Browsing by Author "Cayambe Cajo, Fabian Rolando"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemClasificación automática de plantas monocotiledóneas y dicotiledóneas usando minería de datos(Ecuador: Latacunga: Universidad Técnica de Cotopaxi (UTC), 2022-03) Cayambe Cajo, Fabian Rolando; Cantuña Flores, Karla SusanaEn el presente proyecto de investigación, describe el desarrollo de una aplicación web basada en la comparación de dos técnicas de minería de datos tales como: regresión logística y SVM (máquina de vector de soporte). Para este caso de estudio se realizó la investigación de campo, donde se obtuvieron las imágenes para la creación de la base de datos con 353 registros. En el desarrollo de la aplicación web se recopila los datos como: área, perímetro, centroide y el tipo (monocotiledónea y dicotiledónea), estos datos son utilizados en el proceso de entrenamiento y aprendizaje de los dos algoritmos anteriormente mencionados; ya que es de utilidad para la clasificación automática. Para el desarrollo del prototipo se utilizó la segmentación de imágenes, operaciones morfológicas para el reconocimiento de la hoja y posteriormente se extrae los atributos de las mismas, dichos atributos son guardados en un cvs, el cual se utilizó dos modelos mediante las funciones model= LogisticRegression() y clf = SVC(kernel="rbf").fit(X_train, y_train), para obtener cómo resultado la clasificación de la planta esta puede ser (monocotiledónea y dicotiledónea) , finalmente nos da una precisión de validación de la clasificación en la planta monocotiledónea y dicotiledóneas con regresión logística un 97.75% y en SVM un 73.03%, lo que muestra que la técnica de minería de datos con menor error es de la regresión logística.