Carrera de Ingeniería Hidráulica
Permanent URI for this community
Browse
Browsing Carrera de Ingeniería Hidráulica by Subject "MÉTODO SCS - CN"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSimulación de picos de inundaciones repentinas utilizando fuentes satelitales de datos de precipitaciones en el Río Quindígua, Cantón La Maná.(Ecuador: Latacunga: Universidad Técnica de Cotopaxi: (UTC), 2024-08) Tipantasi Amancha, Jonathan Patricio; Zambrano Navarrete, Xiomara AlejandraThe study focuses on the simulation and modeling of flash flood peaks in the Quindígua River basin, located in Cantón La Maná, using precipitation data from the TRMM satellite and hydrological software such as HEC-HMS and HEC-RAS. Land cover was analyzed using satellite images from 2012 with a resolution of 25 by 25 meters to estimate peak flows using the SCS-CN method, achieving an accurate characterization of the basin's hydrological response. Additionally, the "Rain-on-Grid" (RoG) technique was implemented to simulate extreme precipitation events and their impact on generating peak flows. The hydrological simulation in HEC-HMS incorporated hyetographs based on IDF curves and the alternating block method for return periods of 5, 10, 25, 50, and 100 years. The resulting hydrographs were used in HEC-RAS to simulate maximum flood levels, flow velocities, and flood areas. The results showed that, over a 24-hour period, peak flows vary significantly depending on the return period, with a peak flow of 63.35 m³/s calculated by the SCS-CN method and 60.90 m³/s by HEC-HMS, showing an error of 3.85% for the 5-year return period. For the 50-year return period, peak flows of 117.36 m³/s (SCS-CN) and 117.40 m³/s (HEC-HMS) were obtained, with a very low error of 0.03%. Flow velocities in the hydrodynamic model ranged from 1.69 m/s for the 5-year return period to 2.51 m/s for the 100-year return period, reflecting the increase in peak flows.