Prediction model for cacao production integrated into an offline mobile application: the impact of artificial intelligence on agricultural decision-making.

dc.contributor.advisorBorja Borja, Cristian Darwin
dc.contributor.advisorBajaña Zajia, Johnny Xavier
dc.contributor.authorChuqui Alcivar, Dennis Brishith
dc.contributor.authorTorres Jimenez, Alex Joel
dc.date.accessioned2025-10-08T15:59:31Z
dc.date.available2025-10-08T15:59:31Z
dc.date.issued2025-10-08
dc.description.abstractCacao production, a key economic pillar for numerous rural communities in Ecuador, faces structural challenges related to climate variability and limited digital connectivity. This study presents the development and implementation of a yield prediction model based on the XGBoost algorithm, integrated into an offline mobile application designed to operate in agricultural environments without internet access. The research followed the CRISP-DM methodology and included the analysis of 5584 observations collected from plots in La Maná (Cotopaxi), corresponding to three cacao genotypes. Variables were processed using cleaning, imputation, and normalization techniques. The predictive model, validated with standard metrics (MSE, RMSE) and an R² of 0.9399, demonstrated robust fit and high interpretability. Subsequently, the model was deployed in a mobile app developed with React Native. Field deployment showed response times under five seconds, compatibility with low-end devices, and high user acceptance. Participatory validation confirmed the practical usefulness of the tool for real-time agronomic decision-making. This work provides evidence of the value of AI tailored to rural contexts and proposes a replicable approach for other value chains under similar conditions.
dc.format.extent1-7
dc.identifier.citationChuqui Alcívar, D. B., & Torres Jiménez, A. J. (2025). Modelo de predicción de la producción de cacao integrado en una aplicación móvil offline: El impacto de la inteligencia artificial en la toma de decisiones agrícolas. [Artículo académico]. Universidad Técnica de Cotopaxi, Extensión La Maná.
dc.identifier.issnUTC-XLM-SIS-2025-012-ART
dc.identifier.urihttps://repositorio.utc.edu.ec/handle/123456789/15048
dc.language.isoen
dc.publisherEcuador: La Maná: Universidad Técnica de Cotopaxi; Extensión La Maná, Carrera de Sistemas de Información
dc.subjectMACHINE LEARNING
dc.subjectXGBOOST
dc.subjectSMART AGRICULTURE
dc.subjectCRISP-DM
dc.subjectDATASET
dc.titlePrediction model for cacao production integrated into an offline mobile application: the impact of artificial intelligence on agricultural decision-making.
dc.typePreprint
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
UTC-XLM-SIS-2025-012-ART
Size:
53.01 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CARTA DE ACEPTACIÓN
Size:
401.25 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: