Evaluación de algoritmos de predicción de la demanda en la industria alimentaria: comparación de métodos de aprendizaje automático y de series temporales

dc.contributor.advisorNaranjo Robalino, Jose Ezequiel
dc.contributor.authorGualotuña Cuesta, Mayerly Alexandra
dc.contributor.authorToapanta Chuqui, Kevin Patricio
dc.date.accessioned2025-11-17T15:13:42Z
dc.date.available2025-11-17T15:13:42Z
dc.date.issued2025-10-16
dc.description.abstractProduction planning in the food industry faces several chal lenges due to the absence of current technology and appropriate forecast ing techniques. This paper proposes to improve forecast by comparing machine learning algorithms and time series method. Three forecasting methods were evaluated: i) Crystal Ball, using the SARIMA model; ii) Weka, using neural networks; and iii) Machine learning models, created in Python, with algorithms such as Random Forest (RF). Error met rics such as MAE, RMSE, MAPE and R2 were evaluated, in addition to a survey based on the System Usability Scale (SUS) to assess ease of use. The case study was developed in a company that uses traditional tools such as Microsoft Excel. The results revealed that Weka was the most accurate in product 001002 with a MAPE of 1%, RMSE of 8.66 and MAEof 6.58. In terms of usability, Crystal Ball achieved the highest score (70 points), outperforming the other two proposals, indicating that the software selection is based on a balance between accuracy and ease of use. The incorporation of sophisticated models enhances demand an ticipation, improving inventory management and operational efficiency.
dc.format.extent512–529 páginas
dc.identifier.citationGualotuña, M., Toapanta, K.P. y Naranjo, J.E. (2026). Evaluación de algoritmos de predicción de la demanda en la industria alimentaria: comparación de métodos de aprendizaje automático y series temporales. En: Arai, K. (ed.) Actas de la Conferencia de Tecnologías del Futuro (FTC) 2025, Volumen 2. FTC 2025. Lecture Notes in Networks and Systems, vol. 1676. Springer, Cham. https://doi.org/10.1007/978-3-032-07989-3_33
dc.identifier.issn2367-3389
dc.identifier.otherUTC-FCIYA-IND-2025-002-ART
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-032-07989-3_33
dc.identifier.urihttps://repositorio.utc.edu.ec/handle/123456789/15160
dc.language.isoen
dc.publisherEcuador: Latacunga: Universidad Técnica de Cotopaxi (UTC)
dc.subjectMACHINE LEARNING
dc.subjectOPTIMIZATION
dc.subjectFORECASTING
dc.subjectSUS
dc.titleEvaluación de algoritmos de predicción de la demanda en la industria alimentaria: comparación de métodos de aprendizaje automático y de series temporales
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4. PORTADA.pdf
Size:
104.59 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: