” implementación de un sistema fotovoltaico residencial OFF-GRID con predicción energética”

dc.contributor.advisorCastillo Fiallos, Jessica Nataly
dc.contributor.authorHerrera Robayo, David Ramiro
dc.contributor.authorLovato Caiza, Washington Gregorio
dc.date.accessioned2025-11-14T18:43:06Z
dc.date.available2025-11-14T18:43:06Z
dc.date.issued2025-07-29
dc.description.abstractThis study presents the implementation of an OFF-GRID residential photovoltaic system for a type D house located in Chimborazo Province, Ecuador, where there is no access to the conventional power grid. Two predictive models were used to estimate solar radiation: second-degree polynomial regression and a decision tree, using hourly data from the NASA POWER portal covering the years 2019 to 2024. The decision tree model showed better performance in terms of accuracy, with a Mean Squared Error (MSE) of 0.212 and a Coefficient of Determination (R²) of 0.8561, compared to the polynomial model which achieved an MSE of 0.6359 and R² of 0.6599. The prediction estimated a maximum solar radiation of 416.21 W/m² at 12:00 PM in January. These results are crucial for designing efficient solar energy systems in rural areas without grid access. The research demonstrates that machine learning models offer significant advantages for predicting complex phenomena such as solar radiation, enabling better planning for renewable energy use and improving the quality of life in isolated communities
dc.format.extent44 páginas
dc.identifier.citationHerrera-Robayo D. Lovato-Caiza W (2025). IMPLEMENTACION DE UN SISTEMA FOTOVOLTAICO RESIDENCIAL OFF-GRID CON PREDICCION ENERGETICA. EIGHTH International Conference SOFT COMPUTING AND SIGNAL PROCESSING (ICSCSP-2025) https://www.icscsp.com/the-conference
dc.identifier.issn2367.3370
dc.identifier.otherUTC-FCIYA-ELE-2025-011-ART
dc.identifier.urihttps://www.icscsp.com/the-conference
dc.identifier.urihttps://repositorio.utc.edu.ec/handle/123456789/15155
dc.language.isoen
dc.publisherEcuador: Latacunga: Universidad Técnica de Cotopaxi (UTC)
dc.subjectPREDICTION, RADIATION
dc.subjectREGRESSION, DECISION TREE
dc.title” implementación de un sistema fotovoltaico residencial OFF-GRID con predicción energética”
dc.typePreprint
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
UTC-FCIYA-ELE-2025-011-ART
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: