados y		
				proyecto tuvo	comparados los		
	,			como objetivo	resultados con la		
	"EVALUACIÓN DE			evaluar la	Normativa TULSMA,		
	LA			concentración	Libro VI Anexo 4 sobre		
	CONCENTRACIÓN			de material	Calidad del Aire		
	DE MATERIAL			particulado	muestran que las		
	PARTICULADO		Viera Muñoz	$PM_{1 \ 0} \ y PM2,$	concentraciones de		
10	$PM_{1\ 0}\ Y\ PM_{2\ ,5}\ EN$	2019	José	5 en la	material particulado	Parroquia Eloy Alfaro	Repositorio UTC
	LA PARROQUIA		Francisco	parroquia Eloy	presentes en la parroquia		
	ELOY ALFARO DE			Alfaro generado	Eloy Alfaro se		
	LA PROVINCIA DE			por el tránsito	encuentran dentro de los		
	COTOPAXI EN EL			vehicular y por	límites máximos		
	PERIODO 2018-2019"			el aumento de	permisibles, al comparar		
				las industrias en	las concentraciones entre		
				la parroquia y	los dos puntos		
				con ello	monitoreados dentro de		

				conocer cómo se presenta las condiciones del aire en cuanto a material particulado se refiere, se realizó la identificación de dos puntos centrales para el monitoreo.	la parroquia, el segundo punto (La Calera) monitoreado presentó mayor concentración de material particulado tanto en PM _{1 0} y PM2,5, debido a que es un sector de gran concurrencia vehicular la mayor parte del día y por la presencia de varias industrias.		
11	"DETERMINACIÓN DE MATERIAL PARTICULADO PM _{1 0} Y PM 2.5 PRODUCTO DE LA EXPLOTACIÓN DE CANTERAS EN EL SECTOR SAN RAFAEL DE LA CIUDAD DE LATACUNGA".	2019	Zavala Medranda Jennifer Jossenka	El presente proyecto determinó las concentraciones de material particulado PM _{1 0} y PM _{2 ,5} en el sector San Rafael de la ciudad de Latacunga, el cual es área de influencia por actividades de	Los resultados evidencian una alerta para las autoridades y la población de manera que se puede implementar estrategias de control y prevención que se orienten al cuidado del medio ambiente y la salud de las personas a través de un seguimiento por parte de la autoridad ambiental competente.	San Rafael	Repositorio UTC

				minería a cielo			
				abierto, para			
				ejecutarlo se			
				realizó un			
				muestreo			
				representativo			
				de este			
				contaminante			
				en suspensión			
				para los dos			
				tamaños de			
				partículas que			
				actualmente son			
				regulados por la			
				Normativa			
				vigente en el			
				Ecuador.			
	DETERMINACIÓN			El presente	Los puntos monitoreados		
	DE MATERIAL			trabajo de	se encuentran dentro los		
	PARTICULADO			investigación se	límites máximos		
	$PM_{1\ 0}\ Y\ PM_{2\ ,5}\ EN$		BENAVIDES	realizó en el	permisibles y con la		
12	CANTERAS DE	2019	CASTRO	barrio San	presente investigación se	Parroquia Eloy Alfaro	Repositorio UTC
12	PUZOLANA DEL	2017	DANIELA	Felipe, con el	propuso medidas de	i arroquia Eloy i maro	Repositorio e re
	BARRIO SAN		ESTEFANÍA	objetivo de	prevención y mitigación		
	FELIPE, PARROQUIA			determinar la	haciendo enfoque al plan		
	ELOY ALFARO,			concentración	nacional de la calidad		
	CANTÓN			de material	del aire.		

	LATACUNGA,			particulado			
	PROVINCIA DE			$PM_{1 \ 0} \ y$			
	COTOPAXI,			PM ₂ , ₅ en			
	PERIODO 2019-2020"			canteras de			
				puzolana,			
				generados por			
				la explotación			
				de canteras,			
				transporte de			
				materia prima,			
				elaboración de			
				bloques,			
				entrega del			
				producto			
				terminado y			
				circulación			
	,			vehicular.			
	"DETERMINACIÓN			La presente	Se propuso tres medidas		
	DE LAS			investigación	de prevención como son		
	CONCENTRACIONES			tuvo como	realizar barreras		
	DEL MATERIAL		Rivera	propósito	protectoras con especies		
13	PARTICULADO	2020	Garcés	determinar las	naturales y control	Intercambiador	Repositorio UTC
	PM10 Y PM2.5 EN LA	2020	Mariela	concentraciones	vehicular al momento de	Pujilí- Latacunga	repositorio e re
	VÍA E35		Alejandra	del Material	la matrícula para mejorar		
	INTERCAMBIADOR			Particulado	la calidad del aire y		
	PUJILÍ -			<i>PM</i> 10 Y <i>PM</i> 2,5	sobre todo la salud de		
	LATACUNGA			en la vía E35	los pobladores que		

PERÍODO 2019-2020"	intercambiador	habitan en el sector.		
	Pujilí-			
	Latacunga,			
	vehicular, para			
	cantidad de			
	material			
	particulado,			
	con la			
		generado por influencia del tráfico vehicular, para esto se planteó 4 objetivos, caracterizar el área de estudio, monitorear la cantidad de material particulado, generar una base de datos los mismos que fueron comparados	generado por influencia del tráfico vehicular, para esto se planteó 4 objetivos, caracterizar el área de estudio, monitorear la cantidad de material particulado, generar una base de datos los mismos que fueron comparados con la Normativa Vigente Acuerdo Ministerial 097- A y proponer	generado por influencia del tráfico vehicular, para esto se planteó 4 objetivos, caracterizar el área de estudio, monitorear la cantidad de material particulado, generar una base de datos los mismos que fueron comparados con la Normativa Vigente Acuerdo Ministerial 097-A y proponer

