Browsing by Author "Gualpa Mendoza, Jennifer Nataly"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemMétodo para la determinación de similaridad y distancia entre investigadores a partir de algoritmos de clasificación.(Ecuador: Latacunga: Universidad Técnica de Cotopaxi: Facultad de Ciencias de la Ingeniería y Aplicadas, 2019-02) Falconí Punguil, Diego Geovanny; Gualpa Mendoza, Jennifer Nataly; Rodríguez, GustavoEn la Universidad Técnica de Cotopaxi se está apoyando y promoviendo la investigación científica, dando como resultado un aumento de artículos, libros, proyectos, ponencias entre otros documentos, que requieren ser almacenados. Para lo cual la Dirección de Investigación aprueba la implementación de una Plataforma científica denomina Ecuciencia, que tiene como objetivo la recopilación y visualización de la producción científica y tecnológica a partir de indicadores cienciométricos. Para cumplir con los requerimientos que demanda el proyecto, fue dividido en varias fases, la recopilación de datos de usuario, la comparación y clasificación entre investigadores. Partiendo de las características reales del proyecto se planteó el uso de herramientas de inteligencia computacional, para generar la representación gráfica de similitud y distancia entre investigadores, que sirven para hacer estudios relativos a la productividad científica de la universidad. Para lo cual se desarrolló métodos aplicando algoritmos de clasificación como K-means, MeanShift, SpectralClustering, AgglomerativeClustering y minería de datos, que realizan el análisis de un conjunto de datos extenso, para obtener como resultado matrices de similaridad y distancia de acuerdo al número de publicaciones de cada usuario. El lenguaje de programación Python fue fundamental para desarrollar la propuesta tecnológica, debido a su simplicidad y facilidad para emplear librearías de aprendizaje automático como Sklearn, el mismo que contiene módulos de varios algoritmos de clasificación. Para la agilidad del desarrollo del módulo implementado, se utilizó la metodología KDD (Knowledge Discovery in Databases), que está orientada al desarrollo de proyectos relacionados con la minería de datos. Se escogió este proceso, ya que trabaja mediante el ciclo de vida iterativo, a través de etapas que facilitó el avance de la propuesta tecnológica de forma metódica. Mediante la implementación de algoritmos de clasificación, en el sistema Ecuciencia, se logró la representación de la similaridad y distancia de investigadores de acuerdo a su producción científica, en gráficos que permiten que los usuarios visualicen la información sin mayor dificultad.