Unidades Recurrentes Cerradas (GRU) vs Redes Neuronales Artificiales en la predicción de la generación Eléctrica de la Central Hidroeléctrica Illuchi.
No Thumbnail Available
Date
2023
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Ecuador: Latacunga: Universidad Técnica de Cotopaxi, (UTC)
Abstract
La predicción de eventos ha sido desde la antigüedad, un fenómeno capaz de generar curiosidad en el ser humano, sin embargo, para lograr una proyección de un evento futuro se requiere de un análisis detallado de datos para predecir eventos posteriores, con esta idea. Objetivos: el objetivo de la investigación fue desarrollar dos sistemas de predicción aplicando redes neuronales artificiales y GRU para determinar la generación eléctrica pronosticada en la CENTRAL HIDROELÉCTRICA ILLUCHI. Metodología: Los datos utilizados para este estudio fueron recopilados de los operadores de ELEPCO S.A. en base a los años 2008 - 2020. Las variables de entrada fueron la fecha y la energía generada para elaborar diferentes casos con distintas condiciones con el fin de llegar a un modelo de Red Neuronal Recurrente exitoso posible. Resultados: Una vez comprendidas las variables del modelo, los datos se dividieron en dos grupos: entrenamiento 70% y validación 30% respectivamente. Para el entrenamiento correspondiente se utilizó el algoritmo ADAM y las librerías proporcionadas por Python.
Description
The prediction of events has been, since ancient times, a phenomenon capable of generating curiosity in human beings, however, to achieve a projection of a future event, a detailed analysis of data is required to predict subsequent events, with this idea. Objectives: The objective of the research was to develop two prediction systems by applying artificial neural networks and GRU to determine the predicted electricity generation at the ILLUCHI HYDROELECTRIC PLANT. Methodology: The data used for this study was collected from ELEPCO S.A. operators. based on the years 2008 - 2020. The input variables were the date and the energy generated to develop different cases with different conditions in order to reach a possible successful Recurrent Neural Network model. Results: Once the model variables were understood, the data were divided into two groups: training 70% and validation 30% respectively. For the corresponding training, the ADAM algorithm and the libraries provided by Python were used.
Keywords
ADAM, PYTHON, PREDICCIÓN, REDES NEURONALES ARTIFICIALES
Citation
Fernando Santiago Bustamante Freire (2023); Unidades Recurrentes Cerradas (GRU) vs Redes Neuronales Artificiales en la predicción de la generación Eléctrica de la Central Hidroeléctrica Illuchi. UTC. Latacunga. 35