	EVALUACIÓN DE LA CONCENTRACIÓN			impacto propuestas de mitigación y control. La presente investigación tiene por objeto determinar la	Los datos obtenidos en el monitoreo se encuentran en los límites permisibles, aunque en ciertas horas existen concentraciones altas como en el primer punto de monitoreo en el		
14	DE MATERIAL PARTICULADO PM2,5 PM10 EN LA PARROQUIA DE MULALÓ, DE LA PROVINCIA DE COTOPAXI EN EL PERIODO 2019-2020	2020	Lema Basantes Roberth Santiago	concentración de material particulado PM _{1 0} y PM _{2 ,5} generado por las empresas bloqueras y vehículos en la Parroquia Mulaló,	Barrio San Ramón se obtuvo 0.045 μg/m3 de PM _{1 0} en el horario de 11 am y 0.042 μg/m3, de PM _{2 ,5} en el horario de 15 pm, en el segundo punto de monitoreo en el Centro de la Parroquia Mulaló se obtuvo los siguientes valores 0.039 μg/m3 PM _{1 0} en el horario de 18 pm y 0.147 μg/m3 de PM _{2 ,5} a las 18 pm, concluyendo que la mayor	Parroquia Mulaló	Repositorio UTC

					concentración de		
					material particulado se		
					da en el Centro de la		
					Parroquia Mulaló debido		
					al		
					tránsito vehicular, en		
					base a los datos		
					obtenidos se presenta		
					propuestas de		
					mitigación.		
					Se utilizó la Norma		
				La presente	Técnica Ecuatoriana		
	"DETERMINACIÓN			tesis procura	NTE INEN 2 204:2002		
	DE LOS			dar una visión	para la comparación		
	CONTAMINANTES			sobre la	correspondiente de		
	PRODUCTO DE LA			contaminación	dichas mediciones de los		
	COMBUSTIÓN DEL			vehicular,	vehículos. En este		
	PARQUE		Cortez	generada por el	documento luego		
15	AUTOMOTOR A	2015	Villacis	parque	de levantar y comparar	Parroquia Ignacio Flores	Repositorio UTC
	GASOLINA EN LA		Miguel Ángel	automotor a	datos del monitoreo de		
	PARROQUIA			gasolina en la	gases en la parroquia se		
	IGNACIO FLORES,			Parroquia	ha		
	CIUDAD DE			Ignacio Flores	analizado la situación		
	LATACUNGA,			del	actual y se ha		
	PERÍODO 2015"			Cantón	determinado estrategias		
				Latacunga.	puntuadas a la		
					disminución de la		

		contaminación por parte	
		de la flota vehicular.	

ANEXOS 3 Equipos de Recolección de Datos utilizados para el proceso de monitoreo de la calidad del aire del cantón Latacunga

Figura 17

Equipo E-BAM (Monitoreo de Atenuación Beta)

Fuente: Eco Rental Solutions, (2020)

Figura 18

Equipo AVL DITEST GAS 1000

Fuente: AVL DITEST FAHRZEUGDIAGNOSE GMBH, (2011)

Figura 19

Analizador de gases de combustión Testo 350 XL

.

Fuente: (Cleanair, 2019)

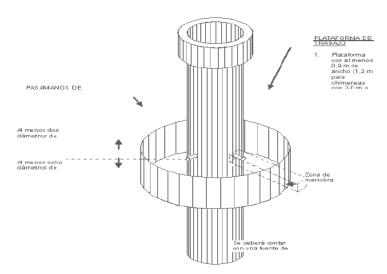
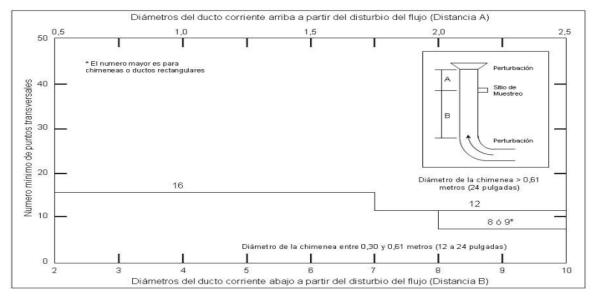

ANEXOS 4 Metodología Utilizada para el proceso de monitoreo a la calidad del aire del cantón Latacunga

Tabla 11Norma EPA 40 CFR Apéndice E_to_part_58 - Sonda y Supervisión de rutas Emplazamiento Criterios para el Monitoreo de la Calidad del Aire Ambiente

PARÁMET RO	MÉTODOS DE MONITOREO DESCONTINUO APROBADOS EPA	MÉTODOS DE MONITOREO CONDICIONAD OS EPA	SISTEMAS DE MONITOREO CONTINUO (CEMS) APROBADOS EPA		
Ubicación de puertos	USEPA, Parte 60, Apéndice A, Método 1	NA	USEPA, Parte 60, Apéndice A, Método 1 o 1ª		
Velocidad de salida de gases	USEPA, Parte 60, Apéndice A, Método 2	NA	USEPA, Parte 60, Apéndice B, PS 6 para CEMS		
Peso molecular seco	USEPA, Parte 60, Apéndice A, Método 3	NA	NA		
CO2 y O2	USEPA, Parte 60, Apéndice A, Método 3A	OTM-13, CTM-030 o CTM-034	USEPA, Parte 60, Apéndice B, PS 3 para CEMS		
Humedad	USEPA, Parte 60, Apéndice A, Método 4	NA	NA		
Material particulado	USEPA, Parte 60, Apéndice A, Método 5 o USEPA, Parte 60, Apéndice A, Método 17	NA	USEPA, Parte 60, Apéndice B, PS 11 para CEMS		
Dióxido de azufre	USEPA, Parte 60, Apéndice A, Métodos: 6C	NA	USEPA, Parte 60, Apéndice B, PS 2 para CEMS		
Óxidos de	USEPA, Parte 60, Apéndice	OTM-13, CTM-	USEPA, Parte 60,		

nitrógeno	A, Métodos: 7A, 7B, 7C, 7E	022, CTM-030 o	Apéndice B, PS 11 para		
		CTM-034	CEMS		
Cd, Tl, Hg,					
As, Co, Ni,	USEPA, Parte 60, Apéndice	NT A	NIA		
Se, Cr, Pb,	A, Método 29	NA	NA		
Cu, Mn					
Dioxinas y	USEPA, Parte 60, Apéndice				
furanos	A, Método 23	NA	NA		
	USEPA, Parte 60, Apéndice				
HCI – HF	A, Método 26 ^a	OTM 22			


Figura 20
Requisitos para ejecución de medición de emisiones al aire de fuentes fijas

Fuente: Protocolo USEPA, (s. f.)

Figura 21

Número mínimo de puntos transversales para puntos transversales de velocidad (sin

partículas)

Fuente: Protocolo USEPA, (s. f.)

Tabla 12

Ubicación de los puntos transversales en cañones circulares

Número de	Número de puntos transversales en diámetro											
puntos transversales en diámetro	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	67	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4		93.3	70.4	32.2	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7				89.5	77.4	64.4	36.6	28.3	2023.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0

10	97.	4 88.2	79.9	71.7	61.8	38.8	31.5	27.0
11		93.3	85.4	78.0	70.5	61.2	39.3	32.3
12		97.9	90.1	83.1	76.4	69.4	60.7	39.8
13			94.3	87.5	81.2	75.0	68.5	60.2
14			98.2	91.5	85.4	79.6	73.8	67.7
15				95.1	89.1	83.5	78.2	72.8
16				98.4	92.5	87.1	82.0	77.0
17					95.6	90.3	85.4	80.6
18					98.6	93.3	88.4	83.9
19						96.1	91.3	86.8
20						98.7	94.0	89.5
21							96.5	92.1
22							98.9	94.5
23								96.8
24								99.9

Nota: (Porcentaje del diámetro del cañón desde la pared interna hasta el punto transversal.

Fuente: Protocolo USEPA, (s. f.)

Tabla 13Disposición de la Sección Representativa para Chimeneas Rectangulares

Disposición Número de Puntos transversales	Matriz
9	3*3
12	4*3
16	4*4
°20	5*4
25	5*5
30	6*5
36	6*6

42	7*6
49	7*7

Fuente: Protocolo USEPA, (s. f.)

ANEXOS 5 Base de datos de monitoreos desarrollados a fuentes móviles en el cantón Latacunga

Tabla 14 Áreas, y resultados de los procesos de monitoreo a fuentes móviles realizados en el cantón Latacunga

NT.	LIDICA	COORD	COORD		TIDO	PLA	KM	CONTAMINAN TE			
N o	UBICA CIÓN	ENADA	ENADA	MARCA	TIPO	PLA CA		CO		HC	
•	CION	X	Y			CA		<2, 10	>2, 10	<0, 25	>0, 25
1	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	POF0 616	276 507	1			14
2	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	CAMIO NETA	CBH0 095	590 49	0.4			22
3	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	XBB2 196	250 000		2.5		30 0
4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBR0 843	459 86		6.7 9		72 3
5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PTD0 376	251 856	2.0			35 5
6	Parroqui a	759679	9896747	NISSAN	CAMIO NETA	TBX0 906	876 37		2.8		26 0

	Ignacio Flores									
7	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PNF0 306	310 262		1.3	14 4
8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PBA4 806	132 700	0.0		8
9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TBE7 006	163 66	0.2		82
1 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	POA0 966	128 539		2.9	80
1	Parroqui a Ignacio Flores	759679	9896747	LADA	JEEP	PXC0 186	262 217	0.5		18 2
1 2	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TDG0 626	115 062	0.4		20 8
1 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PFI04 30	141 442	0.6		27 0
1 4	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PBR2 400	117 842	0.4		18 2
1 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PVJ07 86	229 089	1.6 8		28 8
1 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PYI08 56	236 004	0.7		82 0
1 7	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TBA4 076	359 52	0.2		21 0
1 8	Parroqui a	759679	9896747	NISSAN	AUTO MÓVIL	PUD0 417	479 533	0.2 9		 53

	Ignacio Flores									
1 9	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	PJZ03 36	419 328		8.0	11 73
2 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PWT0 446	186 149	1.1		15 0
2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PGI07 79	155 222	0.4		36 5
2 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	XBU0 466	205 400	0.6		23 0
2 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PTPQ 0156	201 931	0.5		12 2
2 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	ACK0 733	655 690		10. 6	86 8
2 5	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	AUTO MÓVIL	PTU0 386	585 259		5.2	56 8
2 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	TDA0 026	198 289	1.1 5		17 2
2 7	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PKK0 998	382 210		5.1 9	25 7
2 8	Parroqui a Ignacio Flores	759679	9896747	PEUGEO T	AUTO MÓVIL	PKO0 697	155 950	1.5 9		30 0
2 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PDX0 657	451 61		8.0	19 63
3	Parroqui a	759679	9896747	ТОҮОТА	JEEP	XBB6 236	166 61	0.0		42

	Ignacio Flores									
3	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PFX0 326	519 67	1.8		27 42
3 2	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	PBH9 796	900 000	0.0		80
3	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	KBA7 176	473 23	0.0		14 7
3 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TDV0 336	163 815	1.1 1		11 2
3 5	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PPR0 976	349 708	1.3		39 5
3 6	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PNP0 227	386 607		10. 4	11 20
3 7	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	PRV0 610	270 543	1.6 1		13 41
3 8	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	XBA0 390	384 846		8.9	55 2
3 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PYN0 626	174 923	0.6		12 9
4 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PAP0 173	346 781	0.0		63
4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	ADJ0 866	273 136		4.0	38
4 2	Parroqui a	759679	9896747	CHEVRO LET	JEEP	PQB0 106	139 506	0.2		15 9

	Ignacio Flores									
4 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PZR0 297	357 274		5.8 7	82 1
4 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBS0 316	139 239	0.7		17 5
4 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA4 817	557 47	0.4		11 6
4 6	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PZZ0 975	381 948	1.4		25 2
4 7	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	TPW0 056	706 75		6.9	80 2
4 8	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBT0 647	260 474	0.2		23
4 9	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PIY08 16	178 032		3.1	32 4
5 0	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PQT0 166	116 997	0.1		13 0
5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PTX0 976	396 783	1.8		44 10
5 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA7 826	540 65	0.1		61
5 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TBA2 466	120 300	0.0		32
5 4	Parroqui a	759679	9896747	SUZUKI	JEEP	TBD5 907	373 806	0.0		15

	Ignacio Flores									
5 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PIN02 46	281 744	0.4		11 8
5 6	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	AUTO MÓVIL	PCY0 466	180 811	1.1 5		14 5
5 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PCA5 377	652 61	0.0		44
5 8	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	JEEP	XBA7 686	802 00	0.0		52
5 9	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	PBI20 96	147 383	0.0		14
6 0	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	JEEP	PQR0 757	834 52	0.5		18 7
6	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	TCL0 739	147 240	1.3		16 1
6 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	IBB33 39	762 37	0.0		13
6 3	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	PIW0 726	217 629	0.5 7		52
6 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PQU0 157	186 577	1.2		15 5
6 5	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PZG0 026	461 933		4.7 1	33
6	Parroqui a	759679	9896747	тоуота	CAMIO NETA	XCA0 946	177 791	0.4		12 9

	Ignacio Flores									
6 7	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	HCE0 516	588 220	0.9		11 78
6 8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PVA0 310	288 120	0.7		99
6 9	Parroqui a Ignacio Flores	759679	9896747	FORD	AUTO MÓVIL	PBNO 726	269 669		11.	19 61
7 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBB1 886	140 260	0.0		23
7	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	PYL0 417	341 301	0.0		16 0
7 2	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	PNC0 386	241 452		7.6 6	54 4
7 3	Parroqui a Ignacio Flores	759679	9896747	RENAUL T	AUTO MÓVIL	XBW 0536	861 70	0.0		70
7 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TBA5 266	112 034	0.5		20 6
7 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PJQ06 00	163 00	0.0		18 7
7 6	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	PBF2 336	124 750	0.1 5		14 5
7 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA8 986	593 60	0.0		21
7 8	Parroqui a	759679	9896747	тоуота	CAMIO NETA	PFN0 146	424 370		2.1	 48 0

	Ignacio Flores									
7 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PIB04 76	383 084	0.0		25
8 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PDY0 557	592 452		2.1	56 3
8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	ICL09 58	171 062	0.0		29
8 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PCE5 817	109 604	0.0		17
8 3	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	PBX6 976	106 532	0.0		18
8 4	Parroqui a Ignacio Flores	759679	9896747	GREAT WALL	AUTO MÓVIL	XBA7 896	825 80	0.0		52
8 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PBX1 992	901 90	0.2		10 2
8 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XAI0 534	130 00	0.0 5		44
8 7	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PBO6 360	159 182	0.0		54
8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	POH0 796	252 171	0.0		10
8 9	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PJR03 50	689 45		7.7 8	47 1
9	Parroqui a	759679	9896747	MAZDA	CAMIO NETA	PBQ0 169	122 112	1.9 6		38 5

	Ignacio Flores										
9	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	XBA6 826	948 76	0,1			82
9 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PHU0 590	218 078	0.6 6			49
9 3	Parroqui a Ignacio Flores	759679	9896747	ŠKODA	CAMIO NETA	OCE0 958	227 906		3.1		39
9	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TCU0 046	248 254	1.4			32
9 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBP0 966	799 99		4,0 4		23 8
9	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PWY 0206	174 867	0.6			26 2
9	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	AUTO MÓVIL	PPG0 166	615 4	1,3 5			22 8
9 8	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	CAMIO NETA	TCR0 396	116 679	0.3			18 2
9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBU0 896	752 674	0.3			20 2
1 0 0	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	AUTO MÓVIL	PHD0 630	311 406		5.3		47 3
1 0 1	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PBZ1 048	499 96	0.1			72
1 0	Parroqui a	759679	9896747	MAZDA	CAMIO NETA	XBS0 517	248 385	0.0		0	

2	Ignacio Flores									
1 0 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PTSO 896	222 630		4.9	60 5
1 0 4	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	PNA0 946	795 60	0.4		40 3
1 0 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PBA9 916	930 00	1.3		33 2
1 0 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PBJ53 76	110 12	0.0 6		10 6
1 0 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	AFE0 966	152 693	0.7		31 8
1 0 8	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	PKG0 576	148 66		6.7	32 25
1 0 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PGO0 436	248 545	1.6 4		37 0
1 1 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PRA0 927	320 719	0.7		21 3
1 1 1	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	PRD0 015	211 638		7.2	19 0
1 1 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	ACR0 323	339 802		4.2	30 9
1 1 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TCH0 457	130 701		5.0	60
1 1	Parroqui a	759679	9896747	CHEVRO LET	JEEP	TDA0 896	585 94	0.7		84

4	Ignacio Flores									
1 1 5	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PQT0 475	193 79	0.4		70
1 1 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PIK03 36	160 858	0.6		54 1
1 1 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	TCH0 626	222 208	1.3		58 2
1 1 8	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	HBY0 012	402 828		8.0	89 1
1 1 9	Parroqui a Ignacio Flores	759679	9896747	FORD	AUTO MÓVIL	PNI00 20	191 888	0.0		30
1 2 0	Parroqui a Ignacio Flores	759679	9896747	тоуота	JEEP	PBV6 198	135 42	0.3		12 4
1 2 1	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	UBJ0 969	538 194		4.5	30 95
1 2 2	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PQU0 866	898 45	0.0		20
1 2 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XEA0 312	342 395	0.0 6		34
1 2 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XEA0 434	206 369	0.8		18
1 2 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PDR0 256	949 821		6.7	14 85
1 2	Parroqui a	759679	9896747	NISSAN	CAMIO NETA	PBE0 836	137 111		4.1	10 66

6	Ignacio Flores									
1 2 7	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	XBA6 796	704 25	0.2		23 5
1 2 8	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PBB5 186	155 503	0.1		14
1 2 9	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	ACX0 236	191 542		6.3	13 82
1 3 0	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	JEEP	XBB2 237	480 32	0.7 5		29 9
1 3 1	Parroqui a Ignacio Flores	759679	9896747	NISSAN	ESPECI AL	XEA0 413	207 959		7.2 6	49 9
1 3 2	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBS0 093	278 885		9.7	64
1 3 3	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	XBA6 268	350 911	1.1		24
1 3 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	POE0 566	156 911	0.3		15 9
1 3 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	POM0 267	180 376	1.1		23 9
1 3 6	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	AUTO MÓVIL	PXH0 897	196 231		6.4	28 5
1 3 7	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	XBB2 395	366 12	1.5		20 7
1 3	Parroqui a	759679	9896747	FORD	JEEP	XBB4 246	139 42	0.1		2

8	Ignacio Flores									
1 3 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TDQ0 448	143 089	0.0		46
1 4 0	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PPR0 032	359 745		5.3	47 5
1 4 1	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	ACT0 956	333 226		2.3 5	69 0
1 4 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PDO0 376	325 977	1.8 6		72 1
1 4 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PBB1 186	154 710	0.0		12
1 4 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PLQ0 952	310 618	2.0		27 5
1 4 5	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	XBB4 366	181 07	0.5 4		19 7
1 4 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	CBG0 454	300 489	0.3		30
1 4 7	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBY0 206	588 91	0.0		63
1 4 8	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	PJL04 74	113 684		4.6 4	46 4
1 4 9	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	ACB0 159	354 518		4.6 1	70 5
1 5	Parroqui a	759679	9896747	KIA	AUTO MÓVIL	TBB5 208	808 96	0.3		16 9

0	Ignacio Flores									
1 5 1	Parroqui a Ignacio Flores	759679	9896747	OLECIT O	AUTO MÓVIL	PPA0 865	400 000		3.8 2	49 5
1 5 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	IBA4 716	834 13		3.7	34 7
1 5 3	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	CAMIO NETA	PLZ0 886	534 743		9.1	49 05
1 5 4	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	CAMIO NETA	XCB0 986	634 69	0.4 6		23
1 5 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PIN00 78	179 623	0.7		33 5
1 5 6	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	JEEP	PDA6 826	638 92	0.0		21
1 5 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PWK 0586	145 368	0.1		66
1 5 8	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	IBN0 356	257 954		3.3	72 0
1 5 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	POT0 066	189 171	0.0		10 0
1 6 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	HCG0 118	149 876	0.3 6		20 7
1 6 1	Parroqui a Ignacio Flores	759679	9896747	PEUGEO T	AUTO MÓVIL	PBC4 716	853 28	0.0 5		23
1 6	Parroqui a	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA6 776	110 205	0.1		41

2	Ignacio Flores									
1 6 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PUG0 925	492 8	0.2		21
1 6 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	XCB0 236	291 317	1.8		25 4
1 6 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	HCT0 836	223 129	0.2		20 3
1 6 6	Parroqui a Ignacio Flores	759679	9896747	SEAT	AUTO MÓVIL	PVJ01 27	500 000		3.0	67 6
1 6 7	Parroqui a Ignacio Flores	759679	9896747	DAIHAT SU	JEEP	ADP0 996	194 242	0.4		19 8
1 6 8	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PLH0 358	400 000		8.4	66 1
1 6 9	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	TCL0 904	217 924		5.2	23 72
1 7 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA8 146	525 00	1.9		54 8
1 7 1	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PBN7 496	795 77	0.0 6		50
1 7 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PNQ0 136	123 057	0.1		12
1 7 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PQO0 636	138 445	0.6		92
1 7	Parroqui a	759679	9896747	MITSUBI SHI	CAMIO NETA	PEK0 806	235 138	0.7		71

4	Ignacio Flores									
1 7 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PEJ06 96	297 300	1.6 1		13 6
1 7 6	Parroqui a Ignacio Flores	759679	9896747	MITSUBI SHI	CAMIO NETA	PEK0 756	100 751	0.1		14
1 7 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PHT0 946	110 720	1.1		20 0
1 7 8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBL0 137	509 81		3.7	12 35
1 7 9	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	MCE0 156	308 980		2.5	56 0
1 8 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PLH0 976	400 000		3.1	88 9
1 8 1	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	TBV0 676	450 000		4.5	11 87
1 8 2	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TCT0 364	142 263	1.4		45 7
1 8 3	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	TBZ0 267	289 075	1.1		34 8
1 8 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PQN0 224	126 799	0.9		23 0
1 8 5	Parroqui a Ignacio Flores	759679	9896747	FORD	AUTO MÓVIL	PSH0 491	285 172		3.2 5	96 6
1 8	Parroqui a	759679	9896747	CHEVRO LET	CAMIO NETA	PTT0 789	308 245	2.0		56 0

6	Ignacio Flores									
1 8 7	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	PNG0 826	179 137	1.1		46 9
1 8 8	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	XAH0 408	444 262	1.6		56 9
1 8 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	BBI00 36	125 525		2.5	92
1 9 0	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	TCB0 636	256 601	1.0		23 0
1 9 1	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBY0 736	600 72	0.6		12 8
1 9 2	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PSR0 383	434 976		3.6	11 20
1 9 3	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	TCK0 327	685 6	0.2		75
1 9 4	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PBO9 156	953 25	0.8		11 0
1 9 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PCQ0 116	455 235		4.1	11 02
1 9 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PII01 93	150 573		3.1	87 4
1 9 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PPZ0 036	414 273		6.1	98 0
1 9	Parroqui a	759679	9896747	MAZDA	AUTO MÓVIL	LBY0 036	279 654	1.9		77 0

8	Ignacio Flores									
1 9 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PYU0 026	254 116	2.0		88 0
2 0 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PPA0 546	264 934		2.2	99 0
2 0 1	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	TDQ0 586	100 702	1.8		47 0
2 0 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PLE0 005	574 10	0.0		76
2 0 3	Parroqui a Ignacio Flores	759679	9896747	GREAT WALL	JEEP	TBC5 926	124 000	0.9		12 9
2 0 4	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TBV0 542	896 30	1.1 2		56 2
2 0 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	TCV0 546	290 297		2.9	88 5
2 0 6	Parroqui a Ignacio Flores	759679	9896747	VOLKS WAGEN	AUTO MÓVIL	PRW0 065	482 41	0.7		55 8
2 0 7	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	IBT09 46	409 742		3.6	88 7
2 0 8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PPR0 526	829 27	0.6		26 7
2 0 9	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	PCE0 546	204 142		5.5	11 15
2	Parroqui a	759679	9896747	FIAT	AUTO MÓVIL	TCB0 636	256 601	1.0 1		23 0

0	Ignacio Flores									
2 1 1	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XBY0 736	600 72	0.6		12 8
2 1 2	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	PSR0 383	434 976		3.6	11 20
2 1 3	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	TCK0 327	685 6	0.2		75
2 1 4	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	CAMIO NETA	PBO9 156	953 25	0.8		11 0
2 1 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PCQ0 116	455 235		4.1	11 02
2 1 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PII01 93	150 573		3.1	87 4
2 1 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PPZ0 036	414 273		6.1	98 0
2 1 8	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	LBY0 036	279 654	1.9		77 0
2 1 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PYU0 026	254 116	2.0		88
2 2 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PPA0 546	264 934		2.2	99 0
2 2 1	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	TDQ0 586	100 702	1.8		47 0
2 2	Parroqui a	759679	9896747	FORD	CAMIO NETA	PLP0 386	298 666	2.0 5		67 9

2	Ignacio Flores									
2 2 3	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XEA0 746	496 23	0.2		86
2 2 4	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	PLD0 051	537 29	1		11 0
2 2 5	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	TBB7 126	407 91	0.5		33 0
2 2 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PUO0 396	245 385	2.0		45 6
2 2 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PKE0 426	181 475	1.4		65 2
2 2 8	Parroqui a Ignacio Flores	759679	9896747	ТОУОТА	CAMIO NETA	PQO0 166	121 507	1.7		87 9
2 2 9	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PBQ2 309	688 16	0.3		87
2 3 0	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PSC0 926	212 309		2.9	56 0
2 3 1	Parroqui a Ignacio Flores	759679	9896747	KIA	JEEP	PIG05 86	204 471		3.3	78 2
2 3 2	Parroqui a Ignacio Flores	759679	9896747	NISSAN	CAMIO NETA	PKJ07 27	781 30	0.8		56
2 3 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	TBB3 130	718 45	0.9		11 5
2 3	Parroqui a	759679	9896747	MAZDA	CAMIO NETA	XBS0 517	248 385		5.5	12 20

4	Ignacio Flores									
2 3 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	POG0 926	198 918	2.0		45 0
2 3 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XBA8 816	128 978	0.9		34 0
2 3 7	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	PLR0 535	298 899		6.4	88
2 3 8	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	XAF0 296	465 726		8.8	13 20
2 3 9	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	TBD1 767	105 63	0.0		35
2 4 0	Parroqui a Ignacio Flores	759679	9896747	тоуота	CAMIO NETA	XBP0 836	360 707		5.1	30 7
2 4 1	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PKT0 787	829 71	0.3		55
2 4 2	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	XAH0 006	908 953	1.0		66 7
2 4 3	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	PBI29 95	138 236	1.1		54 0
2 4 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PZF0 597	547 109		8.1	99 8
2 4 5	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	POX0 560	943 73	0.6		33 4
2 4	Parroqui a	759679	9896747	MAZDA	CAMIO NETA	PBW6 655	530 41	0.0 6		30

6	Ignacio Flores									
2 4 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	IBB17 36	113 386	2.0		76 8
2 4 8	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PPN0 856	160 193	1.6		64
2 4 9	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	PAN0 356	222 00		4,5	71
2 5 0	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PSX0 507	250 350		2,3	11 08
2 5 1	Parroqui a Ignacio Flores	759679	9896747	FORD	CAMIO NETA	TBC0 996	450 987		5,3	20 63
2 5 2	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	XAI1 164	277 000	0.3		25 0
2 5 3	Parroqui a Ignacio Flores	759679	9896747	тоуота	AUTO MÓVIL	XBS0 576	535 128	0.7		41 6
2 5 4	Parroqui a Ignacio Flores	759679	9896747	DAIHAT SU	JEEP	TBE5 394	110 56	0.0		84
2 5 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PLP0 944	310 918		5.3	76 9
2 5 6	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	PBM6 568	428 56	0.4		34
2 5 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XAH0 986	538 000	1.6		46
2 5	Parroqui a	759679	9896747	CHEVRO LET	AUTO MÓVIL	P0R0 900	183 550	1.4		12 5

8	Ignacio Flores									
2 5 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	XAH0 090	575 988	1.9 6		14 04
2 6 0	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	XAI0 963	336 000	1.0		11 14
2 6 1	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	PZW0 543	165 876	1.2		30 5
2 6 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PTK0 652	864 00	0.5 6		27
2 6 3	Parroqui a Ignacio Flores	759679	9896747	PEUGEO T	AUTO MÓVIL	PSC0 180	203 546		2.5	48 7
2 6 4	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	TBD8 245	205 876	2.0		58 7
2 6 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PCC6 644	975 43	0.8		58
2 6 6	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PXK0 432	303 659		4.2	67 1
2 6 7	Parroqui a Ignacio Flores	759679	9896747	KIA	JEEP	PBR9 401	569 32	0.3		71
2 6 8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PYT0 865	295 876		3.4	12 31
2 6 9	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PCF9 059	111 456		2.1	34 8
2 7	Parroqui a	759679	9896747	MAZDA	CAMIO NETA	PIN00 13	401 234		7.0 6	13 62

0	Ignacio Flores									
2 7 1	Parroqui a Ignacio Flores	759679	9896747	тоуота	AUTO MÓVIL	PPX0 987	174 321		2.1	45 9
2 7 2	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	AUTO MÓVIL	PJL04 31	231 567	1.4		56 7
2 7 3	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	TBE1 017	104 865	1.6		30 5
2 7 4	Parroqui a Ignacio Flores	759679	9896747	тоуота	JEEP	PDA1 673	958 32	0.4		68
2 7 5	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	PTQ0 866	304 671		5.0	11 23
2 7 6	Parroqui a Ignacio Flores	759679	9896747	KIA	JEEP	TBB8 075	562 31	0.0 6		15
2 7 7	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	PCM1 598	673 25	0.1		63
2 7 8	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	CAMIO NETA	PIW0 541	168 453	2.0		27 4
2 7 9	Parroqui a Ignacio Flores	759679	9896747	тоуота	JEEP	TCP0 662	102 345		2.1	39 1
2 8 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	AUTO MÓVIL	PCB2 628	756 32	0.2		18
2 8 1	Parroqui a Ignacio Flores	759679	9896747	MAZDA	AUTO MÓVIL	XBM 0705	187 432		2.1	28 7
2 8	Parroqui a	759679	9896747	SUZUKI	AUTO MÓVIL	PSA0 325	301 765		4.0	76 1

2	Ignacio Flores									
2 8 3	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PBY6 110	548 21	0.7		10 3
2 8 4	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	TBD1 697	783 21	1.1		20 2
2 8 5	Parroqui a Ignacio Flores	759679	9896747	SUZUKI	JEEP	XBA1 864	123 987	1.0		87
2 8 6	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	TBF2 459	672 34	0.2		23
2 8 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PVJ08 16	263 121		3.0 5	11 98
2 8 8	Parroqui a Ignacio Flores	759679	9896747	тоуота	JEEP	TBB1 876	102 763	1.0		45 1
2 8 9	Parroqui a Ignacio Flores	759679	9896747	FIAT	AUTO MÓVIL	PKE0 717	401 654	2.0		76 1
2 9 0	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	PBI36 24	500 01	0.2		19
2 9 1	Parroqui a Ignacio Flores	759679	9896747	тоуота	JEEP	TCP0 662	409 562		7.0	17 31
2 9 2	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	JEEP	PHA0 615	286 431		2.9	40 5
2 9 3	Parroqui a Ignacio Flores	759679	9896747	NISSAN	AUTO MÓVIL	PRD0 033	189 543		2.6	67 1
2 9	Parroqui a	759679	9896747	тоуота	CAMIO NETA	TBF5 765	457 81	0.0 6		21

4	Ignacio Flores									
2 9 5	Parroqui a Ignacio Flores	759679	9896747	KIA	AUTO MÓVIL	GSF1 754	195 762	1.4		30 1
2 9 6	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PDF3 610	934 00	0.9		32 1
2 9 7	Parroqui a Ignacio Flores	759679	9896747	CHEVRO LET	AUTO MÓVIL	PQO0 122	301 202		3.0	46 0
2 9 8	Parroqui a Ignacio Flores	759679	9896747	HYUND AI	JEEP	TBC6 005	238 76	0.0		15
2 9 9	Parroqui a Ignacio Flores	759679	9896747	MAZDA	CAMIO NETA	PPQ0 770	199 832		2.1	56 7
3 0 0	Parroqui a Ignacio Flores	759679	9896747	тоуота	AUTO MÓVIL	TBA3 538	878 88	1.1		43 2

Fuente: Cortez, (2016)

ANEXOS 6 Hoja de vida del tutor

DATOS PERSONALES

NOMBRES Y APELLIDOS: VLADIMIR MARCONI ORTIZ BUSTAMANTE

CARGO: DOCENTE A NOMBRAMIENTO / UTC

FECHA DE NACIMIENTO: 11 DE MAYO DE 1975

CÉDULA DE CIUDADANÍA: 0502188451

ESTADO CIVIL: DIVORCIADO

NÚMEROS TELEFÓNICOS: 0995272510

E-MAIL: vladimir.ortiz@utc.edu.ec

ESTUDIOS REALIZADOS

NIVEL PRIMARIO: ESCUELA JUAN MANUEL LASSO

NIVEL SECUNDARIO: COLEGIO GRAL. MARCO A. SUBÍA

NIVEL SUPERIOR: ESCUELA POLITÉCNICA JAVERIANA DEL ECUADOR

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL

UNIVERSIDAD INTERNACIONAL LA RIOJA

TÍTULOS

PREGRADO: INGENIERO EN MEDIO AMBIENTE / ESPOJ

TITULO/GRADO DE POSGRADO MAGISTER EN EDUCACIÓN Y DESARROLLO SOCIAL / UTE ECUADOR

TITULO/GRADO DE POSGRADO MASTER UNIVERSITARIO EN

SISTEMAS INTEGRADOS DE GESTIÓN DE LA

PREVENCIÓN DE RIESGOS LABORALES, LA

CALIDAD, EL MEDIO AMBIENTE Y LA

RESPONSABILIDAD SOCIAL CORPORATIVA

DIPLOMADOS:

- 1) ESPECIALISTA EN DEFENSORÍA Y DERECHO AMBIENTAL INTERNACIONAL:
- 2) ESPECIALISTA EN DERECHO Y RESPONSABILIDAD POR EL DAÑO AMBIENTAL

3) ESPECIALISTA EN GESTIÓN AMBIENTAL Y ORDENAMIENTO TERRITORIAL CURSOS Y CAPACITACIÓN

El Ing. Vladimir Ortiz presenta una serie de cursos nacionales e internacionales en diferentes ámbitos que fortalecen sus habilidades profesionales por las cuales se presenta un resumen de sus cursos más recientes.

INTERNACIONALES

N.º	CURSO	INSTITUCIÓN	TIEMPO
1.	Seminario Internacional	Centro de Educación Popular Inc. República	32 horas
	Experiencia de izquierda	Dominicana	
	en Gobiernos Locales,		
	Mayo 2011		

NACIONALES

N.º	CURSO	INSTITUCIÓN	TIEMPO
1.	Planificación Financiera de Proyectos Junio, 2009	Universidad Técnica de	15 horas
	2007	Cotopaxi Vicaria pastoral	
		social	
2.	Taller de calidad ambiental del agua y	Gobierno Autónomo	30 horas
	meteorología	descentralizado provincial de	
		Cotopaxi – Instituto	
		Nacional de Meteorología e	
		hidráulica	
3.	Seminario regional sobre las perspectivas de	Consorcio de Gobiernos	6 horas
	los transgénicos en el	Autónomos Provinciales del	
	Ecuador	Ecuador.	
4.	Seminario de legislación y derecho ambiental	Consorcio de Gobiernos	16 horas
	de los procesos administrativos, civiles y	Autónomos Provinciales del	
	penales dirigido a los Gobiernos provinciales	Ecuador.	
	Acreditados como	Gobierno Autónomo	
	Autoridad Ambiental de Aplicación responsable	Descentralizado Provincial de	
	(AAAr)	Cotopaxi	

5.	I FORO AMBIENTAL DE TUNGURAHUA:	Universidad Técnica De	16 horas
	"PREVENCIÓN DE LA	Cotopaxi, Cooperación	
	CONTAMINACIÓN	Alemana GIZ, Consorcio de	
	DEL AGUA CON ENFOQUE DE	Gobiernos Autónomos	
	CUENCA	Provinciales del Ecuador,	
	HIDROGRÁFICA"		
6.	Capacitación en	Gobierno Autónomo	40 horas
	"Educación Ambiental"	Descentralizado Provincial	
		de Cotopaxi.	
7.	Asamblea provincial del ambiente Cotopaxi	Gobierno Autónomo	8 horas
		Descentralizado Provincial	
		de Cotopaxi.	
8.	5to Foro regional de cambio climático y	Centro Internacional de	16 horas
	riesgo	Formación de Autoridades y	
		Líderes locales (CIFAL)	
		Instituto de las Naciones Unidas para Formación	
		Profesional e Investigaciones (UNITAR)	
		Prefectura de Imbabura	
9.	Seminario de capacitación en calidad	Centro Internacional de	8 horas
	ambiental	Formación de Autoridades y	
		Líderes locales (CIFAL)	
10.	Guía de buenas prácticas ambientales (GBPA),	Gobierno Autónomo	40 horas
	plan de manejo ambiental (PMA), legislación	Descentralizado Provincial	
	ambiental, transporte y manejo de desechos peligrosos	de Cotopaxi.	

ANEXOS 7 Hoja de vida del investigador

DATOS PERSONALES

NOMBRES Y APELLIDOS: VASQUEZ CAMALLE LISBETH MIREYA

NACIMIENTO: 21 DE JULIO DE 1999

CÉDULA DE CIUDADANÍA: 0550190060

ESTADO CIVIL: SOLTERA

NÚMEROS TELEFÓNICOS: 0987496488

E-MAIL: lisbeth.vasquez@utc.edu.ec

ESTUDIOS REALIZADOS

NIVEL PRIMARIA: ESCUELA CLUB ROTARIO

NIVEL SECUNDARIA: COLEGIO LUIS FERNANDO RUIZ

NIVEL SUPERIOR: EGRESADA DE ING AMBIENTAL UTC

CURSOS REALIZADOS

N.º	CURSO	INSTITUCIÓN	TIEMPO
1.	"CONVERSATORIO SOBRE LEGISLACIÓN AMBIENTAL APLICABLE A ESTACIONES DE SERVICIO, RELLENOS SANITARIOS Y CURTIEMBRES INSTITUCIONALES",2021	UNIVERSIDAD TÉCNICA DE COTOPAXI	40 horas
2.	"ELABORACIÓN DE INFORMES AMBIENTALES DE CUMPLIMIENTO"	HEXA ACADEMI JZD Soluciones de Ingeniaría	16 horas
3.	ARCGIS APLICADO A LA GESTIÓN AMBIENTAL	SETEC	40 horas
4.	"TALLER UN AMBIENTE CON FUTURO SOSTENIBLE"	LA EMPRESA LEBENS – CAPACITACIONES CIA. LTDA. EN CONJUNTO CON NATTUR	10 horas

5.	MANEJO DE LA PLATAFORMA SUIA	SETEC	16 horas
6.	AUDITORÍAS AMBIENTALES A SISTEMAS DE GESTIÓN MEDIO AMBIENTAL (SGM) ISO 14001 2015, AUDITORÍAS DE CUMPLIMIENTO Y CIERRE SEGÚN FORMATO MAE SUIA	SETEC	40 horas
7.	MANEJO FORESTAL SOSTENIBLE	FACULTAD DE CIENCIAS FORESTALES Y AGROPECUARIAS DEPARTAMENTO DE CIENCIAS FORESTALES UNIVERSIDAD DE PINAR DEL RIO	40 horas